Global optimality conditions for discrete and nonconvex optimization, with applications to Lagrangian heuristics, core problems, and column generation

Michael Patriksson

(with Torbjörn Larsson, Linköping University)

- 6 Illustration: new *radical* set covering heuristic
- 6 Global optimality conditions for general problems, including integer ones
 - \sim convex saddle-point conditions
 - Lagrangian perturbations: near-optimality, near-complementarity
 - Analysis of and guidelines for Lagrangian heuristics
- 6 Applications
 - △ Core problems; column generation
 - △ In both cases: additional near-complementarity constraints

$$f^* := \min f(\boldsymbol{x}),$$
 (1a)

subject to
$$g(x) \le 0^m$$
, (1b)

$$x \in X$$
 (1c)

$$f: \mathbb{R}^n \mapsto \mathbb{R}, \, \boldsymbol{g}: \mathbb{R}^n \mapsto \mathbb{R}^m \text{ cont.}, \, X \subset \mathbb{R}^n \text{ compact}$$

$$\theta(\boldsymbol{u}) := \min_{\boldsymbol{x} \in X} \min \left\{ f(\boldsymbol{x}) + \boldsymbol{u}^{\mathrm{T}} \boldsymbol{g}(\boldsymbol{x}) \right\}, \ \boldsymbol{u} \in \mathbb{R}^{m}$$
 (2)

$$\theta^* := \underset{\boldsymbol{u} \in \mathbb{R}^m_+}{\operatorname{maximum}} \ \theta(\boldsymbol{u})$$
 (3)

Duality gap: $\Gamma := f^* - \theta^*$.

Started at some vector $\overline{\boldsymbol{x}}(\boldsymbol{u}) \in X$, adjust it through a finite number of steps with properties

- 1. sequence utilize information from the Lagrangian dual problem,
- 2. sequence remains within X, and
- 3. terminal vector, if possible, primal feasible, hopefully also near-optimal in (2)

Conservative: initial vector near $\boldsymbol{x}(\boldsymbol{u})$; local moves Radical: allows the resulting vector to be far from $\boldsymbol{x}(\boldsymbol{u})$; includes starting far away; solving restrictions (e.g., Benders' subproblem)

Figure 1: A Lagrangian heuristic

$$f^* := \min \sum_{j=1}^n c_j x_j,$$
 (4a)

subject to
$$\sum_{j=1}^{n} \boldsymbol{a}_{j} x_{j} \geq \mathbf{1}^{m}$$
, (4b)

$$\boldsymbol{x} \in \{0, 1\}^n, \tag{4c}$$

Lagrangian: $L(\boldsymbol{x}, \boldsymbol{u}) := (\mathbf{1}^m)^T \boldsymbol{u} + \bar{\boldsymbol{c}}^T \boldsymbol{x}, \ \boldsymbol{u} \in \mathbb{R}^m$ Reduced cost vector $\bar{\boldsymbol{c}} := \boldsymbol{c} - \boldsymbol{A}^T \boldsymbol{u}$.

$$\theta^* := \text{maximum } \theta(u),$$
subject to $u \ge 0^m$

$$heta(oldsymbol{u}) := (oldsymbol{1}^m)^{\mathrm{T}} oldsymbol{u} + \sum_{j=1}^m \min_{x_j \in \{0,1\}} ar{c}_j x_j, \qquad oldsymbol{u} \geq oldsymbol{0}^m$$

$$x_{j}(\boldsymbol{u}) \begin{cases} = 1, & \text{if } \bar{c}_{j} < 0, \\ \in \{0, 1\}, & \text{if } \bar{c}_{j} = 0, \\ = 0, & \text{if } \bar{c}_{j} > 0 \end{cases}$$

We consider a classic type of polynomial heuristic.

(Input) $\bar{\boldsymbol{x}} \in \{0,1\}^n$, cost vector $\boldsymbol{p} \in \mathbb{R}^n$ (Output) $\hat{\boldsymbol{x}} \in \{0,1\}^n$, feasible in (1) (Starting phase) Given $\bar{\boldsymbol{x}}$, delete covered rows, delete variables x_i with $\bar{x}_i = 1$ (Greedy insertion) Identify variable x_{τ} with minimum p_i relative to number of uncovered rows covered. Set $x_{\tau} := 1$. Delete covered rows, delete x_{τ} . Unless uncovered rows remain, stop; $\tilde{\boldsymbol{x}} \in \{0,1\}^n$ feasible solution. (Greedy deletion) Identify variable x_{τ} with $\tilde{x}_{\tau} = 1$ present only in over-covered rows and maximum p_i relative to k_i . Set $\tilde{x}_{\tau} := 0$. Repeat.

Classic heuristics:

- (I) Let $\bar{\boldsymbol{x}} := \mathbf{0}^n$ and $\boldsymbol{p} := \boldsymbol{c}$ Chvátal (1979)
- (II) Let $\bar{\boldsymbol{x}} := \mathbf{0}^n$ and $\boldsymbol{p} := \bar{\boldsymbol{c}}$, at dual vector \boldsymbol{u} \sim Balas and Ho (1980)
- (III) Let $\bar{\boldsymbol{x}} := \boldsymbol{x}(\boldsymbol{u})$ and $\boldsymbol{p} := \boldsymbol{c}$ Beasley (1987, 1993) and Wolsey (1998)
- (IV) Let $\bar{\boldsymbol{x}} := \boldsymbol{x}(\boldsymbol{u})$ and $\boldsymbol{p} := \bar{\boldsymbol{c}}$ \sim Balas and Carrera (1996)

To be motivated later:

Combination of \boldsymbol{c} and $\bar{\boldsymbol{c}}$ (or Lagrangian and complementarity) { here, $\lambda \in [1/2, 1]$ }

$$p(\lambda) := \lambda \bar{c} + (1 - \lambda) A^{\mathrm{T}} u = \lambda [c - A^{\mathrm{T}} u] + (1 - \lambda) A^{\mathrm{T}} u$$

(I) & (III): $\lambda = 1/2$ (original cost)

(II) & (IV): $\lambda = 1$ (Lagrangian cost)

Test both $\bar{\boldsymbol{x}} := \mathbf{0}^n$ ("radical") and $\bar{\boldsymbol{x}} := \boldsymbol{x}(\boldsymbol{u})$ ("conservative")

Test case: rail507, with bounds [172.1456, 174] (n = 63, 009; m = 507)

 \boldsymbol{u} generated by a subgradient algorithm

Figure 2: Objective value vs. value of λ

$$\lambda = 0.9$$

Ran three heuristics from iterations t = 200 to t = 500 of the subgradient algorithm.

- 1. (III): $\bar{\boldsymbol{x}} := \boldsymbol{x}(\boldsymbol{u})$ and $\boldsymbol{p}(1/2) = \boldsymbol{c}$. Conservative.
- 2. $\bar{\boldsymbol{x}} := \boldsymbol{x}(\boldsymbol{u})$ and $\boldsymbol{p}(0.9)$. Conservative.
- 3. $\bar{\boldsymbol{x}} := \mathbf{0}^n$ and $\boldsymbol{p}(0.9)$. Radical.

Histograms of objective values

Figure 3: Quality obtained by three greedy heuristics

- 6 Remarkable difference between the heuristics
- 6 Simple modification of (III) improves it
- 6 Radical one consistently provides good solutions

[(III)] [p(0.9)	'cons.]	p((0.9)	$)/\mathrm{rad}.]$
------------	--------	---------	----	-------	--------------------

maximum: 221 212 195

mean: 203.99 194.45 186.55

minimum: 192 182 182

Why is it good to (i) use radical Lagrangian heuristics with (ii) an objective function which is neither the original nor the Lagrangian, but a combination?

$$(\boldsymbol{x}, \boldsymbol{u}) \in X \times \mathbb{R}^m_+$$

$$f(\boldsymbol{x}) + \boldsymbol{u}^{\mathrm{T}} \boldsymbol{g}(\boldsymbol{x}) \le \theta(\boldsymbol{u}),$$
 (5a)

$$g(x) \le 0^m,$$
 (5b)

$$\boldsymbol{u}^{\mathrm{T}}\boldsymbol{g}(\boldsymbol{x}) = 0 \tag{5c}$$

Equivalent statements for pair $(\boldsymbol{x}^*, \boldsymbol{u}^*) \in X \times \mathbb{R}^m_+$:

- 6 satisfies (5)
- 6 saddle point of $L(\boldsymbol{x}, \boldsymbol{u}) := f(\boldsymbol{x}) + \boldsymbol{u}^{\mathrm{T}} \boldsymbol{g}(\boldsymbol{x})$:

$$L(\boldsymbol{x}^*, \boldsymbol{v}) \leq L(\boldsymbol{x}^*, \boldsymbol{u}^*) \leq L(\boldsymbol{y}, \boldsymbol{u}^*), \ (\boldsymbol{y}, \boldsymbol{v}) \in X \times \mathbb{R}_+^m$$

6 primal-dual optimal and $f^* = \theta^*$

Further, given any $\boldsymbol{u} \in \mathbb{R}^m_+$,

$$\{ \boldsymbol{x} \in X \mid (\mathbf{5}) \text{ is satisfied} \} = \begin{cases} X^*, & \text{if } \theta(\boldsymbol{u}) = f^*, \\ \emptyset, & \text{if } \theta(\boldsymbol{u}) < f^* \end{cases}$$

- 6 Inconsistency if either u is non-optimal or there is a positive duality gap!
- 6 Then (5) is inconsistent; no optimal solution is found by applying it from an optimal dual sol.
- 6 Equality constraints: not even a feasible solution is found!
- 6 Why (and when) then are Lagrangian heuristics successful for integer programs?

New global optimality conditions,

$$(\boldsymbol{x}, \boldsymbol{u}) \in X \times \mathbb{R}^m_+$$

$$f(\boldsymbol{x}) + \boldsymbol{u}^{\mathrm{T}} \boldsymbol{g}(\boldsymbol{x}) \le \theta(\boldsymbol{u}) + \varepsilon,$$
 (6a)

$$\boldsymbol{g}(\boldsymbol{x}) \le \mathbf{0}^m, \tag{6b}$$

$$\boldsymbol{u}^{\mathrm{T}}\boldsymbol{g}(\boldsymbol{x}) \geq -\delta,$$
 (6c)

$$\varepsilon + \delta \le \Gamma$$
, (duality gap) (6d)

$$\varepsilon, \delta \ge 0$$
 (6e)

- 6 (6a): ε -optimality
- 6 (6c): δ -complementarity
- 6 System equivalent to previous one when duality gap is zero

Equivalent statements for pair $(\boldsymbol{x}^*, \boldsymbol{u}^*) \in X \times \mathbb{R}^m_{\perp}$:

- 6 satisfies (6)
- $\varepsilon + \delta = \Gamma$; further,

$$L(\boldsymbol{x}^*, \boldsymbol{v}) - \delta \le L(\boldsymbol{x}^*, \boldsymbol{u}^*) \le L(\boldsymbol{y}, \boldsymbol{u}^*) + \varepsilon, \ (\boldsymbol{y}, \boldsymbol{v}) \in X \times \mathbb{R}_+^m$$

6 primal—dual optimal

Given any $\boldsymbol{u} \in \mathbb{R}^m_+$,

$$\{ \boldsymbol{x} \in X \mid (\mathbf{6}) \text{ is satisfied} \} = \begin{cases} X^*, & \text{if } \theta(\boldsymbol{u}) = f^* - \Gamma, \\ \emptyset, & \text{if } \theta(\boldsymbol{u}) < f^* - \Gamma \end{cases}$$

Next up: characterize near-optimal solutions

Relaxed optimality conditions,

$$f(\boldsymbol{x}) + \boldsymbol{u}^{\mathrm{T}} \boldsymbol{g}(\boldsymbol{x}) \le \theta(\boldsymbol{u}) + \varepsilon,$$
 (7a)

$$g(x) \le 0^m,$$
 (7b)

$$\boldsymbol{u}^{\mathrm{T}}\boldsymbol{g}(\boldsymbol{x}) \geq -\delta,$$
 (7c)

$$\varepsilon + \delta \le \Gamma + \kappa,$$
 (7d)

$$\varepsilon, \delta, \kappa \ge 0$$
 (7e)

 $\kappa \sim \text{sum of non-optimality in primal and dual}$ If consistent, $\Gamma \leq \varepsilon + \delta \leq \Gamma + \kappa$

- 6 (Near-optimality) $f(\boldsymbol{x}) \leq \theta(\boldsymbol{u}) + \Gamma + \kappa$ [\boldsymbol{u} optimal: $f(\boldsymbol{x}) \leq f^* + \kappa$]
- 6 (Lagrangian near-optimality) $(\boldsymbol{x}, \boldsymbol{u})$ optimal: $\theta^* \leq f(\boldsymbol{x}) + \boldsymbol{u}^{\mathrm{T}} \boldsymbol{g}(\boldsymbol{x}) \leq f^*$

$$\boldsymbol{u} \in \mathbb{R}^m_+ \alpha$$
-optimal

$$\{ \boldsymbol{x} \in X \mid \text{(7) is satisfied} \} = \begin{cases} X^{\kappa - \alpha}, & \text{if } \kappa \ge \alpha, \\ \emptyset, & \text{if } \kappa < \alpha \end{cases} \tag{8}$$

- Characterize optimal solutions when $\kappa = \alpha!$
- 6 Valid for all duality gaps, also convex problems
- Goal: construct Lagrangian heuristics so that (7) is satisfied for small values of κ
- 6 Previous Lagrangian heuristics ignore near-complementarity

$$f^* := \min \operatorname{minimum} \ f(\boldsymbol{x}) := -x_2, \tag{9a}$$

subject to
$$g(\mathbf{x}) := x_1 + 4x_2 - 6 \le 0,$$
 (9b)

$$x \in X := \{ x \in \mathbb{Z}^2 \mid 0 \le x_1 \le 4; \ 0 \le x_2 \le 9c \}$$

$$L(\mathbf{x}, u) = ux_1 + (4u - 1)x_2 - 6u$$

$$\theta(u) := \begin{cases} 2u - 2, & 0 \le u \le 1/4, \\ -6u, & 1/4 \le u, \end{cases}$$

$$u^* = 1/4, \ \theta^* = -3/2$$

Three optimal solutions, $\boldsymbol{x}^1 = (0, 1)^T$, $\boldsymbol{x}^2 = (1, 1)^T$, and $\boldsymbol{x}^3 = (2, 1)^T$; $f^* = -1$; $\Gamma = f^* - \theta^* = 1/2$

- 6 For \mathbf{x}^2 , $\varepsilon(\mathbf{x}^2, \mathbf{u}^*)$ is the vertical distance between the two functions θ and $L(\mathbf{x}^2, \cdot)$ at \mathbf{u}^*
- Remaining vertical distance to f^* is minus the slope of $L(\mathbf{x}^2, \cdot)$ at \mathbf{u}^* [which is $\mathbf{g}(\mathbf{x}^2) = -1$] times \mathbf{u}^* , that is, $\delta(\mathbf{x}^2, \mathbf{u}^*) = 1/4$
- 6 \boldsymbol{x}^1 : $\varepsilon = 0$, $\delta = 1/2$; \boldsymbol{x}^2 : $\varepsilon = 1/4$, $\delta = 1/4$; \boldsymbol{x}^3 : $\varepsilon = 1/4$, $\delta = 0$. Unpredictable, except that $\varepsilon + \delta = \Gamma$ must hold at an optimal solution
- 6 Candidate vector $\bar{\boldsymbol{x}} := (2,0)^{\mathrm{T}}$: $\varepsilon = 1/2$, $\delta = 1$ [the slope of $L(\bar{\boldsymbol{x}},\cdot)$ at \boldsymbol{u}^* is -4]; here, $\theta^* + \varepsilon + \delta = f(\bar{\boldsymbol{x}}) = 0 > f^*$, so $\bar{\boldsymbol{x}}$ cannot be optimal

Figure 4: The optimal solution x^1 (marked with large circle) is specified by the global optimality conditions (6) for $(\varepsilon, \delta) := (0, 1/2)$. The shaded regions and arrows illustrate the conditions (6a) and (6c) corresponding to $u = u^*$.

Figure 5: The optimal solution x^2 (marked with large circle) is specified by the global optimality conditions (6) for $(\varepsilon, \delta) := (1/4, 1/4)$. The shaded regions and arrows illustrate the conditions (6a) and (6c) corresponding to $u = u^*$.

Figure 6: The optimal solution x^3 (marked with large circle) is specified by the global optimality conditions (6) for $(\varepsilon, \delta) := (1/2, 0)$. The shaded regions and arrows illustrate the conditions (6a) and (6c) corresponding to $u = u^*$.

- (Small duality gap) $\bar{x}(u)$ Lagrangian near-optimal, small complementarity violations \Rightarrow conservative Lagrangian heuristics sufficient (if they can reduce large complementarity violations)
- 6 (Large duality gap) Dual solution far from optimal/large duality gap ⇒ radical Lagrangian heuristics necessary

- 6 The cost used was $h(\boldsymbol{x}) := \lambda [f(\boldsymbol{x}) + \boldsymbol{u}^{\mathrm{T}} \boldsymbol{g}(\boldsymbol{x})] + (1 \lambda)[-\boldsymbol{u}^{\mathrm{T}} \boldsymbol{g}(\boldsymbol{x})], \quad \lambda \in [1/2, 1]$
- © Rail problems often have over-covered optimal solutions, hence complementarity is violated substantially; δ large, ε rather small, hence $\lambda \lesssim 1$ a good choice (cf. Figure 1)
- ε still not very close to zero, so radical heuristics better than conservative

$$oldsymbol{h}(oldsymbol{x}) = oldsymbol{0}^\ell$$

$$f(\boldsymbol{x}) + \boldsymbol{v}^{\mathrm{T}} \boldsymbol{h}(\boldsymbol{x}) \le \theta(\boldsymbol{v}) + \varepsilon,$$
 (10a)

$$\boldsymbol{h}(\boldsymbol{x}) = \mathbf{0}^{\ell},\tag{10b}$$

$$0 \le \varepsilon \le \Gamma \tag{10c}$$

- 6 Global optimum $\iff \varepsilon = \Gamma$
- 6 Saddle-type condition for $L(\boldsymbol{x}, \boldsymbol{v}) := f(\boldsymbol{x}) + \boldsymbol{v}^{\mathrm{T}} \boldsymbol{h}(\boldsymbol{x}) \text{ over } X \times \mathbb{R}^{\ell}$:

$$L(\boldsymbol{x}, \boldsymbol{w}) \le L(\boldsymbol{x}, \boldsymbol{v}) \le L(\boldsymbol{y}, \boldsymbol{v}) + \varepsilon, \quad (\boldsymbol{y}, \boldsymbol{w}) \in X \times \mathbb{R}^{\ell}$$

Application to core problems

- 6 Core problems used to solve large-scale set-covering and binary knapsack problems.
- 6 Guess which $x_j^* = 1$ or $x_j^* = 0$.
- 6 Often based on the LP reduced costs: $\bar{c}_j \ll 0 \Longrightarrow x_j^* = 1; \bar{c}_j \gg 0 \Longrightarrow x_j^* = 0.$ Fix according to a threshold value for \bar{c}_j .
- 6 The remaining part of \boldsymbol{x} is the "difficult" part of the problem.
- 6 Standard method ignores complementarity.

Application to column generation

$$f^* := \min \sum_{j=1}^n oldsymbol{c}_j^{\mathrm{T}} oldsymbol{x}_j,$$
 (11a)

subject to
$$\sum_{j=1}^{n} \boldsymbol{A}_{j} \boldsymbol{x}_{j} \geq \boldsymbol{b}$$
, (11b)

$$\boldsymbol{x}_j \in X_j, \qquad j = 1, \dots, n$$
 (11c)

$$X_j \subset \mathbb{R}^{n_j}, j = 1, \dots, n$$
, are finite $\boldsymbol{c}_j \in \mathbb{R}^{n_j}, \boldsymbol{A}_j \in \mathbb{R}^{m \times n_j}, j = 1, \dots, n$, and $\boldsymbol{b} \in \mathbb{R}^m$

 $\boldsymbol{u} \in \mathbb{R}^m_+$ multipliers for the side constraints (10b)

Disaggregated master problem

$$f^* = \text{minimum} \sum_{j=1}^n \sum_{i=1}^{P_j} \left(\boldsymbol{c}_j^{\mathrm{T}} x_j^i \right) \lambda_j^i,$$
 (12a)

subject to
$$\sum_{j=1}^{n} \sum_{i=1}^{P_j} (\boldsymbol{A}_j x_j^i) \lambda_j^i \ge \boldsymbol{b}, \tag{12b}$$

$$\sum_{i=1}^{P_j} \lambda_j^i = 1, \quad j = 1, \dots, n,$$
 (12c)

$$\lambda_j^i \in \{0, 1\}, \quad i = 1, \dots, P_j, \quad j = 1, \dots, n$$
(12d)

 P_j : number of points in the set X_j , denoted by x_j^i Let $p_j < P_j$, $\bar{\boldsymbol{u}}$ near-optimal to Lagrangian dual $f_r^* := \text{minimum } \sum \sum \left(\boldsymbol{c}_i^{ ext{T}} x_i^i \right) \lambda_i^i,$ i = 1 i = 1

subject to
$$\sum_{j=1}^{n} \sum_{i=1}^{p_j} (\mathbf{A}_j x_j^i) \lambda_j^i \ge \mathbf{b},$$

$$\sum_{j=1}^{m} \sum_{i=1}^{p_j} \left(\bar{\boldsymbol{u}}^{\mathrm{T}} \boldsymbol{A}_j x_j^i \right) \lambda_j^i \leq \bar{\boldsymbol{u}}^{\mathrm{T}} \boldsymbol{b} + \delta,$$

$$\sum_{i=1}^{p_j} \lambda_j^i = 1, \quad j = 1, \dots, n,$$

$$\lambda_j^i \in \{0, 1\}, \quad i = 1, \dots, p_j, \quad j = 1, \dots, n$$

Complementarity near-fulfillment side constraint