Project course: Optimization TM Introduction: simple/difficult problems; matroid problems

Michael Patriksson

0-0

Project course: Optimization TM

1

• \approx 3 meetings per week during three–four weeks

• Projects:

- Lagrangian relaxation for a VLSI design problem (Matlab package)
- Large-scale set covering problems: heuristics and optimizing methods (competition!)
- Literature: Lecture notes, hand-outs from books.
- Examination: Written reports on the two projects. Oral presentation, with opposition!
- For better grades than pass (4, 5, VG): oral exam.

Topics: Turning difficult problems into a sequence of simpler problems (decomposition–coordination)

- Lagrangian relaxation (IP, NLP)
- Dantzig–Wolfe decomposition (LP)
- Benders decomposition (IP, NLP)
- Column generation (LP, IP, NLP)
- Heuristics (IP)
- Branch & Bound (IP, non-convex NLP)
- Greedy algorithms (IP, NLP)
- Subgradient optimization (convex NLP)

Simple problems—Wolsey

- For simple problems, there exist polynomial algorithms (they belong to the complexity class \mathcal{P}), preferably with a small largest exponent.
- Network flow problems (shortest paths; maximum flows; minimum cost single-commodity network flows; transportation problem; assignment problem; maximum cardinality matching)—see Wolsey!
- Linear programming
- Problems over simple matroids (next!)

Matroids and the greedy algorithm—Lawler

- *Greedy algorithm:* Create a "complete solution" by iteratively choosing the best alternative. In the greedy algorithm, one never regrets a choice made previously.
- Which problems can be solved using such a simple method?
- Problems that can be described by *matroids*.
- Given a finite set \mathcal{E} and a family \mathcal{F} of subsets of \mathcal{E} . If $\mathcal{A} \in \mathcal{F}$ and $\mathcal{A}' \subseteq \mathcal{A}$ implies that $\mathcal{A}' \in \mathcal{F}$, then the system $S = (\mathcal{E}, \mathcal{F})$ is an independent system.

- Example, I:
- \mathcal{E} = a set of column vectors in \mathbb{R}^n ,
- \mathcal{F} = the set of linearly independent subsets of vectors in \mathcal{E} .
- Example, II:
- \mathcal{E} = the set of links (edges, arcs) in an undirected graph,
- \mathcal{F} = the set of all cycle-free subsets of links in \mathcal{E} .
- Let w(e) be the cost of an element in \mathcal{E} . Problem: Find the element $\mathcal{A} \in \mathcal{F}$ of maximal cardinality such that the total cost is minimal/maximal.

The Greedy algorithm for minimization problems

- $\mathcal{A} = \emptyset$.
- Sort the elements of \mathcal{E} in increasing order with respect to w(e).
- Take the first element $e \in \mathcal{E}$ in the list. If $\mathcal{A} \cup \{e\}$ is still independent \Longrightarrow let $\mathcal{A} := \mathcal{A} \cup \{e\}$.
- Continue with the next element.
- Continue until either the list is empty, or \mathcal{A} has the maximal cardinality.
- What are the corresponding algorithms in Examples I and II?

Examples

• Example I (linearly independent vectors): Let

$$\boldsymbol{A} = \begin{pmatrix} 1 & 0 & 2 & 0 & 1 \\ 0 & -1 & -1 & 1 & 1 \\ 3 & 2 & 8 & 1 & 4 \\ 2 & 1 & 5 & 0 & 2 \end{pmatrix}$$
$$\boldsymbol{w}^{\mathrm{T}} = \begin{pmatrix} 10 & 9 & 8 & 4 & 1 \end{pmatrix}.$$

- Choose the maximal independent set with the maximal weight.
- Can this technique solve LP problems?

- Example II (minimum spanning trees): The maximal set of cycle-free links in an undirected graph is a spanning tree; in a graph G = (N, E), it has |N| − 1 links.
- Classic greedy algorithm (Kruskal's algorithm) has complexity $O(|\mathcal{E}| \cdot \log(|\mathcal{E}|))$. The main cost is in the sorting itself.

• Prim's algorithm builds the spanning tree through graph search techniques, from node to node; complexity $O(|\mathcal{N}|^2)$.

• Example III (in fact not a matroid problem): LP relaxation of the 0/1 knapsack problem (BKP):

maximize
$$f(\boldsymbol{x}) = \sum_{j=1}^{n} c_j x_j$$
,
subject to $\sum_{j=1}^{n} a_j x_j \le b$, $(a_j, b \in \mathcal{Z}_+)$
 $0 \le x_j \le 1, \quad j = 1, \dots, n$.

- Greedy algorithm: Sort c_j/a_j in descending order; set the variables to 1 until the knapsack is full. The last variable may become fractional.
- LP duality shows that the greedy algorithm is correct.

8

• Rounding down gives a feasible solution to (BKP). Is it also optimal in (BKP)?

maximize
$$f(\boldsymbol{x}) = 2x_1 + cx_2$$
,
subject to $\sum_{j=1}^n x_1 + cx_2 \le c$,
 $x_1, x_2 \in \{0, 1\}$,

where c is a positive integer.

- If $c \ge 2$ then $\boldsymbol{x}^* = (0, 1)^{\mathrm{T}}$ and $f^* = c$.
- The greedy algorithm, plus rounding, always gives $\bar{\boldsymbol{x}} = (1, 0)^{\mathrm{T}}$, with $f(\bar{\boldsymbol{x}}) = 2$; an arbitrarily bad solution.

- Example IV: the traveling salesman problem (TSP)
- The greedy algorithm would select the next best city which does not lead to a sub-tour. Optimal?

 $\mathbf{2}$

 $\mathbf{2}$

c

Optimal

1

 $\mathbf{2}$

1

4

2

Figure 1: Greedy

• Not optimal when $c \gg 0$.

13

Example VI: Semi-matching: maximize f(x) = ∑_{i=1}^m ∑_{j=1}ⁿ w_{ij}x_{ij}, subject to ∑_{j=1}ⁿ x_{ij} ≤ 1, i = 1,...,m, x_{ij} ∈ {0,1}, i = 1,...,m, j = 1,...,n.
Semi-assignment: replace maximum ⇒ minimum; "≤" ⇒ "="; m = n.
Algorithm: For each i: take best w_{ij}, set w_{ij} = 1 for that j, and w_{ij} = 0 for every other j.

Matroid types

- Graph matroid: \mathcal{F} = the set of forests in a graph $\mathcal{G} = (\mathcal{N}, \mathcal{E})$. Example problem: MST.
- Partition matroid: Consider a partition of \mathcal{E} into msets $\mathcal{B}_1, \ldots, \mathcal{B}_m$ and let d_i $(i = 1, \ldots, m)$ be non-negative integers. Let

 $\mathcal{F} = \{ \mathcal{I} \mid \mathcal{I} \subseteq \mathcal{E}; \quad |\mathcal{I} \cap \mathcal{B}_i| \le d_i, i = 1, \dots, m \}.$

Example problems: semi-matching; bipartite graphs.

• Matrix matroid: $S = (\mathcal{E}, \mathcal{F})$, where \mathcal{E} is a set of column vectors and \mathcal{F} is the set of subsets of \mathcal{E} with linearly independent vectors. Observe: The above matroids can be written as matrix matroids!

15

Problems over matroid intersections

- Given two matroids $M = (\mathcal{E}, \mathcal{P})$ and $N = (\mathcal{E}, \mathcal{R})$, find the maximum cardinality set in $\mathcal{P} \cap \mathcal{R}$.
- Example 1: maximum-cardinality matching is the intersection of two partition matroids.
- The intersection of two matroids can not be solved by using the greedy algorithm.
- There exist polynomial algorithms for them. For example, matching and assignment problems can be solved as maximum flow problems, which are polynomially solvable.

- Example 2: The traveling salesman problem (TSP) is the intersection of three matroids: a graph matroid and two partition matroids (see its formulation using assignment + tree constraints).
- Conclusion: Matroid problems are extremely easy; two-matroid problems are polynomial; three-matroid problems are very difficult!

The traveling salesman problem—three formulations

Three formulations of the undirected TSP, which give rise to different algorithms when Lagrangian relaxed or otherwise manipulated.

For directed graphs:			
minimize	$\sum_{(i,j)\in\mathcal{E}} c_{ij} x_{ij}$		
subject to	$\sum_{i:(i,j)\in\mathcal{C}} x_{ij} = 1,$	$i \in \mathcal{N},$	(1)
	$\sum_{i=1}^{j:(i,j)\in\mathcal{L}} x_{ij} = 1,$	$j \in \mathcal{N},$	(2)
	$\sum_{(i,j)\in\mathcal{E}}^{i:(i,j)\in\mathcal{E}} x_{ij} = \mathcal{N} ,$		(3)
$\sum_{(i,j) \in \{2,1,1,2\}} x_{ij} + \sum_{(i,j) \in \{2,1,2\}} x_{ij} + \sum_{(i,j) \in \{2,1,2\}} x_{ij}$	$\sum_{\substack{(i,j)\in\mathcal{E}\\a_{ij}\geq 1}}^{(i,j)\in\mathcal{E}} x_{ij} \ge 1,$	$\mathcal{S}\subset\mathcal{N},$	(4)
$(i,j)\in(\mathcal{S},\mathcal{N}\setminus\mathcal{S})^+$ $(j,i)\in(\mathcal{S})$	$x_{ij} \in \{0,1\},$	$(i,j) \in \mathcal{E}.$	

- Tree-based formulation. (1)–(2): assignment; (3): Redundant; (4) Cycle-free.
- Lagrangian relax (1) or (2), plus (4): semi-assignment.
- Lagrangian relax (3) plus (4): assignment.
- Lagrangian relax (1), and (2) except for node s: directed 1-tree relaxation.