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6 Illustration: new radical set covering heuristic
6 Global optimality conditions for general
problems, including integer ones
~ convex saddle-point conditions

Lagrangian perturbations: near-optimality,
near-complementarity

Analysis of and guidelines for Lagrangian
heuristics

6 Applications
Core problems; column generation

In both cases: additional
near-complementarity constraints
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f*:= minimum f(x), (1a)
subject to g(x) < 0™, (1b)
xrc X (1c)
f:R"— R, g:R"+— R™ cont., X C R" compact

Q(U)—mlgler?(um{f +u'g(x)}, ueR” (2

0" := maximum 6(w) (3)
ucR’

Duality gap: I' := f* — 6*.
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Started at some vector *(u) € X, adjust it through
a finite number of steps with properties

1. sequence utilize information from the
Lagrangian dual problem,

2. sequence remains within X, and

3. terminal vector, if possible, primal feasible,
hopefully also near-optimal in (2)

Conservative: initial vector near x(w); local moves
Radical: allows the resulting vector to be far from
x(u); includes starting far away; solving restrictions

(e.g., Benders’ subproblem)
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Figure 1: A Lagrangian heuristic
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n

* . . .
f7 := minimum E CiTj, (4a)
j=1

subject to Zajxj > 1" (4b)
j=1
x € {0,1}", (4c)

Lagrangian: L(x,u) := (1™)Tu +elz, u € R™

Reduced cost vector € := ¢ — A u.
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0" := maximum 6(u),

subject to uw > 0"

O(u) := (1™) u + minimum c¢;Z;, u > 0"
() i= (17T u+ 3 minima s,

= 1, ifc; < 0,
.I](’Ll,) S {O, 1}, ifc; = 0,
= 0, ifc; > 0

We consider a classic type of polynomial heuristic.
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(Input) & € {0,1}", cost vector p € R"”

(Output) & € {0, 1}", feasible in (1)

(Starting phase) Given &, delete covered rows, delete
variables z; with z; =1

(Greedy insertion) Identify variable x, with
minimum p; relative to number of uncovered rows
covered. Set z, := 1. Delete covered rows, delete
x,. Unless uncovered rows remain, stop;

x € {0, 1}" feasible solution.

(Greedy deletion) Identify variable x, with 2, =1
present only in over-covered rows and maximum p;
relative to k;. Set 2, := 0. Repeat.

Global optimality conditions for discrete and nonconvex optimization, with applications to Lagrangian heuristics, core problems, and column generation — p.8/3




CHALMERS ‘ GOTEBORG UNIVERSITY

Classic heuristics:
(I) Let & := 0" and p := ¢
Chvatal (1979)
(IT) Let & := 0" and p := ¢, at dual vector u
~ Balas and Ho (1980)
(ITT) Let & := x(u) and p :=c
Beasley (1987, 1993) and Wolsey (1998)
(IV) Let @ := x(u) and p := ¢
~ Balas and Carrera (1996)
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To be motivated later:
Combination of ¢ and ¢ (or Lagrangian and

complementarity) { here, A € [1/2,1] }
pA) =X+ (1 -NA'u=ANc—A'u]+ (1 - NA'u

(I) & (III): A = 1/2 (original cost)
(IT) & (IV): A =1 (Lagrangian cost)
Test both & := 0" (“radical”) and & := x(u)

(“conservative”)
Test case: rail507, with bounds [172.1456, 174

(n = 63,009; m = 507)

u generated by a subgradient algorithm
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Figure 2: Objective value vs. value of A
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A=0.9
Ran three heuristics from iterations ¢t = 200 to
t = 500 of the subgradient algorithm.

1. (III): & := x(uw) and p(1/2) = c. Conservative.
2. & := x(u) and p(0.9). Conservative.
3. & := 0" and p(0.9). Radical.

Histograms of objective values
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Figure 3: Quality obtained by three greedy heuristics
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© Remarkable difference between the heuristics
6 Simple modification of (III) improves it

6 Radical one consistently provides good solutions

(ITD)]  [p(0.9)/cons.| [p(0.9)/rad.]

maximum : 221 212 195
mean 203.99 194.45 186.595
minimum : 192 182 182

Why is it good to (i) use radical Lagrangian heuris-
tics with (ii) an objective function which is neither

the original nor the Lagrangian, but a combination?
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(z,u) € X xRY

flx) +u g(x) < O(u), (52)
g(x) < 0™, (5b)
uTg(w) = () (5¢)

Equivalent statements for pair (z*,u*) € X x R"
© satisfies (5)

6 saddle point of L(x,u) := f(x) +u'g(x):
L(z",v) < L(z",u") < L(y,u”), (y,v) € XxRY

6 primal-dual optimal and f* = 6*

Global optimality conditions for discrete and nonconvex optimization, with applications to Lagrangian heuristics, core problems, and column generation 1
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Further, given any u € R,
)

X* iff(uw) = f*,

{x e X | (5) is satisfied } = « 0,  it0(u) < f

\
6 Inconsistency if either w is non-optimal or there
is a positive duality gap!

® Then (5) is inconsistent; no optimal solution is
found by applying it from an optimal dual sol.

6 Equality constraints: not even a feasible
solution is found!

6 Why (and when) then are Lagrangian heuristics
successful for integer programs?
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(z,u) € X xRT

flx)+u'g(x) <l(u) +-e, (6a)
g(x) < 0™, (6b)

u'g(x) > -4, (6¢)

e+ 0 <TI', (duality gap) (6d)

,0>0 (6e)

6 (6a): c-optimality
6 (6¢c): 0-complementarity

6 System equivalent to previous one when duality
gap 1S Zero
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Equivalent statements for pair (*,u*) € X x R":

© satisfies (6)
6 ¢4 0 =1 further,

L(z*,v)—d < L(z",u") < L(y,u")+¢, (y,v) € X xR

6 primal-dual optimal
Given any u € R,
(X*, it0(u) = f*—T,

{xe X |(6) issatisﬁed}:<@’ f0(u) < f*— T

\

Next up: characterize near-optimal solutions
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flx)+u'g(x) <l(u) +-e, (7a)
g(x) < 0™, (7b)

u'g(xz) > -4, (7¢)
e+6<T +r, (70)

£,0,k >0 (7e)

k ~ sum of non-optimality in primal and dual
If consistent, ' <e+0 <I'+ Kk

6 (Near-optimality) f(x) < O(u)+T + k&
luw optimal: f(x) < f* + K]
6 (Lagrangian near-optimality) (x,w) optimal:

0" < f(x) +ug(x) < f~

Global optimality conditions for discrete and nonconvex optimization, with applications to Lagrangian heuristics, core problems, and column generation 1
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u € R c-optimal

X% itk > a,

{w€X|(7)issatisfied}=<@7 e

(8)

© Characterize optimal solutions when x = o!
6 Valid for all duality gaps, also convex problems

6 Goal: construct Lagrangian heuristics so that (7)
is satisfied for small values of k

6 Previous Lagrangian heuristics ignore
near-complementarity
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f*:= minimum f(x) = —x,, (9a)

subject to g(a) := x1 + 49 — 6 <0, (9b)
rcX ={xcZ|0<2 <4 0< 1, <

(9¢)

L(x,u) = uxy + (4u — 1)xy — 6u

(

2u—2, 0<u<1/4,

O(u) .=
()= - —6u, 1/4 < u,

uw*=1/4, 0" = —-3/2
Three optimal solutions, &' = (0,1)%, =* = (1,1)%,
and ° = (2,1)"; f*=-1; T = f* - 0" =1/2

Global optimality conditions for discrete and nonconvex optimiza
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o(x,u

e(x?, u*)y 9*: .
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©

2 2

For x*, e(x*, u*) is the vertical distance
between the two functions 6 and L(x?,-) at u*

Remaining vertical distance to f* is minus the
slope of L(x?,-) at w* [which is g(x*) = —1|
times uw*, that is, d(x?, u*) = 1/4
xl:e=00=1/2; 2% c=1/4,6 =1/4; =°:
e =1/4, 0 = 0. Unpredictable, except that
e+ 0 = I' must hold at an optimal solution

Candidate vector & := (2,0)': e =1/2, 6 =1
[the slope of L(&, ) at u* is —4|; here,

0 +ec+6= f(®)=0> f* so & cannot be
optimal
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Figure 4: The optimal solution ' (marked with large cir-
cle) is specified by the global optimality conditions (6) for
(e,0) := (0,1/2). The shaded regions and arrows illustrate

the conditions (6a) and (6¢) corresponding to u = u*.
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Figure 5: The optimal solution x? (marked with large cir-
cle) is specified by the global optimality conditions (6) for
(€,0) := (1/4,1/4). The shaded regions and arrows illustrate

the conditions (6a) and (6¢) corresponding to u = u*.
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Figure 6: The optimal solution x> (marked with large cir-
cle) is specified by the global optimality conditions (6) for
(e,0) := (1/2,0). The shaded regions and arrows illustrate

the conditions (6a) and (6¢) corresponding to u = u*.
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© (Small duality gap) &(w) Lagrangian
near-optimal, small complementarity violations
= conservative Lagrangian heuristics sufficient
(if they can reduce large complementarity
violations)

6 (Large duality gap) Dual solution far from
optimal /large duality gap = radical Lagrangian
heuristics necessary
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6 The cost used was h(x) := M\ f(x) +u'g(x)] +
(1=N[-u'g(x)], Ael/2,]1]

© Rail problems often have over-covered optimal
solutions, hence complementarity is violated
substantially: o0 large, € rather small, hence
A < 1 a good choice (cf. Figure 1)

6 ¢ still not very close to zero, so radical heuristics
better than conservative
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h(xz) = 0°
f(x) + fvTh(a:) < 0(v) + ¢, (10a)
h(z) =0, (10b)
0<e<T (10c)

6 Global optimum <= ¢ =T

6 Saddle-type condition for
L(z,v) := f(x) + vih(x) over X x R’

L(z,w) < L(z,v) < L(y,v) +¢, (y,w) € X xR’

Global optimality conditions for discrete and nonconvex optimiza
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©

Core problems used to solve large-scale
set-covering and binary knapsack problems.

*
J

Often based on the LP reduced costs:
5j<<O:>£l’};f:1; 5j>>O:>£l’};f:O.
Fix according to a threshold value for ¢;.

Guess which % =1 or xj = (.

The remaining part of @ is the “difficult” part of
the problem.

Standard method ignores complementarity.
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n
f* := minimum Z c}wj, (11a)

j=1

subject to ZA]'CU]' > b, (11b)
j=1
CUJ'GXJ', 7=1,...,n (11c)

X; CR"%, 5=1,...,n, are finite
cic R A; e R j=1,...,n and b € R™

u € R multipliers for the side constraints (10b)
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f* = minimum > > )\i (12a)

J?
g=1 1=1
n bj
subject to >: >: (ij;-) )\:;- > b, (12b)
j=1 i=1

P
Y N=1, j=1....n (12c)
1=1

XNoe{0,1}, i=1,....,P;, j=1,...
(120)
Pj: number of points in the set X;, denoted by :133

Let p; < P;, u near-optimal to Lagrangian dual
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n Dj
£ := minimum >: >: (C]TZIL’Z) A

r j) Ny
j=1 i=1

subject to >: >: (A]x;) AL > b,

] —_
j=1 i=1

> > (" Ajrt) N < uTb + 6,

=1 =1

Eé&zl,j:L”wm
1=1

Xoe{0,1}, i=1,...,p;, j=1

Complementarity near-fulfillment side constraint
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