The solution of a difficult problem Project course: Optimization TM (facility location)

Ann-Brith Strömberg Michael Patriksson

18 March 2004

0-0

Decision variables:

$$y_j = \begin{cases} 1, & \text{if depot } j \text{ is set up} \\ 0, & \text{otherwise} \end{cases}$$

 $x_{ij} = \text{portion of customer } i$'s demand to be delivered from depot j

Uncapacitated facility location (UFL)

$$z_0^* = \min \sum_{i \in \mathcal{I}} \sum_{j \in \mathcal{J}} c_{ij} x_{ij} + \sum_{j \in \mathcal{J}} f_j y_j$$
s.t.
$$\sum_{j \in \mathcal{J}} x_{ij} = 1$$

$$\leq 0, \quad i \in \mathcal{I}, j \in \mathcal{J}$$

 $i\in \mathcal{I}$

(1)

0

$$j\in\mathcal{J} \ x_{ij} - x_{ij}$$

$$y_j \leq 0,$$

$$0, \qquad i \in \mathcal{I}, \ j \in \mathcal{J} \quad (2)$$
$$[0,1], \quad i \in \mathcal{I}, \ j \in \mathcal{J} \quad (3)$$

$$y_j \in \{0,$$

 $\{0,1\}, \quad j \in \mathcal{J}$

Location of facilities which serve customers

• Potential sites: $\mathcal{J} = \{1, \dots, n\}$

(geographical locations)

• Existing customers: $\mathcal{I} = \{1, \dots, m\}$

(geographical locations)

 $f_j =$ fixed cost of using depot j

 $c_{ij} = \text{transportation cost when customer } i$'s demand is fulfilled entirely from depot j

Decision problem:

• Which depots to open?

• Which depots to serve which customers, and how much?

• Goal: minimize cost

• Assumption: depots have unlimited capacity (to be removed)

(0) Minimize cost

(1) Deliver precisely the demand

(2) Deliver only from open depots

(3) x is the portion of the demand

(4) Do not partially open a depot

Suppose depots have limited capacity

 $d_i = \text{demand of customer } i \ (D = \sum_{i \in \mathcal{I}} d_i)$

 $b_j = \text{capacity of depot } j$ —if it is opened

Constraints:

$$\sum_{i \in \mathcal{I}} d_i x_{ij} \le b_j y_j, \quad j \in \mathcal{J} \quad (5) \qquad (\Longrightarrow x_{ij} \le y_j, \ \forall i, j)$$

 \implies replace (2) with (5)

Capacitated facility location (CFL)

$$z^* = \min \sum_{i \in \mathcal{I}} \sum_{j \in \mathcal{I}} c_{ij} x_{ij} + \sum_{j \in \mathcal{J}} f_j y_j$$
s.t.
$$\sum_{j \in \mathcal{I}} x_{ij} = 1, \quad i \in \mathcal{I}$$

$$\sum_{i \in \mathcal{I}} d_i x_{ij} - b_j y_j \leq 0, \quad j \in \mathcal{J}$$
(5)

$$\sum_{i \in \mathcal{I}} x_{ij} = 1, \quad i \in \mathcal{I}$$
 (1)

$$j_{ij} - b_j y_j \leq 0, \quad j \in \mathcal{J}$$

5

$$\in$$
 [0,1], $i \in \mathcal{I}, j \in \mathcal{J}$ (3)

demand \Longrightarrow an additional (redundant) constraint: **Observation:** Total capacity of open depots must cover the entire

 y_j

 $\in \{0,1\}, j \in \mathcal{J}$

$$(1), (5) \Longrightarrow \underbrace{\sum_{j \in \mathcal{J}} b_j y_j}_{\text{capacity}} \ge \sum_{j \in \mathcal{J}} \sum_{i \in \mathcal{I}} d_i x_{ij} = \sum_{i \in \mathcal{I}} d_i \sum_{j \in \mathcal{J}} x_{ij} = \sum_{i \in \mathcal{I}} d_i \cdot 1 = \underbrace{D}_{\text{demand}}$$

• Constraints (7) tie together (x, y) with w.

• Lagrangian relax these with multipliers λ_{ij}

⇒ Lagrange function

$$L(\boldsymbol{x},\boldsymbol{w},\boldsymbol{y},\boldsymbol{\lambda}) =$$

$$= \sum_{i \in \mathcal{I}} \sum_{j \in \mathcal{J}} \left[\alpha c_{ij} x_{ij} + (1 - \alpha) c_{ij} w_{ij} + \widehat{\lambda_{ij}} (w_{ij} - x_{ij}) \right] + \sum_{j \in \mathcal{J}} f_j y_j$$

$$= \sum_{i \in \mathcal{I}} \sum_{j \in \mathcal{J}} (\alpha c_{ij} - \lambda_{ij}) x_{ij} + \sum_{j \in \mathcal{J}} f_j y_j + \sum_{i \in \mathcal{I}} \sum_{j \in \mathcal{J}} \left[(1 - \alpha) c_{ij} + \lambda_{ij} \right] w_{ij}$$

• Subproblem (for fixed value of λ):

Minimize the Lagrange function under constraints (1), (5), (6),

(3), (8) & (4).

Separates into one in (x, y) and $|\mathcal{I}|$ in w

objective, add the constraints $x_{ij} = w_{ij}$, and let $0 \le \alpha \le 1$. **Trick:** Exchange x_{ij} for w_{ij} in constraint (1) and in "half" the

$$z^* = \min \quad \alpha \sum_{i \in \mathcal{I}} \sum_{j \in \mathcal{I}} c_{ij} x_{ij} + (1 - \alpha) \sum_{i \in \mathcal{I}} \sum_{j \in \mathcal{J}} c_{ij} w_{ij} + \sum_{j \in \mathcal{J}} f_j y_j$$

i.t.
$$\sum_{i \in \mathcal{I}} w_{ij} = 1, \quad i \in \mathcal{I}$$
 (1)

$$\sum_{i \in \mathcal{I}} d_i x_{ij} - b_j y_j \quad \leq \quad 0, \qquad \quad j \in \mathcal{J}$$

$$\sum_{j\in\mathcal{J}}b_jy_j \;\;\geq\;\; D,$$

6)

5

$$w_{ij} - x_{ij} = 0, \quad i \in \mathcal{I}, \ j \in \mathcal{J}$$

$$x_{ij} \in [0,1], \quad i \in \mathcal{I}, \ j \in \mathcal{J}$$

(2) (8) (4)

$$w_{ij} \geq 0, \quad i \in \mathcal{I}, \ j \in \mathcal{J}$$
 $y_j \in \{0,1\}, \ j \in \mathcal{J}$

Subproblem in x and y:

$$q_{xy}(\lambda) = \min_{x,y} \sum_{i \in \mathcal{I}} \sum_{j \in \mathcal{J}} \left[\alpha c_{ij} - \lambda_{ij} \right] x_{ij} + \sum_{j \in \mathcal{J}} f_j y_j$$
s.t.
$$\sum_{j \in \mathcal{J}} b_j y_j \geq D,$$

$$\sum_{i \in \mathcal{I}} d_i x_{ij} \leq b_j y_j, \quad j \in \mathcal{J}$$
(5)

$$\sum_{i \in \mathcal{I}} d_i x_{ij} \leq b_j y_j, \qquad j \in \mathcal{J} \tag{5}$$

 $x_{ij} \in [0,1],$ y_j $\{0,1\},$ $i \in \mathcal{I}, \ j \in \mathcal{J}$ (3)

For every **y**-solution (such that $\sum_{j\in\mathcal{J}} b_j y_j \geq D$) we have:

If
$$y_j = 0$$
 then $x_{ij} = 0$, $i \in \mathcal{I}$

• If
$$y_j = 1$$
 then $\sum_{i \in \mathcal{I}} d_i x_{ij} \le b_j$

Value [in (x,y)-subproblem] of opening depot j

That is: letting $y_j = 1$ ($|\mathcal{J}|$ continuous knapsack problems)

$$\begin{aligned} [\text{CKSP}_j] \qquad v_j(\pmb{\lambda}) = f_j + \min_{\pmb{x}} \qquad & \sum_{i \in \mathcal{I}} \left[\alpha c_{ij} - \lambda_{ij} \right] x_{ij} \\ \text{s.t.} \qquad & \sum_{i \in \mathcal{I}} d_i x_{ij} \leq b_j \\ & x_{ij} \in [0, 1], \qquad i \in \mathcal{I} \end{aligned}$$

 \implies Projection onto y-space (a 0/1 knapsack problem)

$$[0/1\text{-KSP}] \qquad q_{xy}(\lambda) = \min_{y} \quad \sum_{j \in \mathcal{J}} v_j(\lambda) \cdot y_j$$
 s.t.
$$\sum_{j \in \mathcal{J}} b_j y_j \ \geq \ D,$$

$$y_j \ \in \ \{0,1\}, \ j \in \mathcal{J}$$

10

Subproblem in w ($|\mathcal{I}|$ semi-assignment problems):

$$[\text{SAP}] \qquad q_w(\lambda) = \sum_{i \in \mathcal{I}} \left[\begin{array}{cc} \min_{w} & \sum_{j \in \mathcal{J}} \left[(1 - \alpha) c_{ij} + \lambda_{ij} \right] w_{ij} \\ \text{s.t.} & \sum_{j \in \mathcal{J}} w_{ij} = 1, \quad w_{ij} \geq 0, \quad j \in \mathcal{J} \end{array} \right.$$

Solving semi-assignment problem i

(special case of [CKSP]):

- Find ℓ_i such that $(1-\alpha)c_{i\ell_i} + \lambda_{i\ell_i} = \min_{j \in \mathcal{J}} \{(1-\alpha)c_{ij} + \lambda_{ij}\}.$
- Let $w_{i\ell_i}(\lambda) = 1$, $w_{ij}(\lambda) = 0$, $j \neq \ell_i$.

Solving the continuous knapsack problems [CKSP_j]

- Sort $\frac{\alpha c_{ij} \lambda_{ij}}{d_i} < 0$, $i \in \mathcal{I}$, in increasing order
- \implies indices $\{i_1, i_2, \dots, i_m\}, m \leq |\mathcal{I}|.$
- If m = 0 then $x_{ij} = 0, i \in \mathcal{I}$. Else, let k = 1 and:
- Let $x_{i_kj}=\min\{1;b_j-\sum_{s=1}^{k-1}d_ix_{i_sj}\}$ and let k:=k+1 until $\sum_{s=1}^kd_ix_{i_sj}=b_j$ or k=m.
- Solution fulfills $\sum_{i \in \mathcal{I}} d_i x_{ij} = b_j$ and $x_{ij} \in [0, 1], i \in \mathcal{I}$.
- $v_j(\lambda) = f_j + \min \sum_{k=1}^{|\mathcal{I}|} \sum_{j \in \mathcal{J}} \left[\alpha c_{i_k j} \lambda_{i_k j} \right] x_{i_k j}$.

 Solving 0/1 knapsack problems

Not polynomial. Solve with Branch & Bound (CPLEX).

Solution: $y_j(\lambda) \in \{0,1\}, j \in \mathcal{J}$. $x_{i,j}(\lambda) = 0 \ i \in \mathcal{T} \ \text{if } y_{i,j}(\lambda) = 0$

$$x_{ij}(\lambda) = 0, i \in \mathcal{I}, \text{ if } y_j(\lambda) = 0.$$

$$x_{ij}(\lambda) = x_{ij}$$
 by the above, $i \in \mathcal{I}$, if $y_j(\lambda) = 1$.

Value of relaxed problem for fixed value of λ

$$q(\lambda) = q_{xy}(\lambda) + q_{w}(\lambda)$$
difficult simple

- Can show that $q(\lambda) \le q^*$ for all $\lambda \in \mathbb{R}^{|\mathcal{I}| \times |\mathcal{I}|}$ (weak duality)
- λ_{ij} is the penalty for violating $w_{ij} = x_{ij}$
- \bullet Find best underestimate of $q^* \Longleftrightarrow$ find "optimal" values of penalties λ_{ij}
- That is: $\max_{\boldsymbol{\lambda} \in \mathbb{R}^{|\mathcal{I}| \times |\mathcal{I}|}} q(\boldsymbol{\lambda}) \leq q^* \text{ (most often } \max_{\boldsymbol{\lambda} \in \mathbb{R}^{|\mathcal{I}| \times |\mathcal{I}|}} q(\boldsymbol{\lambda}) < z^*, \text{ not strong duality)}$

11

Example: $|\mathcal{I}| = 4$, $|\mathcal{J}| = 3$, $\alpha = \frac{1}{2}$

 13

 $,(f_j)=$

 $= \begin{bmatrix} 11 \\ 16 \\ 21 \end{bmatrix}, (d_i) = \begin{bmatrix} 6 \\ 4 \\ 8 \end{bmatrix}, (b_j) = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$

10 13

How to find better value of λ_{ij} ?

Penalty: $\min \dots \sum_{i \in \mathcal{I}} \sum_{j \in \mathcal{J}} \lambda_{ij} (w_{ij} - x_{ij})$

- If $w_{ij}(\lambda) > x_{ij}(\lambda) \Longrightarrow$ Increase value of λ_{ij} (more expensive to violate constraint)
- If $w_{ij}(\lambda) < x_{ij}(\lambda) \Longrightarrow$ Decrease value of λ_{ij} (more expensive to violate constraint)
- \bullet Iterative method (subgradient algorithm) to find optimal penalties $\pmb{\lambda}^*$:

$$\lambda_{ij}^{t+1} = \lambda_{ij}^t + \rho_t \left[w_{ij}(\boldsymbol{\lambda}^t) - x_{ij}(\boldsymbol{\lambda}^t) \right], \qquad t = 0, 1, \dots$$

 $q_{xy}(\lambda) = \min \sum_{j=1}^{3} v_j(\lambda) \cdot y_j$

s.t. $12y_1 + 10y_2 + 13y_3 \ge 23$

 $\det(\lambda_{ij}^t) =$

0 2

 $\boldsymbol{y} \in \{0,1\}^3$

Observe: implies that $y_3 = 1$ must hold.

where $\rho_t > 0$ is a step length, decreasing with t

• Use feasibility heuristic from every $[x(\lambda^t), w(\lambda^t), y(\lambda^t)]$ to yield a feasible solution to CFL (open more depots, send only from open depots, x = w, ...). Example: Benders' subproblem!

14

$$v_{1}(\lambda^{t}) = 11 + \min \quad -4x_{11} - 2x_{21} + 3x_{31} + 5x_{41}$$
s.t. $6x_{11} + 4x_{21} + 8x_{31} + 5x_{41} \le 12, \quad x_{\cdot 1} \in [0, 1]^{4}$

$$\Rightarrow \quad x_{11} = x_{21} = 1, \quad x_{31} = x_{41} = 0, \quad v_{1}(\lambda^{t}) = 5$$

$$v_{2}(\lambda^{t}) = 16 + \min \quad x_{12} - 6x_{22} - x_{32} - x_{42}$$
s.t. $6x_{12} + 4x_{22} + 8x_{32} + 5x_{42} \le 10, \quad x_{\cdot 2} \in [0, 1]^{4}$
s.t. $6x_{12} + 4x_{22} + 8x_{32} + 5x_{42} \le 10, \quad x_{\cdot 2} \in [0, 1]^{4}$

$$v_{3}(\lambda^{t}) = 21 + \min \quad 2x_{13} + 0x_{23} + 3x_{33} - 3x_{43}$$
s.t. $6x_{13} + 4x_{23} + 8x_{33} + 5x_{43} \le 13, \quad x_{\cdot 3} \in [0, 1]^{4}$
s.t. $6x_{13} + 4x_{23} + 8x_{33} + 5x_{43} \le 13, \quad x_{\cdot 3} \in [0, 1]^{4}$

 $x_{23} = x_{43} = 1$, $x_{13} = x_{33} = 0$, $v_3(\lambda^t) = 18$

15

$$m{y}(m{\lambda}^t) = (1, 0, 1)^{\mathrm{T}}, \, m{x}(m{\lambda}^t) = \begin{bmatrix} 1 & 0 & 0 \\ 1 & 0 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix}, \, q_{xy}(m{\lambda}^t) = 5 + 0 + 18 = 23$$

w-problem separates into one for each customer i

$$q_{w}(\lambda^{t}) = \sum_{i=1}^{4} q_{w}^{i}(\lambda^{t}), \quad \text{where} \qquad \left(1 - \alpha = \frac{1}{2}\right)$$

$$q_{w}^{i}(\lambda^{t}) = \min \qquad \sum_{j=1}^{3} \left[\left(1 - \alpha\right)c_{ij} + \lambda_{ij}^{t}\right] w_{ij}$$
s.t.
$$\sum_{j=1}^{3} w_{ij} = 1, \quad w_{ij} \ge 0, \ j = 1, 2, 3$$

18

Solution to w problem

$$w(\boldsymbol{\lambda}^t) = \begin{bmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & \frac{1}{2} & \frac{1}{2} \\ 1 & 0 & 0 \end{bmatrix}, q_w(\boldsymbol{\lambda}^t) = 13,$$

$$q(\boldsymbol{\lambda}^t) = q_{xy}(\boldsymbol{\lambda}^t) + q_w(\boldsymbol{\lambda}^t) = 35$$

$$\Rightarrow z^* \ge 35$$

$$\mathbf{N}^{t+1} = \mathbf{N}^t + 2 \left[\sum_{w \in \mathbf{N}^t} \mathbf{N}^{t} \right] = \mathbf{N}^{t+1} =$$

$$\lambda^{t+1} = \lambda^t + \rho_t \left[w(\lambda^t) - x(\lambda^t) \right] \\
= \begin{bmatrix} 7 - \rho_t & \rho_t & 0 \\ 3 & 10 & 2 - \rho_t \\ 5 & 2 + \frac{\rho_t}{2} & \frac{\rho_t}{2} \end{bmatrix} = \begin{bmatrix} -1 & 8 & 0 \\ 3 & 10 & -6 \\ 5 & 6 & 4 \end{bmatrix}$$

 $q_{m{w}}^3(m{\lambda}^t) =$ $q_w^4(\boldsymbol{\lambda}^t) =$ $q_w^2(\boldsymbol{\lambda}^{\iota}) =$ $q_w^1(\lambda^t) = \min 10w_{11} + w_{12} + 2w_{13}$ min min min s.t. $w_{11} + w_{12} + w_{13} = 1$, $w_{1j} \ge 0$, j = 1, 2, 3s.t. $w_{31} + w_{32} + w_{33} = 1$, $w_{3j} \ge 0$, j = 1, 2, 3 $w_{41} + w_{42} + w_{43} = 1$, $w_{4j} \ge 0$, j = 1, 2, 3 $5w_{41} + 13w_{42} + 7w_{43}$ $13w_{31} + 3w_{32} + 3w_{33}$ $w_{21} + w_{22} + w_{23} = 1$, $w_{2j} \ge 0$, j = 1, 2, 3 $4w_{21} + 14w_{22} + 4w_{23}$ $w_{32}(\boldsymbol{\lambda}^t) = w_{33}(\boldsymbol{\lambda}^t) = \frac{1}{2}, \ w_{31}(\boldsymbol{\lambda}^t) = 0, \ q_w^3(\boldsymbol{\lambda}^t) = 3$ $w_{21}(\lambda^t) = 1$, $w_{22}(\lambda^t) = w_{23}(\lambda^t) = 0$, $q_w^2(\lambda^t) = 4$ $w_{12}(\lambda^t) = 1, \ w_{11}(\lambda^t) = w_{13}(\lambda^t) = 0, \ q_w^1(\lambda^t) = 1$ $w_{41}(\lambda^t) = 1, \ w_{42}(\lambda^t) = w_{43}(\lambda^t) = 0, \ q_w^4(\lambda^t) = 5$

 $\begin{array}{c} \text{Feasible solution} \iff x(\lambda^t) = w(\lambda^t)? \ \ \text{No} \Longrightarrow \\ \text{Feasibility heuristic} \end{array}$

Idea: Open depots given by $\boldsymbol{y}(\boldsymbol{\lambda}^t) \Longrightarrow \boldsymbol{y}^H = \boldsymbol{y}(\boldsymbol{\lambda}^t) = (1,0,1)^{\mathrm{T}}$. Send only from open depots $(y_j^H = 0 \Longrightarrow x_{ij}^H = 0, \forall i)$. Fulfill demand but do not violate capacity restrictions:

$$\text{Let } \boldsymbol{x}^H = \begin{bmatrix} \frac{7}{12} & 0 & \frac{5}{12} \\ 1 & 0 & 0 \\ 0 & 0 & 1 \\ \frac{1}{2} & 0 & \frac{1}{2} \end{bmatrix} \Longrightarrow$$

$$z^H = 6 \cdot \frac{7}{12} + 4 \cdot \frac{5}{12} + 2 + 6 + 10 \cdot \frac{1}{2} + 4 \cdot \frac{1}{2} + 11 + 21 = 52 + \frac{1}{6}$$

$$\Longrightarrow z^* \in [35, 52 + \frac{1}{6}] = [q(\boldsymbol{\lambda}^t), z^H]$$
 (not very good interval)

19

- Choice of step lengths (ρ_t) later (subgradient optimization, convergence to an optimal value of λ)
- Feasibility heuristics can be made more or less sophisticated
- There are more ways in which to Lagrangian relax continuous constraints in an optimization problem
- E.g.: Lagrangian relax (1) or (5) (with multipliers $\mu_i \in \mathbb{R}$ resp. $\nu_j \in \mathbb{R}_+$) in the original formulation (CFL)

 \bullet Alternative solution: $(0,1,1)^{\rm T}.$ Benders' subproblem:

$$\boldsymbol{x}(\boldsymbol{y}) = \begin{pmatrix} 0 & 1/3 & 2/3 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

- Total cost: 53 (37 + 16).
- $y^* = (1, 0, 1)^{\mathrm{T}}; z^* = 50.$
- Note that we have (probably) not solved the dual problem to optimality, so we do not know what the size of the duality gap is.

- There are also other methods for solving CFL. Consider for example the fact that for fixed \boldsymbol{y} , the remaining problem over \boldsymbol{x} is very simple (a transportation problem). Algorithms can be based on only adjusting \boldsymbol{y} , always optimizing over \boldsymbol{x} for each \boldsymbol{y} . (We say that we project the problem onto the \boldsymbol{y} variables.)
- This is the Benders' subproblem (more on the Benders algorithm later).
- Solve Benders' subproblem at $\boldsymbol{y} = (1,0,1)^{\mathrm{T}}$:

$$m{x}(m{y}) = egin{pmatrix} 1 & 0 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 1 \end{pmatrix}$$

• Total cost: 50 (32 + 18)