Mathematics Chalmers & GU

TMA462/MMA410: Fourier and Wavelet Analysis, 2015-04-18; kl 14:00-18:00.

Telephone: Mohammad Asadzadeh: 772 3517

Course Books: Bergh et al, Bracewell, Lecture Notes and Calculator are allowed (no solutions).

Each problem gives max 6p. Breakings: 3: 12-17p, 4: 18-23p och 5: 24p-

For GU students \mathbf{G} :12-20p, \mathbf{VG} : 21p- (if applicable)

For solutions and gradings information see the couse diary in:

http://www.math.chalmers.se/Math/Grundutb/CTH/tma462/1415/index.html

1. Describe the operator

$$(\uparrow 2)(\downarrow 2)(\uparrow 2)(\downarrow 2)$$
.

- **2.** If $\varphi_1(x)$ and $\varphi_2(x)$ satisfy dilation equations, does their product $P(x) = \varphi_1(x)\varphi_2(x)$ satisfy a dilation equation?
- **3.** For the scaling function $\varphi(x)$ we have the dilation equation

$$\varphi(x) = 2\sum_{k=0}^{N} h_k \varphi(2x - k),$$

written in Fourier mod as:

$$\hat{\varphi}(\omega) = H(\frac{\omega}{2})\hat{\varphi}(\frac{\omega}{2}).$$

Show that if $H(\omega)$ has p zeros at $\omega = \pi$, then $\hat{\varphi}(\omega)$ har p zeros at $\omega = 2\pi n$, for each $n \neq 0$.

4. The inner products $\mathbf{a}(k)$ are the Fourier coefficients of the 2π -periodic function $A(\omega)$:

$$\mathbf{a}(k) = \int_{-\infty}^{\infty} \phi(t) \overline{\phi(t-k)} \, dt \quad \text{transforms to} \quad A(\omega) = \sum_{-\infty}^{\infty} |\hat{\phi}(\omega + 2\pi n)|^2.$$

5. The Hilbert transform of a function f is defined viz

$$F(x) = \frac{1}{\pi} \int_{-\infty}^{\infty} \frac{f(y)}{x - y} \, dy,$$

and note that for y/x < 1,

$$\frac{1}{x-y} = \frac{1}{x(1-\frac{y}{x})} = \frac{1}{x} \sum_{k=0}^{\infty} \left(\frac{y}{x}\right)^k.$$

a) How fast does the Hilbert transform Ψ of a function ψ decay as $|x| \to \infty$, when ψ is a Haar wavelet? Hint:

$$1/(x-y) \approx (1+y/x)/x$$
, when $|y/x| << 1$.

b) How fast does Ψ decay when ψ is a wavelet with compact support and N vanishing moments.

void!

TMA462/MMA410: Fourier and Wavelet Analysis, 2015–04–18; kl 14:00-18:00.. Lösningar/Solutions.

1. Describe the operator

$$(\uparrow 2)(\downarrow 2)(\uparrow 2)(\downarrow 2)$$
.

Solution: The easiest approach would be to solve the problem using the fact that

$$(\downarrow 2)(\uparrow 2)x(n) = x(x)$$

Thus

$$\hat{x}(n) = (\uparrow 2)(\downarrow 2)(\uparrow 2)(\downarrow 2)x(x)$$

$$= (\uparrow 2)\Big((\downarrow 2)(\uparrow 2)\Big)\Big((\downarrow 2)x(x)\Big)$$

$$= (\uparrow 2)(\downarrow 2)x(x)$$

$$= \frac{1}{2}(1 + (-1)^n)x(n).$$

In the frequency domain, this corresponds to

$$\hat{X}(z) = \frac{1}{2} \sum_{n = -\infty}^{\infty} \left(x(n)z^{-n} + x(n)z^{n} \right)$$
$$= \frac{1}{2} \left(X(z) + X(-z) \right).$$

2. If $\varphi_1(x)$ and $\varphi_2(x)$ satisfy dilation equations, does their product $P(x) = \varphi_1(x)\varphi_2(x)$ satisfy a dilation equation?

Solution: Let the two scaling functions satisfy refinement equations of the form:

$$\varphi_1(x) = 2\sum_k h_{1,k}\varphi_1(2x - k)$$
$$\varphi_2(x) = 2\sum_l h_{2,l}\varphi_2(2x - l).$$

We expand the product of $\varphi_1(x)$ and $\varphi_2(x)$ viz

$$\begin{split} P(x) = & 4 \sum_{k} \sum_{l} h_{1,k} h_{2,l} \varphi_1(2x - k) \varphi_2(2x - l) \\ = & 2 \sum_{k} \Big(h_{1,k} h_{2,k} \Big) P(2x - k) + 4 \sum_{k} \sum_{l \neq k} h_{1,k} h_{2,l} \varphi_1(2x - k) \varphi_2(2x - l), \end{split}$$

which implies that the product P(x) does not necessarily satisfy a dilation equation in general, since the second term in the above summation need not vanish for any two scaling functions.

3. For the scaling function $\varphi(x)$ we have the dilation equation

$$\varphi(x) = 2\sum_{k=0}^{N} h_k \varphi(2x - k),$$

written in Fourier mod as:

$$\hat{\varphi}(\omega) = H(\frac{\omega}{2})\hat{\varphi}(\frac{\omega}{2}).$$

Show that if $H(\omega)$ has p zeros at $\omega = \pi$, then $\hat{\varphi}(\omega)$ har p zeros at $\omega = 2\pi n$, for each $n \neq 0$.

Solution: Iterating equation (1) we obtain the relation

(2)
$$\hat{\varphi}(\omega) = \prod_{j=1}^{\infty} H\left(\frac{\omega}{2^j}\right).$$

By differentiating the infinite product formula(2) we end up with

$$\frac{d^i}{d\omega^i}\hat{\varphi}(\omega) = \sum_{k=1}^{\infty} \frac{1}{2^{k+i}} \frac{d^i}{d\omega^i} H\left(\frac{\omega}{2^k}\right) \prod_{k \neq j=1}^{\infty} H\left(\frac{\omega}{2^j}\right).$$

Substituting $\omega = 2^l(2m+1)\pi, \ l \geq 0$ we get

$$\frac{d^i}{d\omega^i}\hat{\varphi}(\omega)\Big|_{2^l(2m+1)\pi} = \sum_{k=1}^{\infty} \frac{1}{2^{k+i}} \frac{d^i}{d\omega^i} H(\omega)\Big|_{2^{l-k}\pi} \prod_{k\neq j=1}^{\infty} H(\omega)\Big|_{2^{l-j}\pi}.$$

Now for $0 \le i \le p$, all terms in the summation on the rhs vanish since $H(\omega)$ has p zeros at $\omega = \pi$, i.e., $\hat{\varphi}(\omega)$ har p zeros at $\omega = 2\pi n$, n > 0.

4. The inner products $\mathbf{a}(k)$ are the Fourier coefficients of the 2π -periodic function $A(\omega)$:

$$\mathbf{a}(k) = \int_{-\infty}^{\infty} \phi(t) \overline{\phi(t-k)} \, dt \quad \text{transforms to} \quad A(\omega) = \sum_{-\infty}^{\infty} |\hat{\phi}(\omega + 2\pi n)|^2.$$

Solution: By Parseval's identity, an inner product in the time domain equals an inner product in the frequency domain. The inner product in the time domain is between $\phi(t)$ and $\phi(t-k)$. The Fourier transforms of these functions are $\hat{\phi}(\omega)$ and $e^{-i\omega k}\hat{\phi}(\omega)$, respectively. Each inner product integrate one function times the complex conjugate of the other:

$$\mathbf{a}(k) = \int_{-\infty}^{\infty} \phi(t) \overline{\phi(t-k)} \, dt$$

$$= \frac{1}{2\pi} \int_{-\infty}^{\infty} \hat{\phi}(\omega) \overline{\hat{\phi}(\omega)} e^{i\omega k} \, d\omega$$

$$= \frac{1}{2\pi} \int_{0}^{2\pi} \sum_{-\infty}^{\infty} |\hat{\phi}(\omega + 2\pi n)|^{2} e^{i\omega k} \, d\omega.$$

The last integral split $(-\infty, \infty)$ into an infinite number of 2π -pieces, using the periodicity of $e^{i\omega k}$. This integral defines the k^{th} Fourier coefficient of $A(\omega)$. Thus $A(\omega) = \sum_{-\infty}^{\infty} \mathbf{a}(k) e^{i\omega k}$.

5. The Hilbert transform of a function f is defined viz

$$F(x) = \frac{1}{\pi} \int_{-\infty}^{\infty} \frac{f(y)}{x - y} \, dy,$$

and note that for y/x < 1,

$$\frac{1}{x-y} = \frac{1}{x(1-\frac{y}{x})} = \frac{1}{x} \sum_{k=0}^{\infty} \left(\frac{y}{x}\right)^k.$$

a) How fast does the Hilbert transform Ψ of a function ψ decay as $|x| \to \infty$, when ψ is a Haar wavelet? Hint:

$$1/(x-y) \approx (1+y/x)/x$$
, when $|y/x| << 1$.

b) How fast does Ψ decay when ψ is a wavelet with compact support and N vanishing moments. **Solution**: a) We have that

$$\psi(x) = \begin{cases} 1, & 0 < x < 1/2 \\ -1, & 1/2 < x < 1 \\ 0, & \text{else.} \end{cases}$$

Thus |x| > 1 yields

$$\Psi(x) = \frac{1}{\pi} \left(\int_0^{1/2} \frac{1}{x - y} \, dy - \int_{1/2}^1 \frac{1}{x - y} \, dy \right) = \frac{1}{\pi} \frac{1}{x} \left(\int_0^{1/2} \frac{1}{1 - y/x} \, dy - \int_{1/2}^1 \frac{1}{1 - y/x} \, dy \right)$$

$$= \frac{1}{\pi x} \left(\int_0^{1/2} \sum_{n=0}^\infty \left(\frac{y}{x} \right)^n \, dy - \int_{1/2}^1 \sum_{n=0}^\infty \left(\frac{y}{x} \right)^n \, dy \right)$$

$$= \frac{1}{\pi x} \sum_{n=0}^\infty \frac{1}{x^n} \left(\int_0^{1/2} y^n \, dy - \int_{1/2}^1 y^n \, dy \right) \approx \frac{1}{\pi x^2} \left(\int_0^{1/2} y \, dy - \int_{1/2}^1 y \, dy \right)$$

$$= \frac{1}{\pi x^2} \left[\frac{1}{2} \left(\frac{1}{2} \right)^2 - \frac{1}{2} \left(1 \left(\frac{1}{2} \right)^2 \right) \right] = \frac{1}{\pi x^2} \left(-\frac{1}{4} \right) = -\frac{1}{4\pi x^2}.$$
b)
$$\Psi(x) = \frac{1}{\pi} \int_a^b \frac{\psi(y)}{x - y} \, dy = \frac{1}{\pi x} \int_a^b \frac{\psi(y)}{1 - y/x} \, dy = \frac{1}{\pi x} \int_a^b \psi(y) \sum_{n=0}^\infty \left(\frac{y}{x} \right)^n \, dy.$$

Now for sufficiently large x; $(|x| > \max(|a|, |b|))$, we end up with

$$\Psi(x) = \frac{1}{\pi x} \sum_{n=0}^{\infty} x^{-n} \int_{a}^{b} \psi(y) y^{n} \, dy \frac{1}{\pi x} \sum_{n=N}^{\infty} x^{-n} \int_{a}^{b} \psi(y) y^{n} \, dy \approx \frac{1}{\pi} x^{-N-1} \int_{a}^{b} \psi(y) y^{N+1} \, dy.$$