Project course: Optimization TM
Introduction: simple/difficult
problems; matroid problems

Michael Patriksson

15 March 2004

\ Project course: Optimization TM, 2004 j

e ~ 3 meetings per week during three—four weeks
e Projects:

— Lagrangian relaxation for a VLSI design problem
(Matlab package)

— Large-scale set covering problems: heuristics and
optimizing methods (competition!)

e Literature: Lecture notes, hand-outs from books.

e Examination: Written reports on the two projects.
Oral presentation, with opposition!

e For better grades than pass (4, 5, VG): oral exam. K

\ Topics: Turning difficult problems into a mmncmsoo/
of simpler problems (decomposition—coordination)

e Lagrangian relaxation (IP, NLP)

Dantzig-Wolfe decomposition (LP)
Benders decomposition (IP, NLP)
Column generation (LP, IP, NLP)
Heuristics (IP)

Branch & Bound (IP, non-convex NLP)
Greedy algorithms (IP, NLP)

Ko Subgradient optimization (convex NLP)

\ Simple problems—Wolsey J

e For simple problems, there exist polynomial algorithms
(they belong to the complexity class P), preferably

with a small largest exponent.

e Network flow problems (shortest paths; maximum
flows; minimum cost single-commodity network flows;
transportation problem; assignment problem:;

maximum cardinality matching)—see Wolsey!
e Linear programming

e Problems over simple matroids (next!)

o \

\ Matroids and the greedy algorithm—Lawler /

Greedy algorithm: Create a “complete solution” by
iteratively choosing the best alternative. In the greedy
algorithm, one never regrets a choice made previously.

Which problems can be solved using such a simple
method?

Problems that can be described by matroids.

Given a finite set £ and a family F of subsets of £. If
A€ F and A C A implies that A" € F, then the
system S = (£, F) is an independent system.

N /

\ e Example, I: /

&€ = a set of column vectors in R",

F = the set of linearly independent subsets of vectors in £.

e Example, II:

& = the set of links (edges, arcs) in an undirected graph,

F = the set of all cycle-free subsets of links in &.

e Let w(e) be the cost of an element in €. Problem: Find
the element A € F of maximal cardinality such that

the total cost is minimal/maximal.

N /

\ The Greedy algorithm for minimization ﬁwozogm/
o A=1.

Sort the elements of £ in increasing order with respect
to w(e).

Take the first element e € £ in the list. If AU {e} is
still independent = let A := AU {e}.

Continue with the next element.

Continue until either the list is empty, or A has the

maximal cardinality.

e What are the corresponding algorithms in Examples I

K and II7 &

\ Examples J

e Example I (linearly independent vectors): Let

10 2 01
0 -1 -1 1 1

A= u
3 2 8 14
5 1 5 0 2

SHHAS 9 8 gQ.

e Choose the maximal independent set with the maximal
weight.

/o Can this technique solve LP problems? \

\ e Example II (minimum spanning trees): The maximal /
set of cycle-free links in an undirected graph is a
spanning tree; in a graph G = (N, &), it has |N| — 1
links.

e Classic greedy algorithm (Kruskal’s algorithm) has
complexity O(|€] -log(|€])). The main cost is in the
sorting itself.

e Prim’s algorithm builds the spanning tree through
graph search techniques, from node to node; complexity

O(INT?).

N /

\ e Example III (in fact not a matroid problem): /
LP relaxation of the 0/1 knapsack problem (BKP):

maximize f(x) = MUS&%

j=1
n

subject to Muﬁﬁ. <0,
j=1

0<z; <1, 5=1,...,n

A@u; be N.__.v

o Greedy algorithm: Sort ¢;/a; in descending order; set
the variables to 1 until the knapsack is full. The last
variable may become fractional.

/o LP duality shows that the greedy algorithm is oo@moﬁ.\

\ e Rounding down gives a feasible solution to (BKP). Is #/
also optimal in (BKP)?

maximize f(x) = 2z + cxa,

n
subject to M&H + cxe < ¢,
j=1
X1,T9 € ,ﬂov HT
where c is a positive integer.
o If ¢ > 2 then * = (0,1)T and f* =c.

e The greedy algorithm, plus rounding, always gives

K x = (1,0)T, with f(2) = 2; an arbitrarily bad mo_:ﬁosx

10

\ e Example IV: the traveling salesman problem (TSP) J

e The greedy algorithm would select the next best city

which does not lead to a sub-tour. Optimal?

Figure 1: Greedy Optimal

e Not optimal when ¢ > 0.

- /

11

12

\ e Example V: the shortest path problem (SPP) /

N

e The greedy algorithm constructs a path that uses,
locally, the cheapest link to reach a new node.
Optimal?

Figure 2: Greedy Optimal

e Not optimal when ¢ > 0. \

\

\ e Example VI: Semi-matching:

m n
maximize f(x) = M MS@.&?

i=1 j=1

subject to Muad. <1, +=1,...,m,
j=1
.&.Gmﬁo“HT 1=1,....m, j=1,...,n.

e Semi-assignment: replace maximum = minimum,;
[13 ” K", J—
< = “=";m=n.

e Algorithm: For each i: take best w;;, set w;; = 1 for
that j, and w;; = 0 for every other j.

\

13

14

-

Matroid types /

e Graph matroid: F = the set of forests in a graph
G = (N, €). Example problem: MST.

e Partition matroid: Consider a partition of £ into m
sets By, ..., B, and let d; (i =1,...,m) be
non-negative integers. Let

F=A{Z|ZTCE&, |InBj|<d;,i=1,....,m}.
Example problems: semi-matching; bipartite graphs.

e Matrix matroid: S = (€, F), where £ is a set of column
vectors and F is the set of subsets of £ with linearly

independent vectors. Observe: The above matroids can

K be written as matrix matroids! K

-

Problems over matroid intersections

e Given two matroids M = (£,P) and N = (£,R), find
the maximum cardinality set in P N'R.

e Example 1: maximum-cardinality matching is the

intersection of two partition matroids.

e The intersection of two matroids can not be solved by
using the greedy algorithm.

e There exist polynomial algorithms for them. For
example, matching and assignment problems can be
solved as maximum flow problems, which are
polynomially solvable.

~

15

\ e Example 2: The traveling salesman problem (TSP) is /
the intersection of three matroids: a graph matroid and
two partition matroids (see its formulation using
assignment + tree constraints).

e Conclusion: Matroid problems are extremely easy;
two-matroid problems are polynomial; three-matroid
problems are very difficult!

N /

16

\ The traveling salesman problem—three /
formulations

Three formulations of the undirected TSP, which give rise
to different algorithms when Lagrangian relaxed or
otherwise manipulated.

N /

17

' W
minimize M M CijTij

i=1 j=1

M&.QHH“ sm.\/\\J AHV
j=1

M:ng.nr
i—1
MM&&MT&If SCWN, (3)

i€S jES
uﬁ.@. € AO“ wa

subject to

jeEN, (2)

i,7€N.

18

\ e Tree-based formulation. (1)—(2): Assignment; (3): J
cycle-free.

e Lagrangian relax (3): Assignment.

e Lagrangian relax (1)—(2): 1-MST, if adding redundant
constraints from the original problem.

19

-

N

n n
minimize M M CijTij

i=1 j=1
subject to MU T =2, ieN, (1)
=1
22 wi=n, 2)
=1 j=1

MU .&,& N H_.v nm. C .\<\u va
(6,)E(S, N\S)
,&,&mAOJHT f.wm.\/\.

20

\ e Node adjacency based formulation. (1): Adjacency /
condition; (2): Redundant; (3): cycle-free (alternative
version). [Hamilton cycle is a spanning tree + one link,
such that every node is adjacent to two nodes.]

e Lagrangian relax (1), except for node s: 1-tree
relaxation.

e Lagrangian relax (3): 2-matching.

N /

21

hg; directed graphs:

N

minimize MU CijTij
(3,7)€€
subject to MU T =1, ieN,
J:(i,5)€€
MU xy =1, jeEN,
i:(i,5)€E
> =N,
(i,5)€E
MU Ti; + MU xi; > 1, SCWN,
(1.5)€(S,M\S)* (31)E(S,N\S)~
z;; € 40,1}, (i,7) € €.

22

\ e Tree-based formulation. (1)—(2): assignment; (3): J
Redundant; (4) Cycle-free.

Lagrangian relax (1) or (2), plus (4): semi-assignment.

Lagrangian relax (3) plus (4): assignment.

Lagrangian relax (1), and (2) except for node s:
directed 1-tree relaxation.

23

