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\ A reminder of nice properties in the convex ommmj
e Example I (explicit dual) (z* = (2,2),u* =4, f* =8)
f* = minimum  f(x) = 2?7 + 23,
subject to g(x) = —z7 — 22 +4 <0,

1,22 20

o Let X :={ax e R* |z, 2o >0} =R

N /

e N

¢(p) = minimum {a] + 23+ p- (=21 =22 +4)}

n+ Bﬂmmmawcg ?ﬁ + x5 — uxy t&mw

= 44 + minimum {z? — pz; b + minimum {22 — pzy b .
p+ minimum {77 — iz, } -+ minimum {5 — s }

e For a fixed value of p > 0, the minimum of L(a, 1) over

x € X is attained at zy(u) = §, xo(p) = 5.

e This implies that q(u) = L(x(p), 1) = ... = 4p — :% for
all 4 > 0. The dual function ¢ is concave and
differentiable.

o [r=flx")=8=¢"

\_e @) =2, -

\ Weak duality! Strong duality? J

e We know that the primal optimal solution is obtained
from the Lagrangian dual optimal solution under
convexity and CQ. What happens otherwise?

f(®) [zeX, g(x)<07]

o 1= f(z")
=07 g =)
q(pn) [pn=>07]

e How do we generate optimal solutions in the case of a
positive duality gap?

o \




\ A first example where the duality gap is :o:-wao/
e Example II (z* = (0,1,1)T, f*=17)

f* = minimum f(x) = 3z + Txs + 1023,
subject to 1 + 3x9 4 dx3 > 7,
z;€{0,1}, j=1,2,3.
o Let X :={zeR®|z; €{0,1}, j=1,2,3} = B>

e Let g(x) :=7— 21 — 3xy — Hxs.

N /

-

\

~

q(p) = Tp+ minimum {(3 — p)xy + (7 — 3p)za + (10 — Sp)xs )

zeX
= 7 + mini 3— + mini 7-3
i+ minimum {3 =z} minimim {(7 = 3p)a2}
+ mini 10-5
minium {( 1)z}

e X(p) is obtained by setting (1) = 1(0) when the
objective coefficient is < (>)0.

\

\ Subproblem solutions and the dual function /

pe | x(p) wo(p) ws(p)
[—00,2] | 0 0 0
2, %] 0 0 1
[£,3] 0 1 1
3, 00 1 1 1

( T, Q€ [—o0,2]
20+10,  pe(2,1]
q(p) =
—pu+ 17, pe L3
K | 21 +20, p€E 3,00 K

-

N

e ¢ concave; non-differentiable at break points J
pe {213}

e To the left (right) of the optimal solution the derivative
of ¢ is non-negative (non-positive). To the left (right)
of the optimal solution the subproblem solutions (1)
are infeasible (feasible). (Check that the derivative
equals the value of the constraint function!)

e The one-variable function ¢ has a “derivative” which is
anti-monotone (decreasing); this is a property of every
concave function of one variable.

o |1f = W“ ¢ =q(p*) = % = Ew. Positive duality gap!

o X(1*) = {(0,0,1)7,(0,1,1)7} > a. D




\ A second example where the duality gap is /

non-zero

e Example III (z* = (2,1)T, f* = -3)

f*=minimum f(x) = -2z, + 2,
subject to x1 + 29 — 3 =0,
z € X ={(0,00",(0,4)",(4,4)", (4,0)",
(1,2)T,(2,)T}.

o L(x,p) = =3p+ (=24 p)or + (1 + p)ws.

e Observe! u € R!

N /

{4,497}, p< -1
{(4.497,(4,0)7}, p=-
X(p) =9 {(4,07}, pe (=
{(4,0,(0,0)"}, p=
| {(0,0)"}, > 2
—44+5u, p<-—1
q(p) =< —8+p, pel-1,2|
[ 3 p=2

o 1f =2, ¢  =q(p) =—6; ¢ < f*, x* & X (1).

q
e The set X (p*) does not even contain a feasible mOESOBt

\ Strong duality—repetition /
The following three statements are equivalent:
(a) (x*, u*) is a saddle point to L

(b) i f(z*)+ (") Tg(x") =
minimumex {f(@) + (1) Tg(@)} [ o* € X ()]
ii. (u*)"g(x*) =0
iii. g(xz*) < 0™

(c) f*=fla") = q(w’) = ¢".

N /
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e When does this work? What to do if it doesn’t?

\Hv Method for finding an optimal solution:
1) Solve the Lagrangian dual problem — p*;
2) Find a vector * € X which satisfies (b).

e Let’s study the convex case first.

e (Clearly, it only works if the problem has a zero duality
gap. Even in the case of a zero duality gap, it is not
always trivial to find an optimal primal solution in this
way, because the set X (p*) is normally not explicitly
given or available—given a value of u we normally get

).

one element of the set X (

~

/
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\ e A good example was given in Lecture 3—Example 11 /
(the 2-variable LP problem). Imagine using the simplex
method for solving each LP subproblem. Then, we only
get extreme points of X, and «* was, in this case, an
extreme point of X N {x € R? | g(x) < 0} (since it is

an LP!) but not an extreme point of X!

e Several ways out from this non-coordinability:

e (1) Remember all the points x(u,) € X (p,,) visited,
and at the end solve the LP problem which finds the
best point in their convex hull which is also feasible in
the original problem. This is the Dantzig—Wolfe (DW)

/ decomposition method.

\
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\ e (2) Construct a primal sequence as a simple convex /
combination of the points x(pu;) € X (p,,) visited.
Compared to DW, we do not solve any extra
optimization problems, and virtually no extra memory

is needed. On the other hand, DW converges finitely for
LP problems, which this technique does not. Read the
paper by Larsson, Patriksson, and Stromberg (1999).

e (3) Introduce non-linear price functions for the
constraints, instead of the linear one given by
Lagrangian relaxation. = Augmented Lagrangian
methods.

N /
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\Edom:. integer optimization: The strength of ﬁwo/
Lagrangian relaxation

e Comparison with a continuous (LP) relaxation:

vpp =min c'x < v*=min c'zx
st. Az <b st. Az <b
Dx <d Dx <d
z e RY T €Ll

o Let X = {x' 2% ... 2%} be the set of points in
X={xeZ| Az <b}.

N /
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| .e a |
vz = max Awww THLﬂtAUH &Lv

| . H\A e wl
|HWWW Awsmubka Tu RATEAUH &iv

_ _ F_d)Tp < ek =1,...
tw%%m%ﬁim (Dz" —d) " p<cz’ k=1, TNW

e Introduce dual variables y. Continuing,

15
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K
v, = min MUAQHRJW?
k=1

K
s.t. MUMSa =1
k=1

/ x € conv.X

K K K
(DzF —d)y, <0«= D> aly, <dd yy
k=1 k=1 k=1
MSANOv \&HH“vNﬂ €convX =1
= vo:=min c'x
s.t. Dx <d,

\

\ e Hence, Lagrangian relaxation is a convexification! /

e Generating primal solutions through, for example,
Dantzig—Wolfe decomposition, or the ergodic sequence
method (Larsson, Patriksson, and Stromberg, 1999),
yields a solution to a primal LP problem which is the
same as the original IP problem where, however, X is
replaced its convex hull conv X.

Od*NCQHGhN@hﬁ.

\
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\ The strength of a Lagrangian dual problem

Since X C convX C Xy p={x € R} | Ax < b} we have
that v* W@h N@NLU.

If convX = Xp = v =vLp

Ax <b

~

\ Integrality property

o If min p' = min pTx, for all p € R”, that is, if
reXp xreconv.X
the Lagrangian subproblem has the integrality
property, then vy = vpp.
e Otherwise, vy, is a better bound on v* than is vy p is.
[v, > vp.]
e Integrality property <= easy problem.

—~~
often

e Fasy subproblem “=—" Bad bounds.
¢ Difficult subproblem “=" Better bounds.
= The subproblem should not be such that it is too easy

/ to solve!

/
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\ The strength of the Lagrangian relaxation—An /
example

e Consider the generalized assignment problem (GAP) to

m n
minimize M m CijTij

i=1 j=1

subject to M&@. =1, j=1...,n, (1)
i=1

Mugaaam@: i=1,...,m, (2)
j=1

Lij S AO“ HWQ <ﬁb

N /
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\

(1): Every job j must be performed on exactly one /

machine.

(2): The total work done on machine ¢ must not exceed

the capacity of the machine.

Lagrangian relax (1) = binary knapsack problem!
(Difficult) = vj.

Lagrangian relax (2) = Semi-assignment problem!
(Easy!) = v? < ol.

We prefer the Lagrangian relaxation of (1), because we

get much better bounds from the Lagrangian dual

problem, and knapsack problems are relatively easy (as

far as NP-complete problems go ...)

\
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\ Questions on the network design problem /

1. Formulate the minimum spanning tree problem (MST)
as a network flow problem. [Hint: consider node 1 as a

sink and all other nodes as sources with strength 1.]

2. Consider the graph below.

22

N

(a) Provide all the spanning trees of this graph explicitly.

Calculate the sum of ¢;; and a;; for each tree. Which

/
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\ ones are feasible with respect to the budget constraint /
MU Qjj m 10
(i.))eT

(where 7 denotes a collection of links forming a

spanning tree)? Which ones are optimal (minimal)
with respect to the link costs ¢;;?

(b) Utilize the solution in (a) to formulate this problem for
a general graph.

(c) Formulate the MST problem as a binary, integer
programming problem.

(d) Is there a polynomial algorithm for the problem in (b)?

/ [Hint: utilize that the binary knapsack problem is \

24

\ hard.]

3. Provide a polynomial heuristic for the problem which
gives a feasible solution.

4. Provide a local search heuristic which improves a
feasible solution.

5. Provide a Lagrangian relaxation algorithm.

a) Suggest a suitable relaxation.
b) How are the subproblems solved?
o

(
(
(c) Suggest a primal feasibility heuristic.
(

d) Provide a complete Lagrangian relaxation scheme.

/@. Suggest a Branch € Bound algorithm.
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\ (a) Suggest a suitable Lagrangian relaxation. /
(b) Suggest a proper branching rule.
(c) Provide a complete B & B algorithm.

7. Apply some of these algorithms on the above example.
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