
Chalmers tekniska högskola Project 1
Applied mathematics Lagrangian duality
Optimization 2004-03-12

Project 1: VLSI routing and Lagrangian duality

1 Introduction

The purpose of this project is to illustrate how a relatively difficult optimization problem can
be attacked by using Lagrangian duality. During the project you will write a Matlab program
for the solution of the Lagrangian dual problem. At your service are two functions that you can
call from Matlab.

We consider a routing problem in “very large-scale integrated circuit design” (VLSI), namely
an application of the so-called “Manhattan channel routing problem.” The mathematical clas-
sification of this problem is that of “vertex disjoint paths,” and the problem and the application
are based on the article “Lagrangian relaxation for testing infeasibility in VLSI routing” by
Thomas A. Feo and Dorit S. Hochbaum, which is published in Operations Research, vol. 54, pp.
819–831 (1986).

The program to be constructed during the project is to be used to decide whether a given
placement of a number of connections are possible to implement with respect to the wiring
necessary between the components. The circuit board where the connections are to be placed
are such that on one side of the board wiring can only be done horizontally, and on the other
side only vertically. On the board there are predefined vias (or connectors) where it is possible
to connect one side to the other on the board.

A B C D E F

A’ B’ C’D’ E’F’

Figure 1: A Manhattan channel routing problem with contact pair A–A’, . . . , F–F’.

We illustrate such a problem in Figure 1. In the figure there are six horizontal wires on one
side and eight on the other. In addition, six contact pairs, A–A’, B–B’, up to F–F’, are drawn
in the figure.

1

First we introduce notation to mathematically describe the network and how contact points
are interconnected. The we present the optimization problem which will tell if the routing
problem has a solution or not. This problem will then be studied by using Lagrangian duality,
whose formulation will be attacked using subgradient optimization. It is the program code for

this algorithm that defines your first task.

With the help of the bounds we obtain on the optimal function value we can then draw
conclusions about the existence of feasible solutions to the wiring problem or not.

2 Task 1

Study the problem carefully and write down a sketch of a Matlab program that follows the
scheme of Figure 2.

Your task is to write the program code for the subgradient optimization. The program is
to be tested on problems that can be downloaded from the course web page. The files having
the names “p6.m”, “p10.m,” and “p11.m” contain definitions of dimX, dimY, k, and com (which
are described on page 5). The problem defined in “p6.m” corresponds to the one in Figure 1,
which hence suits as a trial problem for the algorithm coded. This problem lacks solutions to the
wiring problem. On the home page that are also two additional functions, described on page 4,
and bearing the names “gsp.c” and “visagrid.m”.

To be handed in are:

• A print-out of the program code with your name on it. Also, a description in words of
what the algorithm does.

• The dual “optimal” objective values for the dual problem, for each problem instance.

• Graphs for each problem instance, where the dual objective value is plotted on the y-axis
against the iteration number on the x-axis.

• A conclusion, for each instance of the problem, of whether it has a solution.

3 Task 2

In a second phase of the project you will implement a primal feasibility heuristic. In the article
describing the problem there is no such heuristic; in this case this is natural, considering the fact
that the authors describe primal heuristic algorithms that are already in use at BELLCORE for
the problem.

Your task is, based on the Lagrangian subproblem and the constraints having been La-
grangian relaxed, to construct a feasibility heuristic that manipulates a Lagrangian subproblem
solution to find a primal feasible solution. Since our problem is defined over a graph it makes
good sense to consider utilizing graph operations and/or optimization. Note that the heuristic
should not be very complicated, and that it must terminate; that is, it cannot be constructed
such that there is any risk of it never terminating with a solution. (Therefore, in the worst case,
we must accept that the heuristic fails on occasion.)

The usefulness of the heuristic is two-fold: (a) it provided us with a pessimistic bound on
the optimal objective value, which can be used in a termination criterion for the dual algorithm;
(b) it provides us with a feasible solution at the end of the process, and this solution can then
be used as our candidate solution to be implemented.

To be handed in are:

• A print-out of this part of the program code together with a description in words of the
algorithm, with your name on it.

2

• The best solutions found in this way for each problem instance.

• Graphs, for each problem instance, where the primal and dual objective values are given
against the iteration number.

4 Mathematical model

We introduce mathematical notation to describe the routing problem.
Let the set V contain the nodes in the graph and let A contain the directed links between

the nodes.. Let n be the number of nodes, that is, |V| = n. The nodes correspond to places on
the circuit board where we can connect the two side to each other, the so-called “vias. A via is
a link from a node on one side to a node on the other. A link describes a possible connection
between two nodes. In Figure 1 we represent by a line two links, one in each direction between
two nodes.

The contact pairs “start” and “terminate” at a node. Let k be the number of contact pairs,
and let sl and tl define the “start”- and “terminal” nodes for the pairs l = 1, . . . , k.

We let the 0/1 variable xijl denote whether contact pair l uses the link from node i to node
j or not. In addition we define the variables xtlsll describing a link directly from tl to sl for
l = 1, . . . , k. These variables are interpreted as “direct links” from A’ to A, B’ to B, and so on.
They are not physical links, but logical ones that will tell us if a connection was possible or not.

The problem of finding a solution where as many connections as possible are made can with
the above notation be written as the problem to

maximize

k
∑

l=1

xtlsll, (1a)

s.t.

n
∑

j=1

(xjil − xijl) = 0, i ∈ V, l = 1, . . . , k, (1b)

k
∑

l=1

n
∑

j=1

xjil ≤ 1, i ∈ V, (1c)

xijl ∈ {0, 1}, (i, j) ∈ A, l = 1, . . . , k. (1d)

The model can be interpreted as follows: the constraint (1d) makes sure that a contact pair
can pass through a link once or not at all; the constraint (1c) makes sure that each node can
only be passed once, that is, be used only by one contact pair; the constraints (1b) make sure
that a node that gets an incoming connection also gets an outgoing one; the objective function
describes the maximization of the number of connections that are made; the flow is circular
according to our formulation, whence it is enough to count the “direct links.”

If the optimal objective value is smaller than the total number of pairs that we wished to
connect then there is no way in which we can connect them, given the circuit board at hand.

5 Lagrangian dual problem

Form a Lagrangian dual problem where constraints (1c) are relaxed. The number of constraints
in (1c) is the same as the number of nodes in the network (n). Let the dual variables be denoted
by πi, i = 1, . . . , n. Since the dual variables are associated with ≤ constraints in a maximization

3

problem, we have an additional constraint that πi ≥ 0, i = 1, . . . , n. The Lagrangian dual
problem can be written as that to

minimize
π≥0n

h(π), (2a)

where

h(π) = maximum
k

∑

l=1

xtlsll +
n

∑

i=1

πi

1 −
k

∑

l=1

n
∑

j=1

xjil

 , (2b)

s.t.

n
∑

j=1

(xjil − xijl) = 0, i = 1, . . . , n, l = 1, . . . , k, (2c)

xijl ∈ {0, 1}, (i, j) ∈ A, l = 1, . . . , k. (2d)

The problem (2b)–(2d) is called the Lagrangian subproblem. The objective function in (2b) can
be rewritten as

h(π) = maximum
n

∑

i=1

πi +
k

∑

l=1

xtlsll −
n

∑

i=1

n
∑

j=1

πixjil

 . (3)

We observe that since πi is constant in the Lagrangian subproblem we can separate this problem
into k independent problems, one for each contact pair.

For a given contact pair l the Lagrangian subproblem is to

maximize

xtlsll −

n
∑

i=1

n
∑

j=1

πixjil

, (4a)

s.t.

n
∑

j=1

(xjil − xijl) = 0, i = 1, . . . , n, (4b)

xijl ∈ {0, 1}, (i, j) ∈ A. (4c)

This problem is solved in two steps. First, we find the cheapest route between the nodes s l

and tl, where the costs for passing a node i is πi. We let zi describe this route with zi = 1 if node
i is passed, and zi = 0 otherwise. In step two we calculate the route cost

∑n
i=1

πizi. If the route
cost is smaller than one the problem (4) has a solution at which the x variables corresponding
to the links in the cheapest route are set to one. If the route cost is larger than one, then all
variables for that node connection are set to zero.

The value of h(π) is, according to Lagrangian duality theory for a maximization problem, an
upper bound (UBD) on the optimal value for the original problem, that is, an optimistic bound.

Given the solutions to the k Lagrangian subproblems, that is, the values of the x variables,
a subgradient d at iteration t can be computed as follows:

dt
i = 1 −

k
∑

l=1

n
∑

j=1

xjil, i = 1, . . . , n. (5)

(This expression can be interpreted in the network. The sum
∑n

j=1
xjil can be interpreted

for a given contact pair l as the number of links used, initiated at nodes j, j = 1, . . . , n, which
are adjacent to node i. This interpretation can be useful when calculating the search direction.)

The dual variables can now be updated by taking a step in the direction of −d:

πt+1

i = max{0, πt
i − stdt

i}, i = 1, . . . , n (6)

4

(a step in the opposite direction of the subgradient since we are solving a minimization problem
in the Lagrangian dual), where the step length st > 0 can be calculated, for example, through
the formula

st = λt h(π) − LBD
∑n

i=1

(

1 −
∑k

l=1

∑n
j=1

xjil

)2
. (7)

The value LBD should be a lower bound on the optimal value of the problem (a pessimistic

bound). We choose to set LBD equal to zero here. (The value of LBD could also be the
value of the best known feasible solution to the primal problem. The value of LBD could, for
example, be determined through a primal feasibility heuristic.) The parameter λt must have a
value strictly between zero and two.

We note that the max operation in (6) is crucial in order to be sure that the multipliers π
maintain there sign even after an update. (We of course start at a non-negative vector, such as
π0

i = 0 or π0
i = 1/n for all i.)

Given the new values of the multipliers, πt+1

i , i = 1, . . . , n, according to (6), we re-solve the
Lagrangian subproblem, and so on, until we terminate. The subgradient method is normally
terminated after a fixed number of iterations, since there are seldom enough information on
how close to the dual optimal we are; here, a maximum number of 1000 iterations might be
appropriate. The parameter λ can, for example, initially be set of two, after which we multiply
it by 0.95 every ten iteration. (See also the article for an alternative rule.)

The subgradient scheme is summarized in Figure 2.

Solve Lagrangian subproblem

Calculate upper bound on optimal value, h(pi)

Calculate step length, s

Calculate subgradient direction, d

Take step s in direction −d

Decrease value of lambda

Add one to the iteration counter t

Stop?

Figure 2: The subgradient scheme.

5

6 Help functions in Matlab

At your service there are two ready-made functions in Matlab. One is a routine for solving k
cheapest routes in a graph. The other is a routine for graphically representing a graph and a
solution (a wiring).

nl=gsp(dimX,dimY,pi,k,com)

dimX and dimY are the number of “vias” in the x-, respectively, y-coordinates. pi is a
vector of dual variable values, pi has dimX*dimY*2 elements. k is the number of contact
pairs and com is a matrix describing the initial and ending nodes of each contact pair. For
example, com = [1 48; 2 42; 3 43] with k=3 states that the first pair starts at node 1
and ends at node 48, the other one starts at node 2, and ends at node 42, and the third
pair starts at node 3 and terminates at node 43. The result nl is a vector with node
numbers describing the cheapest routes.

The result coming from the function gsp is a list (nl) with node numbers describing a
cheapest route for each for each contact pair. For a graph with dimX = 8 and dimY = 6
the nodes are numbered according to Figure 3.

1 2 3 4 5 6 7 8

9 10 11 12 13

4847464544...

...

49

50

51

53

52

54

55

56

57

58

...

96

95

94

93

...

Figure 3: Node numbering for the upper (left) and lower (right) layer.

Example: Let k = 3 with contact pair com = [1 48; 3 41; 5 42]. Suppose all el-
ements in the π vector has the value 0.1. By calling nl = gsp(8, 6, pi, k, com)

we obtain nl = 48 47 46 45 44 43 42 41 54 53 52 51 50 49 1 42 60 59 58 57 56

55 2 43 66 65 64 63 62 61 3. �

Given the vectors pi, nl, com, and k, in order to find out which contact pairs have a route
cost lower than one we can use the following code:

% Calculate cost per route; remove route with

% cost > 1 (Requires routes stored in nl and pairs in com vectors.)

last = 0;

for i = 1 : k;

first = last+1;

slask = find(nl(last+1:length(nl)) == com(i,1));

last = slask(1)+first-1;

if (sum(pi(nl(first:last))) < 1)

okcom = [okcom i]; newnl = [newnl; nl(first:last)];

end

end

Having run this command there is a vector okcom containing the indices (row numbers
in the com vector) of the contact pairs with costs lower than one, and a vector newnl

6

containing all the node numbers for all the routes in these contact pairs, stored after each
other in the vector.

Example (cont’d): With nl calculated in the previous example we get okcom = 2 3

and newnl = 42 60 59 58 57 56 55 2 43 66 65 64 63 62 61 3 as the result from the
above program code. We observe that the connection between 1 and 48 passes 15 nodes
and hence has a route cost of 15 · 0.1 > 1. Therefore, the pair is not included in okcom or
newnl. �

visagrid(dimX,dimY,nl,com,pi,shift)

dimX and dimY are the number of “vias” in the x-, respectively, y-coordinates. nl is a list
of node numbers describing all the connections between contact pairs. com is a matrix
describing the start and end nodes for each contact pair. pi is a vector with dual variable
values. pi has dimX*dimY elements. shift is a number describing the displacement of the
vias in the screen. A good value is 25.

0 100 200 300 400 500 600 700 800 900
0

100

200

300

400

500

600

700

Figure 4: Example result from visagrid.

A Appendix: A short command list for Matlab

Matlab programs are preferably written using the text editor Emacs. The Matlab program is
stored with a name with extension “.m”. The program is started from Matlab by typing the
name of the file you stored (without the .m) at the prompt.

In general, if a row in Matlab is ended with a ;-sign, there will be no screen output. Without
the ;-sign Matlab will type out the result. Put a %-sign at the beginning of a row if you wish
Matlab to skip it.

In order to get help about a command, type “help < kommando >” at the Matlab prompt.
The command “who” shows which variables are defined and their respective sizes.

7

Command Example Description

--

Variables and Matrices

--

A=[]; Sets the variable A to zero.

A=[1 2 7;4 5 6]; Assigns a matrix with two rows and three

columns to the variable A.

A(2,1)=4; Assigns the element on row 2 and column

1 to the value 4.

zeros A=zeros(3,1); Assigns to A a matrix with three rows

and one column with only zeros.

ones A=ones(3,1); Assigns to A a matrix with three rows

and one column with only ones.

--

Program control

--

a=13;

while while (a<=100) Executes the while-loop where a increases

a=a+1; by one until a is 100.

end

for for i=1:100 Executes for-loop where a increases by one

a=a+1; 100 times.

end

if if a==100 Checks if 1 equals 100; if so

a=a+1; a is increased by 1, otherwise

else decreased by 1.

a=a-1;

end

--

Operators

--

max [a,b]=max(x) Calculates the largest value and its

index in the vector x. Here, a is the

value while b is the index.

mod a=mod(x,10) a becomes zero if x is divisible by

ten, otherwise a becomes one.

sum a=sum(x) a becomes the sum of all the elements

of the vector x.

8

find a=find(x>1.5) a becomes the value of all indices of

elements of x where the value is larger

than 1.5. If more than one such index

exists, a becomes the vector of them.

--

Graphs

--

plot plot(y) Plots a graph of the values in y.

9

