Project course: Optimization TM Introduction: simple/difficult problems; matroid problems

Michael Patriksson
15 March 2004

0-0

Topics: Turning difficult problems into a sequence of simpler problems (decomposition—coordination)

- Lagrangian relaxation (IP, NLP)
- Dantzig–Wolfe decomposition (LP)
- Benders decomposition (IP, NLP)
- Column generation (LP, IP, NLP)
- Heuristics (IP)
- Branch & Bound (IP, non-convex NLP)
- Greedy algorithms (IP, NLP)
- Subgradient optimization (convex NLP)

Project course: Optimization TM, 2004

- $\bullet \approx 3$ meetings per week during three–four weeks
- Projects:
- Lagrangian relaxation for a VLSI design problem (Matlab package)
- Large-scale set covering problems: heuristics and optimizing methods (competition!)
- Literature: Lecture notes, hand-outs from books.
- Examination: Written reports on the two projects Oral presentation, with opposition!
- For better grades than pass (4, 5, VG): oral exam.

Simple problems—Wolsey

- For simple problems, there exist polynomial algorithms (they belong to the complexity class \mathcal{P}), preferably with a small largest exponent.
- Network flow problems (shortest paths; maximum flows; minimum cost single-commodity network flows; transportation problem; assignment problem; maximum cardinality matching)—see Wolsey!
- Linear programming
- Problems over simple matroids (next!)

. .

- Greedy algorithm: Create a "complete solution" by iteratively choosing the best alternative. In the greedy algorithm, one never regrets a choice made previously.
- Which problems can be solved using such a simple method?
- Problems that can be described by matroids.
- Given a finite set \mathcal{E} and a family \mathcal{F} of subsets of \mathcal{E} . If $\mathcal{A} \in \mathcal{F}$ and $\mathcal{A}' \subseteq \mathcal{A}$ implies that $\mathcal{A}' \in \mathcal{F}$, then the system $S = (\mathcal{E}, \mathcal{F})$ is an independent system.

σ

The Greedy algorithm for minimization problems

- \bullet $\mathcal{A} = \emptyset$.
- \bullet Sort the elements of ${\mathcal E}$ in increasing order with respect to w(e).
- Take the first element $e \in \mathcal{E}$ in the list. If $\mathcal{A} \cup \{e\}$ is still independent \Longrightarrow let $\mathcal{A} := \mathcal{A} \cup \{e\}$.
- Continue with the next element.
- \bullet Continue until either the list is empty, or ${\mathcal A}$ has the maximal cardinality.
- What are the corresponding algorithms in Examples I and II?

• Example, I:

 $\mathcal{E} =$ a set of column vectors in \mathbb{R}^n ,

 \mathcal{F} = the set of linearly independent subsets of vectors in \mathcal{E} .

• Example, II:

 \mathcal{E} = the set of links (edges, arcs) in an undirected graph, \mathcal{F} = the set of all cycle-free subsets of links in \mathcal{E} .

• Let w(e) be the cost of an element in \mathcal{E} . Problem: Find the element $\mathcal{A} \in \mathcal{F}$ of maximal cardinality such that the total cost is minimal/maximal.

Examples

• Example I (linearly independent vectors): Let

$$\mathbf{A} = \begin{pmatrix} 1 & 0 & 2 & 0 & 1 \\ 0 & -1 & -1 & 1 & 1 \\ 3 & 2 & 8 & 1 & 4 \\ 2 & 1 & 5 & 0 & 2 \end{pmatrix},$$
$$\mathbf{w}^{\mathrm{T}} = \begin{pmatrix} 10 & 9 & 8 & 4 & 1 \end{pmatrix}.$$

- Choose the maximal independent set with the maximal weight.
- Can this technique solve LP problems?

- Classic greedy algorithm (Kruskal's algorithm) has complexity $O(|\mathcal{E}| \cdot \log(|\mathcal{E}|))$. The main cost is in the sorting itself.
- Prim's algorithm builds the spanning tree through graph search techniques, from node to node; complexity $O(|\mathcal{N}|^2)$.

10

• Rounding down gives a feasible solution to (BKP). Is it also optimal in (BKP)?

$$\text{maximize } f(\boldsymbol{x}) = 2x_1 + cx_2,$$

subject to
$$\sum_{j=1} x_1 + cx_2 \le c,$$

$$x_1, x_2 \in \{0, 1\},$$

where c is a positive integer

- If $c \ge 2$ then $\boldsymbol{x}^* = (0, 1)^{\mathrm{T}}$ and $f^* = c$.
- The greedy algorithm, plus rounding, always gives $\bar{x} = (1,0)^{\mathrm{T}}$, with $f(\bar{x}) = 2$; an arbitrarily bad solution.

• Example III (in fact not a matroid problem): LP relaxation of the 0/1 knapsack problem (BKP):

$$\text{maximize } f(\boldsymbol{x}) = \sum_{j=1}^{n} c_j x_j,$$

subject to
$$\sum_{j=1}^{n} a_j x_j \le b, \qquad (a_j, b \in \mathcal{Z}_+)$$
$$0 \le x_j \le 1, \quad j = 1, \dots, n.$$

- Greedy algorithm: Sort c_j/a_j in descending order; set the variables to 1 until the knapsack is full. The last variable may become fractional.
- LP duality shows that the greedy algorithm is correct.

• Example IV: the traveling salesman problem (TSP)

• The greedy algorithm would select the next best city which does not lead to a sub-tour. Optimal?

Figure 1: Greedy

Optimal

• Not optimal when $c \gg 0$.

11

• The greedy algorithm constructs a path that uses, locally, the cheapest link to reach a new node.

Optimal?

Figure 2: Greedy

Optimal

• Not optimal when $c \gg 0$.

14

$egin{aligned} \mathbf{Matroid\ types} \ \mathbf{\mathcal{F}} = \mathsf{the\ set\ of\ forests\ in\ a\ c.} \end{aligned}$

- Graph matroid: $\mathcal{F} = \text{the set of forests in a graph}$ $\mathcal{G} = (\mathcal{N}, \mathcal{E})$. Example problem: MST.
- Partition matroid: Consider a partition of \mathcal{E} into m sets $\mathcal{B}_1, \ldots, \mathcal{B}_m$ and let d_i $(i = 1, \ldots, m)$ be non-negative integers. Let

$$\mathcal{F} = \{ \mathcal{I} \mid \mathcal{I} \subseteq \mathcal{E}; \mid |\mathcal{I} \cap \mathcal{B}_i| \le d_i, \ i = 1, \dots, m \}.$$

Example problems: semi-matching; bipartite graphs.

• Matrix matroid: $S = (\mathcal{E}, \mathcal{F})$, where \mathcal{E} is a set of column vectors and \mathcal{F} is the set of subsets of \mathcal{E} with linearly independent vectors. Observe: The above matroids can be written as matrix matroids!

• Example VI: Semi-matching:

13

maximize
$$f(\boldsymbol{x}) = \sum_{i=1}^{n} \sum_{j=1}^{n} w_{ij} x_{ij}$$
,

subject to
$$\sum_{j=1}^{n} x_{ij} \le 1$$
, $i = 1, \dots, m$, $x_{ij} \in \{0, 1\}$, $i = 1, \dots, m$, $j = 1, \dots, n$.

- Semi-assignment: replace maximum \Longrightarrow minimum; " \leq " \Longrightarrow "="; m=n.
- Algorithm: For each i: take best w_{ij} , set $w_{ij} = 1$ for that j, and $w_{ij} = 0$ for every other j.

15

Problems over matroid intersections

- Given two matroids $M=(\mathcal{E},\mathcal{P})$ and $N=(\mathcal{E},\mathcal{R})$, find the maximum cardinality set in $\mathcal{P}\cap\mathcal{R}$.
- Example 1: maximum-cardinality matching is the intersection of two partition matroids.
- The intersection of two matroids can not be solved by using the greedy algorithm.
- There exist polynomial algorithms for them. For example, matching and assignment problems can be solved as maximum flow problems, which are polynomially solvable.

• Conclusion: Matroid problems are extremely easy; two-matroid problems are polynomial; three-matroid problems are very difficult!

18

 $\text{minimize} \quad \sum_{i=1}^{n} \sum_{j=1}^{n} c_{ij} x_{ij}$

subject to

 $i\in\mathcal{N},$

(1)

mize
$$\sum_{i=1}^n \sum_{j=1}^n C_{ij} x_{ij}$$
 to $\sum_{j=1}^n x_{ij} = 1,$

$$\sum_{i=1}^{n} x_{ij} = 1, \qquad j \in \mathcal{N},$$

(2)

$$\sum_{i \in S} \sum_{j \in S} x_{ij} = 1, \qquad j \in \mathcal{N}, \qquad (2)$$

$$\sum_{i \in S} \sum_{j \in S} x_{ij} \le |\mathcal{S}| - 1, \quad \mathcal{S} \subset \mathcal{N}, \qquad (3)$$

$$\sum_{j \in \mathcal{S}} x_{ij} \leq |\mathcal{O}| = 1, \quad \mathcal{O} \subset \mathcal{N},$$
 $x_{ij} \in \{0,1\}, \quad i,j \in \mathcal{N}.$

The traveling salesman problem—three formulations

17

otherwise manipulated. to different algorithms when Lagrangian relaxed or Three formulations of the undirected TSP, which give rise

• Tree-based formulation. (1)–(2): Assignment; (3): cycle-free.

- Lagrangian relax (3): Assignment.
- Lagrangian relax (1)–(2): 1-MST, if adding redundant constraints from the original problem.

19

21

minimize
$$\sum_{i=1}^{n} \sum_{j=1}^{n} c_{ij} x_{ij}$$
subject to
$$\sum_{n} \sum_{j=1}^{n} x_{ij} = 2$$

(1)

$$\sum_{j=1}^{n} x_{ij} = 2, \qquad i \in \mathcal{N},$$

$$\sum_{i=1}^{n} \sum_{j=1}^{n} x_{ij} = n,$$

$$\sum_{i=1}^{n} \sum_{j=1}^{n} x_{ij} \ge 1, \qquad \mathcal{S} \subset \mathcal{N},$$

$$(i,j) \in (\mathcal{S}, \mathcal{N} \setminus \mathcal{S})$$

$$\sum_{i=1}^{\infty} x_{ij} = n,$$

$$x_{ij} \ge 1, \qquad \mathcal{S} \subset \mathcal{N}, \qquad (3)$$

 $x_{ij} \in \{0, 1\}, \quad i, j \in \mathcal{N}.$

For directed graphs:

minimize

$$\sum_{(i,j)\in\mathcal{E}} c_{ij}x_{ij} \ \sum_{j:(i,j)\in\mathcal{E}} x_{ij} = 1, \qquad i$$

(1)

$$\sum_{i:(i,j)\in\mathcal{E}} x_{ij} = 1, \qquad j \in \mathcal{N},$$
 $\sum_{i:(i,j)\in\mathcal{E}} x_{ij} = |\mathcal{N}|,$

(2)

(3)

subject to
$$\sum_{j:(i,j)\in\mathcal{E}} x_{ij} = 1, \quad i \in \mathcal{N}, \quad (1)$$

$$\sum_{i:(i,j)\in\mathcal{E}} x_{ij} = 1, \quad j \in \mathcal{N}, \quad (2)$$

$$\sum_{i:(i,j)\in\mathcal{E}} x_{ij} = |\mathcal{N}|, \quad (3)$$

$$\sum_{(i,j)\in(\mathcal{S},\mathcal{N}\setminus\mathcal{S})^{-}} x_{ij} \geq 1, \quad \mathcal{S} \subset \mathcal{N}, \quad (4)$$

$$x_{ij} \in \{0,1\}, \quad (i,j) \in \mathcal{E}.$$

• Node adjacency based formulation. (1): Adjacency such that every node is adjacent to two nodes.] version). [Hamilton cycle is a spanning tree + one link, condition; (2): Redundant; (3): cycle-free (alternative

• Lagrangian relax (1), except for node s: 1-tree relaxation.

• Lagrangian relax (3): 2-matching

• Tree-based formulation. (1)–(2): assignment; (3): Redundant; (4) Cycle-free.

• Lagrangian relax (1) or (2), plus (4): semi-assignment.

• Lagrangian relax (3) plus (4): assignment

• Lagrangian relax (1), and (2) except for node s: directed 1-tree relaxation.

23

22