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Part 1

Lagrangian relaxation

Chapter 1

Global optimality conditions
zero duality gap

Consider the optimization problem to find

7= infimum £( (1.1a)
subject tox € X, (1.1b)
(@) <0, i=1,...m, (1.1¢)
where f: R" R and g; : R" — R (i = 1,2,...,m) are continuous functions,
and X C R is closed.
For an arbitrary vector s € R™, we define the Lagrange finction
L@, p) = f(@) + > pigi(@) = f(a) + p"g(x). (1.2)
=
Let
q(s) = infimum L(x, ) (1.3)
zeX

be the Lagrangian dual function, defined by the infimum value of the Lagrange
function over X when we have Lagrangian relaxed the explicit constraints with
multiplier values y; the Lagrangian dual problem is to

maximize q(p), (1.4a)
"
subject to p > 0™, (1.4b)

1.1 Global optimality condition imply primal op-
timality

Consider the following two-step procedure for solving the primal problem (1.1).
We first solve the Lagrangian dual problem (1.4). Let u* denote a dual opti-
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mum, Thereafter, if possible, we generate an «* € R" which satisfies the global
optimality conditions, that is,

p*>0"  (Dual feasibility) (1.52)

@' cargmin L@ p).  (Lagrangian optimality) (1.5b)
z€X

2" € X, g(a")<0™  (Primal feasibility) (1.5¢)

(u*)"g(z*) =0.  (Complementary slackness) (1.5d)

Show that such an x* solves the primal problem. (Note that the first condi-
tion implies that &* € X.)

1.2 Example

If the primal problem is convex, has an optimal solution, and also satisfies some
constraint qualification, it is always possible to satisfy the conditions (1.5).
Hence, the primal problem can always be solved by using the procedure de-
scribed earlier.

Use the procedure to solve the linear (therefore convex) problem to

minimize z =x; -3y

subject to  —z1 +25 < 6,
a1 +wp <5,
T, a2 >0,

Lagrangian relax the first constraint only.

1.3 A special case

Suppose that the Lagrangian relaxed problem in (1.3) has a unique minimum,
and that we denote this vector (12). How do the results above simplify? Provide
sufficient conditions on the problem data [that is, on f, g, (i = m), and
X] such that the Lagrangian relaxed problem in (1.3) has a unique minimum for
every pu > 0™, This then holds in particular for an (a priori unknown) optimal
solution fu°.

[Note: Tf p* > 0™ and g(z*) < 0™ then (u*)g(z*) = 0 if and only if
igi(@*) = 0 for i = ,m. The complementarity conditions (1.5d) in the
global optimality conditions can therefore also be expressed as

wgi(@) =0, i=1,...,m.

It is usually of advantage to utilize this form when searching for a vector z* € R™
satisfying the global optimality conditions given an optimal dual solution y2*.
The reason is that the separate complementarity conditions ji}gi(*) = 0,




1.3. A SPECIAL CASE

=

.., m, directly provide information about which constraints g,(z) < 0,

..., m, which an @* sought must fulfill with equality; the aggregated com-

plementarity condition (p*)Tg(z*) = 0 alone does not provide this information.
We also note that if the original problem has the form

f* = infimum f(z), (1.6a)

subject tox € X, (1.6b)

hi(®) =0,  j=1,...0 (1.6¢)

where h; : R" - R (j = 1,...,() are continuous, then the global optimal-

ity conditions will reduce to the following system in terms of the multipliers
Aj (j = 1,....0) and the associated Lagrange function L(z.A) := f(x) +
o Aihy(@) = f(@) + ATh(@):

2" € argmin L(z, "),  (Lagrangian optimality) (1.7a)
' € X, h(z')=0°  (Primal feasibility) (1.7b)

since the complementarity conditions then always are satisfied.]

Chapter 2

Additional properties of the
Lagrangian dual problem

Consider the problem (1.1) with the properties stated together with its defini-
tion.

2.1 The appearance of the Lagrangian dual func-
tion
Suppose now that X is finite (for example, X consists of a finite number of
integer vectors). Denote the elements in X by @”, p = 1,..., P. Show that the
dual objective function g is piece-wise linear. How many pieces does it have, at
most? Why is it not always built up by this many pieces?
[Note: This result holds regardless of the properties of f and g.]

2.2 Example

Tllustrate the above result for the linear 0/1 problem to find

2 = maximum :
subject to

5y + 8z +

201 + @2+ 213+ 74
x1 . wy , w3, xs€{0,1},

where the first int is i icating and is to be L
relaxed.
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2.3 Linear programming

Suppose that f and all functions g; are affine, and that X is a polytope (that is, a
bounded polyhedron). Show that the dual objective function is piece-wise linear
also in this case. What is the maximum number of segments of the Lagrangian
dual function?




Chapter 3

Lagrangian relaxation and
convexification

Consider again the framework of Section 1. There, we concluded that for convex
problems a primal optimal solution @* can be generated through a procedure
in which first an optimal dual solution p2* is found, after which & is generated
as a solution to the global optimality conditions (1.5).

3.1 Non-convex example
For non-convex problems it is not guaranteed that this procedure can be used to

derive a primal optimal solution. Ilustrate this fact by considering the problem
to

minimize f(z) = —221 + 2
subject to

+ay <3,
0\ [0\ (1) [4) (1) (2
rex={(5)- () G)- () )0}
Which of the global optimality conditions in (1.5) cannot be fulfilled? Cal-
culate the size of the duality gap, that is, I' = f* — ¢".

3.2 Convexified version
Consider the problem to
minimize f(x) = ~21 + 2

subject to @ty <3,

ze X ={zecR*|0<z; <4 j=1,2},

9

Chapter 4

Global optimality conditions:
non-zero duality gap

Consider the optimization problem (1.1), the Lagrange function (1.2), and the
associated Lagrangian dual problem (1.3), under the conditions stated in the
beginning of Section 1.

Let (2, 4*) be a pair of primal-dual optimal solutions to the respective
primal and dual problems. With f* and ¢* being their respective values we
define the duality gap as T := f* — ¢*, which is non-negative by weak duality.

4.1 Global optimality condition imply primal op-
timality

We extend the procedure outlined in Section 1.1, as follows. We first solve

the Lagrangian dual problem (1.4). Let u* denote a dual optimum. There-

after, if possible, we generate an @* ¢ R which satisfies the global optimality
conditions, that is,

f(z)+pn"g(x) < q(p) +¢ (Lagrangian e-optimality) (4.1a)
g(x) <0™ (Primal feasibility) (4.1b)

ulg(x) > -6 (Lagrangian d-complementarity) (4.1c)
e+d<T (Perturbation condition, T) (4.1d)

£.6>0 (Perturbation condition, II) (4.1¢)

Establish the equivalence between the following two statements:

1. there exists a pair (<, ) of perturbations such that the pair (z*, u*) sat-
isfies (4.1);

2. the pair (z*, u*) defines a primal-dual optimal solution.

11

10CHAPTER 3. LAGRANGIAN RELAXATION AND CONVEXIFICATION

which is a canvexified version of the previous problem, Solve this problem and
evaluate its optimal objective value, /7. What is the relation between f and
the optimal dual value ¢*?

[Note: This relation can be shown to be valid generally.]

12CHAPTER 4. GLOBAL OPTIMALITY CONDITIONS: NON-ZERO DUALITY GAP

4.2 An disaggregated version of the global opti-
mality conditions

Consider the following extension of the system (4.1):

fla) +pu"g(x) < q(p) +e (Lagrangian e-optimality) (4.2a)
g(z) < 0™ (Primal feasibility) (4.2b)
pigi(x) > —8;, i=1,...,m (Lagrangian j-complementarity) (4.2c)

e+y 6 <T (Perturbation condition, T) (4.2d)
£>0,8=0m (Perturbation condition, II) (4.2¢)

Show that this version of the global optimality conditions is equivalent to
the original one, in that we can also characterize a primal-dual optimal pair
with a pair (c,d) in the system (4.2). Hint: It is the easiest to establish the
equivalence directly between the two systems.

[Note: The appearance of the system (4.2) is that of a disaggregated version
of the system (4.1), wherein we measure the complementarity fulfillment for
each constraint individually rather than lumped together into a sum. Utilizing
this disaggregation can some times be of advantage when devising a Lagrangian
heuristic for the problem (1.1), especially when it is of the column generation
variety.]

4.3 Example

Solve the problem to

minimize f(z) = —221 + 2

subject to + ’m i 1 _ {(g) ) (‘D . (i) : (3) : (D i (f)}

by first solving the Lagrangian dual problem associated with the Lagrangian
relaxation of the linear constraint, and then generate the set of optimal primal
solutions through the use of the system (4.1). For which values of ¢ and § can
we derive a primal-dual optimal solution?




Chapter 5

The network design problem

5.1 The minimum spanning tree problem
Formulate the minimum spanning tree problem (MST) as a network flow prob-
lem. [Hint: consider node 1 as a sink and all other nodes as sources with strength
1]

Formulate also the MST problem as a binary, integer programming problem.

5.2 Numerical example

Consider the graph below.

Provide all the spanning trees of this graph explicitly. Calculate the sum of
¢;; and a;; for each tree. Which ones are feasible with respect to the budget

13

Chapter 6

A Lagrangian heuristic

Consider the linear 0/1 problem to find

= maximum z = 5z, + Ty
subject to 31 + 3ry < 6 (1)
2z, + 3a3 < 5 (2)
£ x5 = 1
+ oa o= 1
xy T3 zg € {0,1}.

6.1 Lagrangian relaxation

Lagrangian relax the constraints (1) and (2) with multipliers ji;, iz > 0. For-
mulate the relaxed problem and the corresponding Lagrangian dual problem.
Analyze its properties.

6.2 Weak duality

Evaluate the Lagrangian dual objective function at p = (1,1)T. Relate this
value to 2*.

6.3 Subgradients

Calculate a subgradient to the Lagrangian dual objective function at p —
LT

6.4 Primal feasibility heuristic

Find a feasible solution to the original problem by suitably modifying the solu-
tion to the Lagrangian subproblem at p = (1,1)". Relate this value to 2*.

15
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constraint

Z a;; < 10

(d)ET
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6.5 Subgradient optimization

How are the multipliers in the subgradi imization method updated? How

(where T denotes a collection of links forming a spanning tree)? Which ones
are optimal (minimal) with respect to the link costs c;;?

The MST problem under a budget constraint is often referred to as the
network design problem (NDP).

5.3 Primal heuristics

Provide a local search heuristic for the NDP which improves a feasible solution.
Apply it to the above example.

5.4 Lagrangian heuristics

Provide a Lagrangian relaxation based algorithm for the NDP. In particular,
choose a suitable Lagrangian relaxation, a description of how to solve each La-
grangian subproblem, a primal feasibility heuristic, and a complete Lagrangian
scheme including a suitable step length formula.

Apply it to the above example.

can the results in the previous assignment aid in the calculation of the step
length.

6.6 Strong duality

What is the relation between the value of the Lagrangian dual function and the
value of =*? Ts it likely that a positive duality gap is present? Why/why not?
6.7 Continuous relaxation

What is the relationship between the optimal value of the Lagrangian dual

problem and that of the continuous (LP) relaxation of the original problem?
Motivate!




Chapter 7 Chapter 8

Subgradients and optimality Subgradients and optimality
for unconstrained Lagrangian for constrained Lagrangian
duals duals

Consider the primal problem Consider the inequality constrained problem (1), the Lagrange function (1.2),
and Lagrangian dual problem (1.4), where we assume that the functions f and g,
= infimum f(@), (7.1a) (i=1,...,m) are continuous and X non-empty, closed and bounded. It follows
. . that the Lagrangian dual function g is finite, continuous, and concave on R™,
subject toz € X, ) (7.1b) and that (1.4) therefore is a “well-behaved” convex problem. Further, both the
hj(®)=0, j=1,....¢ (7.1c) primal and dual problems have non-empty, closed and bounded optimal solution
ts.
where f :R" — Rand h; : R" — R (j = 1,2,...,£) are continuous functions, sets
and X C R" is closed.
For an arbitrary vector A € R, we define the Lagrange function 8.1 Optimality
¢ m 5 : : -
Let p* > 0™. Show that if there exists a subgradient 4* to ¢ at p* that satisfies
L@, ) = [(@) + Y Ajhy(@) = f(@) + ATh(@). (7.2)
i=1 4*<0™,  and  (u)Ty" =0
Let (we then say that the vectors p* and ~* are complementary to each other) then
4(\) = infimum L(z, ) (7.3) 1" is an optimal solution to the Lagrangian dual problem (1.4).
be the Lagrangian dual function, defined by the infimum value of the Lagrange .
function over X when we have Lagrangian relaxed the explicit constraints with 8.2 Numerical example

multiplier values A; the Lagrangian dual problem is to
Consider the LP problem to

maximize q(\), (7.4a) .
A minimize z =
subject to A € RY. (7.4b) subject to < 6 1)
< -7 @2
We suppose that X is non-empty, closed and bounded so that the “infimum” <5
can be replaced by “minimum” in (7.1), (7.3), and both the primal and dual > 0,
17 19
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objective functions in (7.1) and (7.4) attain their optimal values. Moreover,
then g is finite, continuous, and concave on the whole set R, so that (7.4) is a
“well-behaved” convex problem.

7.1 Subgradients of concave functions, I

Let A € RY. Define a subgradient, 4, to ¢ at A. Also define the entire subdif-
ferential, dg(X) to ¢ at A.

7.2 Subgradients of concave functions, II

Let @(A) be an optimal solution to the Lagrangian subproblem defining the
value of g(A). Show that the vector h(x(X)) € dg(A); that is, show that the
vector h(x(A)) of constraint function values at the subproblem solution a(X) is
a subgradient of ¢ at A.

7.3 Optimality

Show that if, for some A* € R/, it holds that 0' € dg(A") then A" is globally
optimal in the Lagrangian dual problem (7.4).

7.4 Optimality, numerical example

Tlustrate the above result on the LP problem to

minimize z = o,
subject to —x = 6
1 <5
Eat > 0,
where the first constraint is i icating and is therefore Lagrangian

relaxed. At A* = 4/3 there are alternative Lagrangian subproblem optimal so-
lutions, which yield alternative subgradients of the Lagrangian dual function.
There are, especially, exactly two extreme solutions to the Lagrangian subprob-
lem, which both yield extreme subgradients (that is, subgradients of ¢ at \*
that are not non-trivial convex combinations of other subgradients of ¢ at \*).
Find these two extreme subgradients. Ct ize the subdifferential dg()\*).
Verify that \* is globally optimal in the Lagrangian dual problem.

where the constraints (1) and (2) are considered complicating and therefore
are Lagrangian relaxed. At p* = (4/3,0)7 there exist exactly two extreme
subgradients of ¢; find them. Characterize the subdifferential d¢(x*). Find a
subgradient, v* € dg(1*), to g at p2* which verifies that p* = (4/3,0) indeed
is Lagrangian dual optimal.

Graphically illustrate in R? the relations between the vectors p*, ¥*, and
the two extreme subgradients.




Chapter 9

Lagrangian relaxation and
convexification

Consider the primal problem to

minimize ¢’ @, (9-1a)
subject to € X, (9.1b)
Az > b, (9.1¢)

where X C R}, and the linear constraints are considered complicating. Consider
the Lagrangian dual problem to find

o = maximm q(4), 9.2)
where
q(p) = minimum o+ put(b- Az). 9.3)
g
Suppose that the set X is finite. (For example, it may contain a finite number
of integer vectors in R".) Denote the vectors in X by @', i=1,..., P.
9.1 Lagrangian dual problem, I
Show that the Lagrangian dual problem can equivalently be formulated as the

problem to find

¢" = maximum z,
subject to 2 < (b— Aa')Tp+c'2',  i=1,....P
ws o,
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9.6 Strength of Lagrangian relaxation, IT

Make the alternative assumption that the set X is a polytope (a bounded poly-
hedron), with extreme points @', i = 1,..., P. (The original problem hence is
a linear program.) Motivate why the above reformulations are valid also under
this assumption. What relation holds between X and conv X? Which relation
holds between =* and ¢*? What then is the problem in Section 9.27

[Note: The conclusions in Section 9.4 is fundamental for the use of La-
grangian relaxation in integer programming, It is usually summarized as follows:
Lagrangian relaxing a group of constraints is equivalent to convexifying the set
defined by the ints that are not L ian relaxed. The problems in
Sections 9.1 and 9.2 can normally not be formulated and solved, since the num-
ber P is usually extremely large. The problem in Section 9.2 can however be
attacked using column generation.]

22CHAPTER 9. LAGRANGIAN RELAXATION AND CONVEXIFICATION

9.2 Lagrangian dual problem, IT

By using the previous formulation, show that the formulation also can be written
as follows:

P

¢ = minimum (@),

i=1
P

subject to Y (A@)A; 2 b,

=
Z“, =1,
=

W om,

9.3 Lagrangian dual problem, III

By using the previous formulation, show that the formulation also can be written
as follows:

¢ = minimum ¢z,

subject to @ € conv X
Az > b,
9.4 Strength of Lagrangian relaxation, I
Which relation holds between X and conv X? Which relation holds between =*
and 7
9.5 Numerical example

Consider the linear 0/1 problem to find

2* = maximum »= 5z + Tus +
subject to o+ 223 + < 5
+ 205 + = 3
3 e {01},

where the first ¢ aint is i i
Utilized the result in Section 9.2 to find the Lagrangian dual optimal value.

and is L ian relaxed.
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Chapter 10

Lagrangian relaxation vs.
continuous relaxation

Suppose that the linear integer program

2* = minimum 2 = cTa,

subject to Az = b,

Chapter 11

Construction of strong LP
relaxations

The Representation Theorem can some times be used to construct alternative
formulations of discrete optimization problems.

Consider the problem to

Dz<e
z>0"
 integer

is attacked by means of Lagrangian relaxation of the linear equality constraints.
The relaxed problem’s optimal value is then given by

¢(A) = minimum  ¢"z + AT (Az - b)
subject to Dz <e
z> 0
x integer,

and the Lagrangian dual problem is to find

¢ = maximum g(X).

10.1 Integrality property

What does it mean that the Lagrangian relaxed problem has the integrality
property? Give examples of Lagrangian relaxed problems that have (respec-
tively, do not have) the integrality property. What methods are normally used
to solve Lagrangian relaxed problems that have (respectively, do not have) the
integrality property? Which one of the two types of problems normally is the
most difficult to solve?

(P)  minimize 'z,
subject to Az > b,
zeX C{0,1)",

and suppose the set X contains P integer vectors, say @', i = 1,..., P. By
utilizing that

P P

zeR" =) Na't Y

=1 i=1

)\te{O.l}.r:I,...,P}

we can write the problem equivalently as that to

»
minimize Y (¢"a') i,

(IMP) subject to > (Az') \; > b,
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10.2 Bounds on the optimal value
Consider the continuous relaxation of the original integer program:

2} p = minimum = \
subject to Az = b,

Dz <e,

z>0",

and let (A", 2*) denote a dual optimum.

Show that the lower bound on z* that is given by the Lagrangian dual
function is always at least as good as that produced by the conti laxati
(In other words, show that =* > ¢* > 2} 5.)

10.3 Comparative strength of relaxation

Show that if the Lagrangian relaxed problem has the integrality property then
the two bounds are equal. Further, show that the partial LP dual solution
A" is a Lagrangian dual optimal solution, Motivate why the Lagrangian dual
problem can be expected to give stronger bounds than the continuous relaxation
whenever the relaxed problem does not have the integrality property.

[Note: By the above result follows that Lagrangian relaxation, together with
an algorithm for the (approximate) solution of the Lagrangian dual problem,
can be used to find an (approximate) optimal solution to the LP relaxation
of a linear integer program. Especially for some 0/1 problems this is a more
effective means to attack the problem than to use traditional LP techniques.
The reason is at least two-fold: (1) Methods that are based on Lagrangian
relaxation can often utilize problem structure better than LP techniques. (This
is the case for network-type problems, where a Lagrangian relaxation method
typically only relies on the original data, which also can be very efficiently
stored and manipulated.) (2) Continuous relaxations of 0/1 problems are often
(heavily) degenerated, which hampers the efficiency of the simplex method.
(As a side note we also remark that it has been observed empirically that it is
often best to use the dual simplex method for solving the LP relaxation of a
0/1 problem, because it tends to fair better under degeneracy than the primal
simplex method.)]
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11.1 Numerical example

Consider the problem to

minimize 3z + 2z2 + 4dx3 + 24
subject to 2z + 3wa + 4dwz + bay > T
o o+ @+ w4 2w <3
T+ a2 = 1
3+ = 1
T, a ,  ws e {0/1}.

Let the constraints (1), (2), and (5) define the ground set on which the
Representation Theorem is used (that is, the set X above). Formulate the
equivalent problem. Solve it by inspection. (Hint: The set X contains five

integer vectors.)

11.2 Column generation

Consider again the original problem (P). Describe how the continuous relaxation

of the problem (IMP), that is, the problem to
»

minimize Y ("2’ i,

(MP) subject to Y (Az') A > b,

can be solved by the use of column generation. Show generally that the column
generation problem is a Lagrangian relaxation of the problem (P) where the

linear constraints are Lagrangian relaxed.

11.3 Convexification

To solve the continuous relaxation (MP) is obviously equivalent to solving the

convexified problem to

(CP)  minimize ¢z,
subject to Az > b,
x € conv X,

where

conv X = {

v r
z=Y Nah Y AN=1 A=0i=1,..
= =

,p}.
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If the set X has the description X = {@ € {0,1}" | Bz > d} then the original
problem has the continuous relaxation to
minimize 'z,

subject to Az > b,
(LP) Bz >d.

When do the two continuous relaxations (LP) and (MP) have the same optimal
objective value, and when do they normally differ? In the latter case, which
one of the two relaxations is the strongest? In general, then, which one of the
two formulations of the problem, (P) or (IMP), is in this sense the strongest
formulation?

[Hint: Construct the continuous relaxations (LP) and (CP) for the numerical
example

minimize 2z + @y

subject to —z1 + x> 0
2 + 2y > 1
o, xp € {0,1}

with X = { (v1,22) € {0.1}% | 251 + 225 > 1 }]

[Note: If (MP) has a higher optimal value than (LP) we then say that (MP)
is a strong linear programming formulation of (P). Strong LP formulations can
be obtained by other means as well. A common way is to extend a given
formulation with constraints that are redundant in the integer program but
which are not red in the i 1 ion. A classic example is the
Gomory cut.]

11.4 Pros and cons

Which are the pros and cons of solving (MP) [which provides an optimal solution
to (CP)] and (LP)?

Chapter 12

A Lagrangian heuristic for
the capacitated localization
problem

Consider the itated localization problem, formulated

problem:

as a mixed integer

minimize E fiyi +
i=1

subject to Y mi; <

Say = ()
yi =
Tij =2 \n,
where the variables y;, i = 1,...,m, describes logical decisions concerning the
location of sources, and jj, i = 1,..., m, j = 1,...,n, describe quantities of

items transported.

12.1 A redundant constraint

Show that the constraint

is a consequence of the original constraints (that is, every feasible solution sat-
isfies this constraint), whence it can be added to the model without affecting
its solution.

31
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12.2 Lagrangian relaxation

Suppose we add this redundant constraint to the original model and solve the
resulting problem heuristically by L ian relaxing the ints () and
utilized subgradi imization on the Lagrangian dual problem. Describe the
solution process! Which are the main properties of the dual problem? Why?
Can there be a positive duality gap?

12.3 Feasibility heuristics

For this problem it is easy to construct feasible solutions based on the optimal
solution to each Lagrangian subproblem. Explain how!

12.4 Lower bounds

Compare the strength of the lower bound obtained from the Lagrangian dual
formulation compared with that of the continuous (LP) relaxation of the prob-
lem. How is the strength of the lower bound affected if we do not add the above
redundant constraint? Motivate!

[Note: Note that the added constraint is redundant in the original model,
but that it is not redundant in the Lagrangian relaxed problem. We thereby
illustrate the fact that it is often both possible and advantageous to strengthen
a relaxation by means of adding constraints that are redundant in the original
formulation.]
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problem when we use optimal multipliers in the T ian s ) The
perturbations do, however, in some sense become smaller as the multiplier values
gets closer to the optimal ones.

In summary, then, by solving Lagrangian subproblems (which normally is
much less demanding than to solve the original problem) we find the exact
optimal solution to some perturbed primal problems, but usually not that of

Chapter 13 the original problem.

Everett’s Theorem

For the problem
minimize  f(z)
subject to g(z) < 0™ (P)
zeX,
where X C R" is closed, and f : R" — R and g : R" — R™ are continuous,
it holds that if @* € R" and p* € R satisfy the global optimality conditions,
that is, have the properties that

x* € argminigum fl@)+ () g(x),
uigi(@) =0, i=1,.., m,
g(z*) <0™,

then @* is an optimal solution to (P). (In addition, 4* is an optimal solution to
the Lagrangian dual problem.)

13.1 The Theorem

Let fu > 0™. Use the result above to prove that if € X solves the Lagrangian
relaxation to
L T
winingize f(x) + 1"g (),
then & is an optimal solution to the problem to

minimize  f(z),
subject to  gi(x) < g, i=1,...,m,
ze X,

where the original constraint right-hand sides have been perturbed into

= gi(@) for f1; > 0

Yi

> gi() for j1; =0
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(This result is known as Everett’s Theorem.)

13.2 Numerical example

Consider the integer program to

maximize z = 1lz; + 62 + Sz5 + dug
subject to 5y + 3us + 3z5 + 4z < b
2+ an = 1

+ x5 + we = 1

o o, @ Loy, wg = 0f1,

where b is a parameter that can take on non-negative values. Lagrangian relax
the knapsack constraint with the multiplier 12 > 0, and utilize Everett’s Theorem
to find an optimal solution for as many values of b as is possible. Can you, in
this particular way, find the optimal solution for b = 107 (Hint: The Lagrangian
dual objective function has break points at ;1 = 5/2 and j = 10/3.)

13.3 Application

Consider the above integer program with b = 8. Suppose that the knapsack
constraint is a soft resource constraint, that is, it does not need to be fulfilled
exactly but may be violated somewhat. (This type of constraint is often en-
countered when there are uncertainties in the data, and when it is therefore not
meaningful to require exact compliance with the constraint. It is also natural
to model resource constraints in this way when it is possible to interpret a vi-
olation as a requirement for additional resource; the Lagrangian term then has
the interpretation of an additional cost for this additional resource.) Suppose
that we here allow for the constraint to be violated by a few units only. Use the
above result to find a reasonable solution to this problem. (Many real-world op-
timization problems include constraints that in nature are soft; such constraints
often models goals or resource limits. The opposite to such constraints are, of
course, hard constraints. Such constraints must be fulfilled exactly, and often
describe constitutional or logical conditions.)

[Note: According to Everett's Theorem an optimal solution to a Lagrangian
relaxation of some problem is also a globally optimal solution to a version of
the said problem in which the right-hand sides of the constraints have been
perturbed. By varying the values of the multipliers used in the Lagrangian
relaxation one can (normally) in addition obtain optimal solutions to primal
problem with a large variety of perturbations of the right-hand sides. However,
it is normally not possible to obtain every possible perturbation, and especially
there normally do not exist multipliers that result in a zero perturbation (that
is, § = 0™), which would have meant that we have solved the original problem.
(An exception is the case of convex problems with a strictly convex objective
function: for such problems we always obtain the optimal solution to the original
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Surrogate relaxation

Consider a problem of the form
2 = minimum f(z),
subject to g;(x) <0, i=1,....m, (P)
ze X,
where X C R" is closed and bounded, and the functions f,g; : R" — R are
continuous. The problem is assumed to have an optimal solution, *. Introduce
parameters ji; > 0,i=1,....m, and define
s(p) = minimum f(x),

subject to Y pugi(@) <0 (S)
=

xzeX.

This problem has only one explicit constraint.

14.1 Weak duality

Show that =" is a feasible solution to the problem (S) and that therefore s(ss) <
=" always holds, that is, (S) is a relaxation of the original problem. Motivate
why maximum,,>gn s(u) < z* holds. Explain the potential use of this result!
14.2 Numerical example

Consider the linear 0/1 problem to find

Part 11

Column and constraint
generation methods

2* = maximum z = + 8wy + Trs + 91y
subject to + + 3¢5 + 3 <6 1)
+ + 3¢5 + 4w <5 )
+ + 23 + @ = 3
3 vy € {0,1}.
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Surrogate relax the constraints (1) and (2) with multipliers i1, 12 > 0 and

state the problem (S). Let z = (1,2)". Evaluate s(f).

Consider again the original problem, and Lagrangian relax the constraints
(1) and (2) with multipliers 1, 12 > 0. Evaluate the Lagrangian dual function

value at p1 = jz. Compare the two results.

14.3 Comparison with Lagrangian duality
Let > 0™ and
0(u) = minimun f(2) + é,‘,yt(m),
Show that q(z) < s(u), and that

maximum q(p) < maximum s(p) < 2*.
w0 =




Chapter 15

A cutting plane method for
linear programs

Consider the standard LP problem to find

vpp = minimum  c’a,

subject to Az < b,
Dz <d,
zeRL.

We suppose for now that X is bounded.
Let Px = {z!,a% ..., 2} be the set of extreme points in the polyhedron
X:={zeR} | Az <b}.

15.1 Reformulations

Its Lagrangian dual with respect to Lagrangian relaxing the constraints Dz < d

is to find

where

vLp = vp = maximum q(u),
subject to g > 0,

- " "
= T Dz —d
alp) minimum {c"z+pu" (D )}

= mininum {2’ + p"(Da' — d)}.
i€Px

Show that this can equivalently be written as

q(p) <’z +p"(Da' —d).  iePx, p=0
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Dantzig—Wolfe decomposition

The cutting plane developed above has strong duality relationships with the
classic Dantuig-Wolfe decomposition method for linear programming. The pur-
pose of this exercise is to determine exactly which ones.

We rewrite the problem (15.1) as follows:

maximize z,
(&)

subject to z — pT(Da' —d) <cTx', i=1,...,k,
p>0.

With LP dual variables \; > 0 for the linear constraints, we obtain the LP
dual to find

]
o1 = minimum 3 ()N,

i=1

k
subject to Z)\L =1,
=l

that is,
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that is,

maximum z,
subject to z < ¢Ta’ + p"(Dz' — d), i€ Py,
w>0.

vp

15.2 A restriction; optimality

Suppose only a subset of Py is known, and consider the following restriction of
the Lagrangian dual problem:

21 = max z, (15.1a)
st.z<cTal + pT(Da' —d), i=1,...,k, (15.1b)
>0 (15.1c)

How do we determine if we have found the optimal solution to the Lagrangian
dual problem? Derive the optimality test! Suppose that we found the optimal
solution. Explain how we obtain the primal optimal solution.

15.3 Progress
Suppose that we have not yet found the optimal solution to the Lagrangian dual

problem. Explain how progress can be made based on the new information that
was obtained from the optimality test.
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o**1 = minimum 7 (

subject to

i=

16.1 Interpretations

Interpret the above problem in terms of the original, primal problem.

16.2 Duality relationships

The problem (16.1) is known as the restricted master problem (RMP) in the
Dantzig-Wolfe algorithm. Explain the progress of this algorithm. How do we
determine whether we have found an optimal solution? How do we obtain a
primal optimal solution? Explain the exact duality relationships between the
sub- and master problems in the cutting plane and Dantzig-Wolfe algorithms.
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Benders decomposition

Consider the following problem to

minimize ¢’ + f(y),
subject to Az + F(y) > b,
z>0", yes.

We consider the variables y to be difficult in the sense that the problem in @
is linear. The idea behind Benders decomposition is to utilize this property,
through restricting the problem by fixing the vector y to a feasible value.

17.1 Applications

Provide an application of the above problem formulation.

17.2 Derivations, subproblem
We introduce the set
R:={yeS|3x>0"with Az >b— F(y)}

What is the role of this set?
Further, we introduce the dual set

D={ucR?|ATu<c})

together with the following entities:

and

denotes the extreme points and extreme rays of D, respectively.
Derive the Benders subproblem by using LP duality!
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17.3 Derivations, master problem

Derive the restricted master problem!

17.4 Algorithm description
Describe the workings of the complete algorithm. In particular:

» How do we obtain a feasible solution to the problem?

» When do we know that we have found an optimal solution?

‘Which are the requirements on the original problem data that will ensure
convergence?

In the case where the original problem is linear, what are the relationships
between Benders decomposition and the cutting plane and Dantzig-Wolfe
algorithms? What are your conclusions regarding the applicability of these
three methods?

Explain how these methods are best implemented in practice for a linear
program.




