
Lagrangian duality VI

This chapter collects some basic results on Lagrangian duality, in par-
ticular as it applies to convex programs with a zero duality gap.

6.1 The relaxation theorem

Given the problem to find

f∗ := infimum
x

f(x), (6.1a)

subject to x ∈ S, (6.1b)

where f : R
n → R is a given function and S ⊆ R

n, we define a relaxation
to (6.1) to be a problem of the following form: find

f∗
R := infimum

x

fR(x), (6.2a)

subject to x ∈ SR, (6.2b)

where fR : R
n → R is a function with the property that fR ≤ f on S,

and where SR ⊇ S. For this pair of problems, we have the following
basic result.

Theorem 6.1 (Relaxation Theorem) (a) [relaxation] f∗
R ≤ f∗.

(b) [infeasibility] If (6.2) is infeasible, then so is (6.1).
(c) [optimal relaxation] If the problem (6.2) has an optimal solution,

x∗
R, for which it holds that

x∗
R ∈ S and fR(x∗

R) = f(x∗
R), (6.3)

then x∗
R is an optimal solution to (6.1) as well.
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Proof. The result in (a) is obvious, as every solution feasible in (6.1)
is both feasible in (6.2) and has a lower objective value in the latter
problem.

The result in (b) follows for similar reasons.
For the result in (c), we note that

f(x∗
R) = fR(x∗

R) ≤ fR(x) ≤ f(x), x ∈ S,

from which the result follows.

This basic result will be utilized both in this chapter and later on to
motivate why Lagrangian relaxation, objective function linearization and
penalization constitute relaxations, and to derive optimality conditions
and algorithms based on them.

6.2 Lagrangian duality

In this section we formulate the Lagrangian dual problem and establish
its convexity. The Weak Duality Theorem is also established, and we
introduce the terms “Lagrangian relaxation,” “Lagrange multiplier,” and
“duality gap.”

6.2.1 Lagrangian relaxation and the dual problem

Consider the optimization problem to find

f∗ := infimum
x

f(x),

subject to x ∈ X,

gi(x) ≤ 0, i = 1, . . . , m,

(6.4)

where f : R
n → R and gi : R

n → R (i = 1, 2, . . . , m) are given functions,
and X ⊆ R

n.
For this problem, we assume that

−∞ < f∗ < ∞, (6.5)

that is, that f is bounded from below on the feasible set and the problem
has at least one feasible solution.

Definition 6.2 (Lagrange function, relaxation, multiplier) (a) For an ar-
bitrary vector µ ∈ R

m, the Lagrange function is

L(x, µ) := f(x) +

m
∑

i=1

µigi(x) = f(x) + µTg(x). (6.6)
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(b) Consider the problem to

minimize L(x, µ), (6.7)

subject to x ∈ X.

Whenever µ is non-negative, the problem (6.7) is referred to as a La-
grangian relaxation.

(c) We call the vector µ∗ ∈ R
m a Lagrange multiplier vector if it is

non-negative and if f∗ = infx∈X L(x, µ∗) holds.

Note that the Lagrangian relaxation (6.7) is a relaxation, in terms of
Section 6.1.

Theorem 6.3 (Lagrange multipliers and global optima) Let µ∗ be a La-
grange multiplier vector. Then, x∗ is an optimal solution to (6.4) if and
only if x∗ is feasible in (6.4) and

x∗ ∈ arg min
x∈X

L(x, µ∗), and µ∗
i gi(x

∗) = 0, i = 1, . . . , m. (6.8)

Proof. If x∗ is an optimal solution to (6.4), then it is in particular
feasible, and

f∗ = f(x∗) ≥ L(x∗, µ∗) ≥ infimum
x∈X

L(x, µ∗),

where the first inequality stems from the feasibility of x∗ and the defini-
tion of a Lagrange multiplier vector. The second part of that definition
implies that f∗ = infx∈X L(x, µ∗), so that equality holds throughout in
the above line of inequalities. Hence, (6.8) follows.

Conversely, if x∗ is feasible and (6.8) holds, then by the use of the
definition of a Lagrange multiplier vector,

f(x∗) = L(x∗, µ∗) = minimum
x∈X

L(x, µ∗) = f∗,

so x∗ is a global optimum.

Let
q(µ) := infimum

x∈X
L(x, µ) (6.9)

be the Lagrangian dual function, defined by the infimum value of the
Lagrange function over X ; the Lagrangian dual problem is to

maximize
µ

q(µ), (6.10)

subject to µ ≥ 0m.
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For some µ, q(µ) = −∞ is possible; if it is true for all µ ≥ 0m, then

q∗ := supremum
µ≥0m

q(µ)

equals −∞. (We can then say that the dual problem is infeasible.)
The effective domain of q is

Dq := { µ ∈ R
m | q(µ) > −∞} .

Theorem 6.4 (convex dual problem) The effective domain Dq of q is
convex, and q is concave on Dq.

Proof. Let x ∈ R
n, µ, µ̄ ∈ R

m, and α ∈ [0, 1]. We have that

L(x, αµ + (1 − α)µ̄) = αL(x, µ) + (1 − α)L(x, µ̄).

Take the infimum over x ∈ X on both sides; then,

inf
x∈X

L(x, αµ + (1 − α)µ̄) = inf
x∈X

{αL(x, µ) + (1 − α)L(x, µ̄)}

≥ inf
x∈X

αL(x, µ) + inf
x∈X

(1 − α)L(x, µ̄)

= α inf
x∈X

L(x, µ) + (1 − α) inf
x∈X

L(x, µ̄),

since α ∈ [0, 1], and the sum of infimum values may be smaller than the
infimum of the sum, since in the former case we have the possibility to
choose different optimal solutions in the two problems. Hence,

q(αµ + (1 − α)µ̄) ≥ αq(µ) + (1 − α)q(µ̄)

holds. This inequality has two implications: if µ and µ̄ lie in Dq, then
so does αµ + (1 − α)µ̄, so Dq is convex; also, q is concave on Dq.

That the Lagrangian dual problem always is convex (we indeed max-
imize a concave function!) is good news, because it means that it can
be solved efficiently. What remains is to show how a Lagrangian dual
optimal solution can be used to generate a primal optimal solution.

Next, we establish that every feasible point in the Lagrangian dual
problem always underestimates the objective function value of every fea-
sible point in the primal problem; hence, also their optimal values have
this relationship.

Theorem 6.5 (Weak Duality Theorem) (a) Let x and µ be feasible in
the problems (6.4) and (6.10), respectively. Then,

q(µ) ≤ f(x).
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In particular,
q∗ ≤ f∗.

(b) If q(µ) = f(x), then the pair (x, µ) is optimal in its respective
problem.

Proof. For all µ ≥ 0m and x ∈ X with g(x) ≤ 0m,

q(µ) = infimum
z∈X

L(z, µ) ≤ f(x) + µTg(x) ≤ f(x),

so
q∗ = supremum

µ≥0m

q(µ) ≤ infimum
x∈X:g(x)≤0m

f(x) = f∗.

The result follows.

Weak duality is also a consequence of the Relaxation Theorem: For
any µ ≥ 0m, let

S := X ∩ {x ∈ R
n | g(x) ≤ 0m }, (6.11a)

SR := X, (6.11b)

fR := L(µ, ·). (6.11c)

Then, the weak duality statement is the result in Theorem 6.1(a).
If our initial feasibility assumption (6.5) is false, then what does weak

duality imply? Suppose that f∗ = −∞. Then, weak duality implies
that q(µ) = −∞ for all µ ≥ 0m, that is, the dual problem is infeasible.
Suppose then that X 6= ∅ but that X ∩{x ∈ R

n | g(x) ≤ 0m } is empty.
Then, f∗ = ∞, by convention. The dual function satisfies q(µ) < ∞ for
all µ ≥ 0m, but it is possible that q∗ = −∞, −∞ < q∗ < ∞, or q∗ = ∞
(see [Ber99, Figure 5.1.8]). For linear programs, −∞ < q∗ < ∞ implies
−∞ < f∗ < ∞; see below.

If q∗ = f∗, then we say that the duality gap (as given by Γ :=
f∗−q∗) is zero, or that there is no duality gap. If there exists a Lagrange
multiplier vector, then by the weak duality theorem, this implies that
there is no duality gap. The converse is not true in general: there may be
cases where no Lagrange multipliers exist even when there is no duality
gap; in that case though, the Lagrangian dual problem cannot have an
optimal solution, as implied by the following result.

Proposition 6.6 (duality gap and the existence of Lagrange multipliers)
(a) If there is no duality gap, then the set of Lagrange multiplier vectors
equals the set of optimal dual solutions (which however may be empty).

(b) If there is a duality gap, then there are no Lagrange multipliers.
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Proof. By definition, a vector µ∗ ≥ 0m is a Lagrange multiplier vector
if and only if f∗ = q(µ∗) ≤ q∗, the equality following from the definition
of q(µ∗) and the inequality from the definition of q∗ as the supremum of
q(µ) over R

m
+ . By weak duality, this relation holds if and only if there

is no duality gap and µ∗ is an optimal dual solution.

Before moving on, we remark on the statement of the problem (6.4).
There are several ways in which the original set of constraints of the
problem can be placed either within the definition of the ground set X
(which is kept intact), or within the explicit constraints defined by the
functions gi (which are Lagrangian relaxed). How to distinguish between
the two, that is, how to decide whether a constraint should be kept or be
Lagrangian relaxed, depends on several factors. For example, keeping
more constraints within X may result in a smaller duality gap, and
fewer multipliers also result in a simpler Lagrangian dual problem. On
the other hand, the Lagrangian subproblem defining the dual function
simultaneously becomes more complex and difficult to solve. There are
no immediate rules to follow, but experimentation and experience.

6.2.2 Global optimality conditions

The following result characterizes every optimal primal and dual solu-
tion. It is however applicable only in the presence of Lagrange multipli-
ers; in other words, the below system (6.12) is consistent if and only if
there exists a Lagrange multiplier vector and there is no duality gap.

Theorem 6.7 (global optimality conditions in the absence of a duality gap)
The vector (x∗, µ∗) is a pair of primal optimal solution and Lagrange
multiplier vector if and only if

µ∗ ≥ 0m, (Dual feasibility) (6.12a)

x∗ ∈ arg min
x∈X

L(x, µ∗), (Lagrangian optimality) (6.12b)

x∗ ∈ X, g(x∗) ≤ 0m, (Primal feasibility) (6.12c)

µ∗
i gi(x

∗) = 0, i = 1, . . . , m. (Complementary slackness) (6.12d)

Proof. Suppose that the pair (x∗µ∗) satisfies (6.12). Then, from (6.12a)
we have that the Lagrangian problem to minimize L(x, µ∗) over x ∈ X
is a (Lagrangian) relaxation of (6.4). Moreover, according to (6.12b)
x∗ solves this problem, (6.12c) shows that x∗ is feasible in (6.4), and
(6.12d) implies that L(x∗, µ∗) = f(x∗). The Relaxation Theorem 6.1
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then yields that x∗ is optimal in (6.4), which in turn implies that µ∗ is
a Lagrange multiplier vector.

Conversely, if (x∗, µ∗) is a pair of optimal primal solution and La-
grange multiplier vector, then they are primal and dual feasible, respec-
tively. The relations (6.12b) and (6.12d) follow from Theorem 6.3.

Theorem 6.8 (global optimality and saddle points) The vector (x∗, µ∗)
is a pair of optimal primal solution and Lagrange multiplier vector if
and only if x∗ ∈ X , µ∗ ≥ 0m, and (x∗, µ∗) is a saddle point of the
Lagrangian function on X × R

m
+ , that is,

L(x∗, µ) ≤ L(x∗, µ∗) ≤ L(x, µ∗), (x, µ) ∈ X × R
m
+ , (6.13)

holds.

Proof. We establish that (6.12) and (6.13) are equivalent; Theorem 6.7
then gives the result. The first inequality in (6.13) is equivalent to

−g(x∗)T(µ − µ∗) ≥ 0, µ ∈ R
m
+ , (6.14)

for the given pair (x∗, µ∗) ∈ X × R
m
+ . This variational inequality is

equivalent to stating that1

0m ≥ g(x∗) ⊥ µ∗ ≥ 0m, (6.15)

where ⊥ denotes orthogonality: that is, for any vectors a, b ∈ R
n, a ⊥ b

means that aTb = 0. Because of the sign restrictions posed on µ and
g, that is, the vectors a and b, the relation a ⊥ b actually means that
not only does it hold that aTb = 0 but in fact aibi = 0 must hold for all
i = 1, . . . , n. This complementarity system is, for the given µ∗ ∈ R

m
+ ,

the same as (6.12a), (6.12c) and (6.12d). The second inequality in (6.13)
is equivalent to (6.12b).

The above two theorems also imply that the set of primal–dual opti-
mal solutions (x∗, µ∗) is a Cartesian product set, X∗×U∗. For example,

1We establish the equivalence between (6.14) and (6.15) as follows. (The proof
extends that for line search problems in unconstrained optimization in a footnote in
Section 11.3.1.)

First, suppose that (6.15) is fulfilled. Then, −g(x∗)T(� − �∗) = −g(x∗)T� ≥ 0,
for all � ≥ 0

m, that is, (6.14) is fulfilled. Conversely, suppose that (6.14) is fulfilled.
Setting � = 0

m yields that g(x∗)T�∗ ≥ 0. On the other hand, the choice � = 2�∗

yields that −g(x∗)T�∗ ≥ 0. Hence, g(x∗)T�∗ = 0 holds. Last, let � = �∗ + ei,
where ei is the ith unit vector in Rm. Then, −g(x∗)T(�−�∗) = −gi(x∗) ≥ 0. Since
this is true for all i ∈ {1, 2, . . . , m} we have obtained that −g(x∗) ≥ 0

m, that is,g(x∗) ≤ 0
m. We are done.
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given any optimal dual solution µ∗ ∈ U∗, every optimal primal solution
x∗ ∈ X∗ satisfies (6.12). Hence, we can write, for an arbitrary dual
vector µ∗ ∈ U∗,

X∗ = {x∗ ∈ R
n | x∗ satisfies (6.12) for µ = µ∗ }

=

{

x∗ ∈ arg min
x∈X

L(x, µ∗)

∣

∣

∣

∣

g(x∗) ≤ 0m; (µ∗)Tg(x∗) = 0

}

.

We note that structurally similar results to the above two theorems
which are valid for the general problem (6.4) with any size of the duality
gap can be found in [LaP05].2

We finally note a practical connection between the KKT system (5.9)
and the above system (6.12). The practical use of the KKT system is
normally to investigate whether a primal vector x—obtained perhaps
from a solver for our problem—is a candidate for a locally optimal so-
lution; in other words, we have access to x and generate a vector µ of
Lagrange multipliers in the investigation of the KKT system (5.9). In
contrast, the system (6.12) is normally investigated in the reverse order;
we formulate and solve the Lagrangian dual problem, thereby obtaining
an optimal dual vector µ. Starting from that vector, we investigate the
global optimality conditions stated in (6.12) to obtain, if possible, an
optimal primal vector x. In the section to follow, we show when this is
possible, and provide strong connections between the systems (5.9) and
(6.12) in the convex and differentiable case.

6.2.3 Strong duality for convex programs

So far the results have been rather non-technical to achieve: the con-
vexity of the Lagrangian dual problem comes with very few assumptions
on the original, primal problem, and the characterization of the primal–
dual set of optimal solutions is simple and also quite easily established.
In order to establish strong duality, that is, to establish sufficient con-
ditions under which there is no duality gap, however, takes much more.
In particular, as is the case with the KKT conditions we need regularity
conditions (that is, constraint qualifications), and we also need to utilize
separation theorems such as Theorem 4.28. Most importantly, however,
is that strong duality is deeply associated with the convexity of the orig-
inal problem, and it is in particular under convexity that the primal and

2The system (6.12) is there appended with two relaxation parameters which mea-
sure, respectively, the near-optimality of x∗ in the Lagrangian subproblem [that is,
the ε-optimality in (6.12b)], and the violation of the complementarity conditions
(6.12d). The saddle point condition (6.13) is similarly perturbed, and at an optimal
solution, the sum of these two parameters equals the duality gap.
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dual optimal solutions are linked through the global optimality condi-
tions provided in the previous section. We begin by concentrating on the
inequality constrained case, proving this result in detail. We will also
specialize the result to quadratic and linear optimization problems.

Consider the inequality constrained convex program (6.4), where f :
R

n → R and gi (i = 1, . . . , m) are convex functions and X ⊆ R
n is

a convex set. For this problem, we introduce the following regularity
condition, due to Slater (cf. Definition 5.38):

∃x ∈ X with g(x) < 0m. (6.16)

Theorem 6.9 (Strong Duality, inequality constrained convex programs) Suppose
that the feasibility condition (6.5) and Slater’s constraint qualification (6.16)
hold for the convex problem (6.4).

(a) There is no duality gap and there exists at least one Lagrange mul-
tiplier vector µ∗. Moreover, the set of Lagrange multipliers is bounded
and convex.

(b) If the infimum in (6.4) is attained at some x∗, then the pair
(x∗, µ∗) satisfies the global optimality conditions (6.12).

(c) If further f and g are differentiable at x∗, then the condition
(6.12b) can equivalently be written as the variational inequality

∇xL(x∗, µ∗)T(x − x∗) ≥ 0, x ∈ X. (6.17)

If, in addition, X is open (such as is the case when X = R
n), then this

reduces to the condition that

∇xL(x∗, µ∗) = ∇f(x∗) +

m
∑

i=1

µ∗
i∇gi(x

∗) = 0n, (6.18)

and the global optimality conditions (6.12) reduce to the Karush–Kuhn–
Tucker conditions stated in Theorem 5.25.

Proof. (a) We begin by establishing the existence of a Lagrange multi-
plier vector (and the presence of a zero duality gap).3

First, we consider the following subset of R
m+1:

A := {(z1, . . . , zm, w)T |∃x∈ X with gi(x)≤zi, i = 1, . . . , m; f(x)≤w}.

It is elementary to show that A is convex.
Next, we observe that ((0m)T, f∗)T is not an interior point of A;

otherwise, for some ε > 0 the point ((0m)T, f∗ − ε)T ∈ A holds, which

3This result is [Ber99, Proposition 5.3.1], whose proof we also utilize.
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would contradict the definition of f∗. Therefore, by the (possibly non-
proper) separation result in Theorem 4.28, we can find a hyperplane
passing through ((0m)T, f∗)T such that A lies in one of the two corre-
sponding half-spaces. In particular, there then exists a vector (µT, β)T 6=
((0m)T, 0)T such that

βf∗ ≤ βw + µTz, (zT, w)T ∈ A. (6.19)

This implies that
β ≥ 0; µ ≥ 0m, (6.20)

since for each (zT, w)T ∈ A (zT, w + γ)T ∈ A and (z1, . . . , zi−1, zi +
γ, zi+1, . . . , zm, w)T ∈ A for all γ > 0 and i = 1, . . . , m.

We claim that β > 0 in fact holds. Indeed, if it was not the case, then
β = 0 and (6.19) then implies that µTz ≥ 0 for every pair (zT, w)T ∈
A. But since (g(x̄)T, f(x̄))T ∈ A [where x̄ is such that it satisfies the
Slater condition (6.16)], we would obtain that 0 ≤

∑m
i=1 µigi(x̄) which

in view of µ ≥ 0m [cf. (6.20)] and the assumption that x̄ satisfies the
Slater condition (6.16) implies that µ = 0m. This means, however, that
(µT, β)T = ((0m)T, 0)T—a contradiction. We may therefore claim that
β > 0. We further, with no loss of generality, assume that β = 1.

Thus, since (g(x)T, f(x))T ∈ A for every x ∈ X , (6.19) yields that

f∗ ≤ f(x) + µTg(x), x ∈ X.

Taking the infimum over x ∈ X and using the fact that µ ≥ 0m we
obtain

f∗ ≤ infimum
x∈X

{f(x) + µTg(x)} = q(µ) ≤ supremum
µ≥0m

q(µ) = q∗.

Using the Weak Duality Theorem 6.5 it follows that µ is a Lagrange
multiplier vector, and there is no duality gap. This part of the proof is
now done.

Take any vector x̄ ∈ X satisfying (6.16) and a Lagrange multiplier
vector µ∗. By the definition of a Lagrange multiplier vector, f∗ ≤
L(x̄, µ∗) holds, which implies that

m
∑

i=1

µ∗
i ≤

[f(x̄) − f∗]

mini=1,...,m{−gi(x̄)}
.

Since µ∗ ≥ 0m, boundedness follows. As by Proposition 6.6(a) the set of
Lagrange multipliers is the set of optimal solutions to the dual problem
(6.10), convexity follows from the identification of the dual solution set
with the set of vectors µ ∈ R

m
+ for which

q(µ) ≥ q∗
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holds. This is the upper level set for q at the level q∗; this set is convex,
by the concavity of q (cf. Theorem 6.4 and Proposition 3.44).

(b) The result follows from Theorem 6.7.
(c) The first part follows from Theorem 4.23, as the Lagrangian func-

tion L(·, µ∗) is convex. The second part follows by identification.

Consider next the extension of the inequality constrained convex pro-
gram (6.4) in which we seek to find

f∗ := infimum
x

f(x), (6.21)

subject to x ∈ X,

gi(x) ≤ 0, i = 1, . . . , m,

εT
j x − dj = 0, j = 1, . . . , ℓ,

under the same conditions as stated following (6.4), and where εj ∈ R
n,

j = 1, . . . , ℓ. For this problem, we replace the Slater condition (6.16)
with the following (cf. [BSS93, Theorem 6.2.4]):

∃x ∈ X with g(x) < 0m and 0m ∈ int {Ex − d | x ∈ X }, (6.22)

where E ∈ R
ℓ×n has rows εT

j , and d = (dj)j∈{1,...,ℓ} ∈ R
ℓ.

Note that in the statement (6.22), the “int” can be stricken whenever
X is polyhedral, so that the latter part simply states that Ex = d.

For this problem, the Lagrangian dual problem is to find

q∗ := supremum
(µ,λ)

q(µ, λ), (6.23)

subject to µ ≥ 0m,

where

q(µ, λ) := infimum
x

L(x, µ, λ) := f(x) + µTg(x) + λT(Ex − d),

subject to x ∈ X.

Theorem 6.10 (Strong Duality, general convex programs) Suppose that
in addition to the feasibility condition (6.5), Slater’s constraint qualifi-
cation (6.22) holds for the problem (6.21).

(a) The duality gap is zero and there exists at least one Lagrange
multiplier vector pair (µ∗, λ∗).

(b) If the infimum in (6.21) is attained at some x∗, then the triple
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(x∗, µ∗, λ∗) satisfies the global optimality conditions

µ∗ ≥ 0m, (Dual feasibility) (6.24a)

x∗ ∈ arg min
x∈X

L(x, µ∗, λ∗), (Lagrangian optimality) (6.24b)

x∗ ∈ X, g(x∗) ≤ 0m, Ex∗ = d, (Primal feasibility) (6.24c)

µ∗
i gi(x

∗) = 0, i = 1, . . . , m. (Complementary slackness) (6.24d)

(c) If further f and g are differentiable at x∗, then the condition
(6.24b) can equivalently be written as

∇xL(x∗, µ∗, λ∗)T(x − x∗) ≥ 0, x ∈ X. (6.25)

If, in addition, X is open (such as is the case when X = R
n), then this

reduces to the condition that

∇xL(x∗, µ∗, λ∗) = ∇f(x∗) +

m
∑

i=1

µ∗
i ∇gi(x

∗) +

ℓ
∑

j=1

λ∗
jεj = 0n, (6.26)

and the global optimality conditions (6.24) reduce to the Karush–Kuhn–
Tucker conditions stated in Theorem 5.33.

Proof. The proof is similar to that of Theorem 6.9.

We finally consider a special case where automatically a regularity
condition holds.

Consider the affinely constrained convex program to find

f∗ := infimum
x

f(x), (6.27)

subject to x ∈ X,

aT
i x − bi ≤ 0, i = 1, . . . , m,

εT
j x − dj = 0, j = 1, . . . , ℓ,

where f : R
n → R is convex and X ⊆ R

n is polyhedral.

Theorem 6.11 (Strong Duality, affine constraints) If the feasibility con-
dition (6.5) holds for the problem (6.27), then there is no duality gap
and there exists at least one Lagrange multiplier vector.

Proof. Again, the proof is similar to that of Theorem 6.9, except that
no additional regularity conditions are needed.4

4For a detailed proof, see [Ber99, Proposition 5.2.1]. (The special case where f is
moreover differentiable is covered in [Ber99, Proposition 3.4.2].)
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The existence of a multiplier vector [which by Proposition 6.6 and the
absence of a duality gap implies the existence of an optimal solution to
the dual problem (6.10)] does not imply the existence of an optimal so-
lution to the primal problem (6.27) without any additional assumptions
(take the minimization of f(x) := 1/x over x ≥ 1 for example). How-
ever, when f is either weakly coercive, quadratic or linear, the existence
results are stronger; see the primal existence results in Theorems 4.6,
4.7, and 6.12 below, for example.

For convex programs where a Slater CQ holds, the Lagrange mul-
tipliers defined in this section, and those that appear in the Karush–
Kuhn–Tucker conditions, clearly are identical. Next, we specialize the
above to linear and quadratic programs.

6.2.4 Strong duality for linear and quadratic pro-

grams

The following result will be established and analyzed in detail in Chap-
ter 10 on linear programming duality (cf. Theorem 10.6), but can in
fact also be established similarly to above. (See [BSS93, Theorem 2.7.3]
or [Ber99, Proposition 5.2.2], for example.) Its proof will however be
relegated to that of Theorem 10.6.

Theorem 6.12 (Strong Duality, linear programs) Assume, in addition to
the conditions of Theorem 6.11, that f is linear, so that (6.27) is a linear
program. Then, the primal and dual problems have optimal solutions
and there is no duality gap.

The above result states a strong duality result for a general linear
program. We next develop an explicit Lagrangian dual problem for a
linear program.

Let A ∈ R
m×n, c ∈ R

n, and b ∈ R
m; consider the linear program

minimize
x

cTx, (6.28)

subject to Ax = b,

x ≥ 0n.

If we let X := R
n
+, then the Lagrangian dual problem is to

maximize
λ∈Rm

bTλ, (6.29)

subject to ATλ ≤ c.

The reason why we can write it in this form is that

q(λ) := infimum
x≥0n

{

cTx + λT(b − Ax)
}

= bTλ + infimum
x≥0n

(c−ATλ)Tx,
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so that

q(λ) =

{

bTλ, if ATλ ≤ c,

−∞, otherwise.

(The infimum is attained at zero if and only if these inequalities are
satisfied; otherwise, the inner problem is unbounded below.)

Further, why is it that λ here is not restricted in sign? Suppose we
were to split the system Ax = b into an inequality system of the form

Ax ≤ b,

−Ax ≤ −b.

Let ((µ+)T, (µ−)T)T be the corresponding vector of multipliers, and
take the Lagrangian dual for this formulation. Then, we would have a
Lagrange function of the form

(x, µ+, µ−) 7→ L(x, µ+, µ−) := cTx + (µ+ − µ−)T(b − Ax),

and since µ+−µ− can take on any value in R
m we can simply replace it

with the unrestricted vector λ ∈ R
m. This motivates why the multiplier

for an equality constraint never is sign restricted; the same was the case,
as we saw in Section 5.6, for the multipliers in the KKT conditions.

As applied to this problem, Theorem 6.12 states that if both the
primal or dual problems have feasible solutions, then they both have
optimal solutions, satisfying strong duality (cTx∗ = bTλ∗). On the
other hand, if any of the two problems has an unbounded solution, then
the other problem is infeasible.

Consider next the quadratic programming problem to

minimize
x

{

1

2
xTQx + cTx

}

, (6.30)

subject to Ax ≤ b,

where Q ∈ R
n×n, c ∈ R

n, A ∈ R
m×n, and b ∈ R

m. We develop an
explicit dual problem under the assumption that Q is positive definite.

By Lagrangian relaxing the inequality constraints, we obtain that the
inner problem in x is solved by letting

x = −Q−1(c + ATµ). (6.31)

Substituting this expression into the Lagrangian function yields the La-
grangian dual problem to

maximize
µ

{

−
1

2
µTAQ−1ATµ−(b+AQ−1c)Tµ−

1

2
cTQ−1c

}

, (6.32)

subject to µ ≥ 0m,
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Strong duality follows for this convex primal–dual pair of quadratic
programs, in much the same way as for linear programs.

Theorem 6.13 (Strong Duality, quadratic programs) For the primal–dual
pair of convex quadratic programs (6.30), (6.32), the following holds:

(a) If both problems have feasible solutions, then both problems also
have optimal solutions, and the primal problem (6.30) also has a unique
optimal solution, given by (6.31) for any optimal Lagrange multiplier
vector, and in the two problems the optimal values are equal.

(b) If either of the two problems has an unbounded solution, then
the other one is infeasible.

(c) Suppose that Q is positive semi-definite, and that the feasibility
condition (6.5) holds. Then, both the problem (6.30) and its Lagrangian
dual have nonempty, closed and convex sets of optimal solutions, and
their optimal values are equal.

In the result (a) it is important to note that the Lagrangian dual
problem (6.32) is not necessarily strictly convex; the matrix AQ−1AT

need not be positive definite, especially so when A does not have full
rank. The result (c) extends the strong duality result from linear pro-
gramming, since Q in (c) can be the zero matrix. In the case of (c) we of
course cannot write the Lagrangian dual problem in the form of (6.32)
because Q is not necessarily invertible.

6.2.5 Two illustrative examples

Example 6.14 (an explicit, differentiable dual problem) Consider the prob-
lem to

minimize
x

f(x) := x2
1 + x2

2,

subject to x1 + x2 ≥ 4,

xj ≥ 0, j = 1, 2.

We consider the first constraint to be the complicated one, and hence
define g(x) := −x1 − x2 + 4 and let X := { (x1, x2)

T | xj ≥ 0, j = 1, 2 }.
Then, the Lagrangian dual function is

q(µ) = minimum
x∈X

L(x, µ) := f(x) − µ(x1 + x2 − 4)

= 4µ + minimum
x∈X

{x2
1 + x2

2 − µx1 − µx2}

= 4µ + minimum
x1≥0

{x2
1 − µx1} + minimum

x2≥0
{x2

2 − µx2}, µ ≥ 0.

For a fixed µ ≥ 0, the minimum is attained at x1(µ) = µ
2 , x2(µ) = µ

2 .
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Substituting this expression into q(µ), we obtain that q(µ) = f(x(µ))−

µ(x1(µ) + x2(µ) − 4) = 4µ − µ2

2 .
Note that q is strictly concave, and it is differentiable everywhere (due

to the fact that f, g are differentiable and x(µ) is unique), by Danskin’s
Theorem 6.17(d).

We have that q′(µ) = 4 − µ = 0 ⇐⇒ µ = 4. As µ = 4 ≥ 0, it is the
optimum in the dual problem: µ∗ = 4; x∗ = (x1(µ

∗), x2(µ
∗))T = (2, 2)T.

Also, f(x∗) = q(µ∗) = 8.
This is an example where the dual function is differentiable, and

therefore we can utilize Proposition 6.29(c). In this case, the optimum
x∗ is also unique, so it is automatically given as x∗ = x(µ).

Example 6.15 (an implicit, non-differentiable dual problem) Consider the
linear programming problem to

minimize
x

f(x) := −x1 − x2,

subject to 2x1 + 4x2 ≤ 3,

0 ≤ x1 ≤ 2,

0 ≤ x2 ≤ 1.

The optimal solution is x∗ = (3/2, 0)T, f(x∗) = −3/2.
Consider Lagrangian relaxing the first constraint, obtaining

L(x, µ) = −x1 − x2 + µ(2x1 + 4x2 − 3);

q(µ) = −3µ + minimum
0≤x1≤2

{(−1 + 2µ)x1} + minimum
0≤x2≤1

{(−1 + 4µ)x2}

=







−3 + 5µ, 0 ≤ µ ≤ 1/4,
−2 + µ, 1/4 ≤ µ ≤ 1/2,

− 3µ, 1/2 ≤ µ.

Check that µ∗ = 1/2, and hence that q(µ∗) = −3/2. For linear
programs, we have strong duality, but how do we obtain the optimal
primal solution from µ∗? It is clear that q is non-differentiable at µ∗.
Let us utilize the characterization given in the system (6.12).

First, at µ∗, it is clear that X(µ∗) is the set { (2α, 0)T | 0 ≤ α ≤ 1 }.
Among the subproblem solutions, we next have to find one that is primal
feasible as well as complementary.

Primal feasibility means that 2 · 2α + 4 · 0 ≤ 3 ⇐⇒ α ≤ 3/4.
Further, complementarity means that µ∗ ·(2x∗

1+4x∗
2−3) = 0 ⇐⇒ α =

3/4, since µ∗ 6= 0. We conclude that the only primal vector that satisfies
the system (6.12) together with the dual optimal solution µ∗ = 1/2 is
x∗ = (3/2, 0)T.

156



Differentiability properties of the dual function

In the first example, the Lagrangian dual function is differentiable
since x(µ) is unique. The second one shows that otherwise, there may
be kinks in the function q where there are alternative solutions x(µ); as a
result, to obtain a primal optimal solution becomes more complex. The
Dantzig–Wolfe algorithm, for example, represents a means by which to
automatize the process that we have just shown; the algorithm generates
extreme points of X(µ) algorithmically, and constructs the best feasible
convex combination thereof, obtaining a primal–dual optimal solution in
a finite number of iterations for linear programs.

The above examples motivate a deeper study of the differentiabil-
ity properties of convex (or, concave) functions in general, and the La-
grangian dual objective function in particular.

6.3 Differentiability properties of the dual

function

We have established that the Lagrangian dual problem (6.10) is a convex
one, and further that under some circumstances the primal and dual
optimal values are the same. We now turn to study the Lagrangian dual
problem in detail, and in particular how it can be solved efficiently. First,
we will establish when the dual function q is differentiable. We will see
that differentiability holds only in some special cases, in which we can
recognize the workings of the Lagrange multiplier method; this classic
method was illustrated in Example 6.14. Most often, the function q will
however be non-differentiable, and then this method will fail. This means
that we must devise a more general numerical method which is not based
on gradients but rather subgradients. This type of algorithm is the topic
of the next section; we begin by studying the topic of subgradients of
convex functions in general.

6.3.1 Subdifferentiability of convex functions

Throughout this section we suppose that f : R
n → R is a convex func-

tion, and study its subdifferentiability properties. We will later on apply
our findings to the Lagrangian dual function q, or, rather, its negative
−q. We first remark that a finite convex function is automatically con-
tinuous (cf. Theorem 4.26).

Definition 6.16 (subgradient) Let f : R
n → R be a convex function.

We say that a vector g ∈ R
n is a subgradient of f at x ∈ R

n if

f(y) ≥ f(x) + gT(y − x), y ∈ R
n. (6.33)
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The set of such vectors g defines the subdifferential of f at x, and is
denoted ∂f(x).

For concave functions, the reverse inequality of course holds; for sim-
plicity we will refer also to such vectors g as subgradients.

Notice the connection to the characterization of a convex function in
C1 in Theorem 3.40(a). The difference between them is that g is not
unique at a non-differentiable point. (Just as the gradient has a role in
supporting hyperplanes to the graph of a convex function in C1, the role
of a subgradient is the same; at a non-differentiable point there are more
then one supporting hyperplane to the graph of f .)

We illustrate this in Figure 6.1.

f

x

Figure 6.1: Three possible slopes of the convex function f at x.

Notice that a minimum x∗ of f over R
n is characterized by the in-

clusion 0n ∈ ∂f(x∗); recognize, again, the similarity to the C1 case.
We list some additional basic results for convex functions next. Proofs

will not be given here; we refer instead to the convex analysis text by
Rockafellar [Roc70].

Proposition 6.17 (properties of a convex function) Let f : R
n → R be

a convex function.
(a) [boundedness of ∂f(x)] For every x ∈ R

n, ∂f(x) is a nonempty,
convex, and compact set. If X is bounded then ∪x∈X ∂f(x) is bounded.

(b) [closedness of ∂f ] The subdifferential mapping x 7→7→ ∂f(x) is
closed; in other words, if {xk} is a sequence of vectors in R

n converging
to x, and gk ∈ ∂f(xk) holds for every k, then the sequence {gk} of
subgradients is bounded and every limit point thereof belongs to ∂f(x).

(c) [directional derivative and differentiability] For every x ∈ R
n, the

directional derivative of f at x in the direction of p ∈ R
n satisfies

f ′(x; p) = maximum
g∈∂f(x)

gTp. (6.34)
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In particular, f is differentiable at x with gradient ∇f(x) if and only
if it has ∇f(x) as its unique subgradient at x; in that case, f ′(x; p) =
∇f(x)Tp.

(d) [Danskin’s Theorem—directional derivatives of a convex max func-
tion] Let Z be a compact subset of R

m, and let φ : R
n × Z → R be

continuous and such that φ(·, z) : R
n → R is convex for each z ∈ Z. Let

the function f : R
n → R be given by

f(x) := maximum
z∈Z

φ(x, z), x ∈ R
n. (6.35)

The function f then is convex on R
n and has a directional derivative at

x in the direction of p equal to

f ′(x; p) = maximum
z∈Z(x)

φ′(x, z; p), (6.36)

where φ′(x, z; p) is the directional derivative of φ(·, z) at x in the direc-
tion of p, and Z(x) := { z ∈ R

m | φ(x, z) = f(x) }.
In particular, if Z(x) contains a single point z̄ and φ(·, z̄) is differen-

tiable at x, then f is differentiable at x, and ∇f(x) = ∇xφ(x, z̄), where

∇xφ(x, z̄) is the vector with components ∂φ(x ,z̄)
∂xi

, i = 1, . . . , n.
If further φ(·, z) is differentiable for all z ∈ Z and ∇xφ(x, ·) is con-

tinuous on Z for each x, then

∂f(x) = conv {∇xφ(x, z) | z ∈ Z(x) }, x ∈ R
n.

Proof. (a) This is a special case of [Roc70, Theorem 24.7].
(b) This is [Roc70, Theorem 24.5].
(c) This is [Roc70, Theorem 23.4 and 25.1].
(d) This is [Ber99, Proposition B.25].

Figure 6.2 illustrates the subdifferential of a convex function.
We apply parts of the above results in order to characterize a mini-

mum of a convex function on R
n.

Proposition 6.18 (optimality of a convex function over R
n) Let f :

R
n → R be a convex function. The following three statements are equiv-

alent:

1. f is globally minimized at x∗ ∈ R
n;

2. 0n ∈ ∂f(x∗);

3. f ′(x∗; p) ≥ 0 for all p ∈ R
n.
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1

2

3

4

5

f

x

∂f(x)

Figure 6.2: The subdifferential of a convex function f at x.

Proof. We establish the result thus: 1 =⇒ 2 =⇒ 3 =⇒ 1.
[1 =⇒ 2]: By the statement 1., we have that f(y) ≥ f(x∗) for

every y ∈ R
n. This implies that for g = 0n, we satisfy the subgradient

inequality (6.33). This establishes the statement 2.
[2 =⇒ 3]: We can equivalently write

∂f(x) = { g ∈ R
n | gTp ≤ f ′(x; p), p ∈ R

n }.

With g = 0n this definition immediately yields the statement 3.
[3 =⇒ 1]: By the compactness of the subdifferential [cf. Propo-

sition 6.17(a)] and Weierstrass’ Theorem 4.6 the maximum in the ex-
pression (6.34) is attained at some g ∈ ∂f(x∗). It follows that, in the
subgradient inequality (6.33), we get that

f(x∗ + p) ≥ f(x∗) + gTp ≥ f(x∗), p ∈ R
n,

which is equivalent to the statement 1.

This result implies that a direction p ∈ R
n is a descent direction with

respect to f at x if and only if f ′(x; p) < 0 holds. This result cannot
be extended to non-convex functions, even when the function f is in C1

or even C2. [Take f(x) := x3; x = 0; p = −1; see also the discussion on
saddle points in Example 11.2(b).]
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6.3.2 Differentiability of the Lagrangian dual func-

tion

We consider the inequality constrained problem (6.4), where we make
the following standing assumption:

f, gi (i = 1, . . . , m) ∈ C0, X is nonempty and compact. (6.37)

Under this assumption, the set of solutions to the Lagrangian subprob-
lem,

X(µ) := arg minimum
x∈X

L(x, µ), µ ∈ R
m, (6.38)

is nonempty and compact for any choice of dual vector µ by Weierstrass’
Theorem 4.6. We first develop the subdifferentiability properties of the
associated dual function q, stated in (6.9). The first result strengthens
Theorem 6.4 under these additional assumptions.

Proposition 6.19 (subdifferentiability of the dual function) Suppose that,
in the problem (6.4), the compactness condition (6.37) holds.

(a) The dual function (6.9) is finite, continuous and concave on R
m. If

its supremum over R
m
+ is attained, then the optimal solution set therefore

is closed and convex.
(b) The mapping µ 7→7→ X(µ) is closed on R

m. If X(µ̄) is the singleton
set {x̄} for some µ̄ ∈ R

m, and for some sequence {µk} ⊂ R
m with

µk → µ̄, xk ∈ X(µk) for all k, then xk → x̄.
(c) Let µ ∈ R

m. If x ∈ X(µ), then g(x) is a subgradient to q at µ,
that is, g(x) ∈ ∂q(µ).

(d) Let µ ∈ R
m. Then,

∂q(µ) = conv { g(x) | x ∈ X(µ) }.

The set ∂q(µ) is convex and compact. Moreover, if U is a bounded
set, then ∪µ∈U ∂q(µ) is also bounded.

(e) The directional derivative of q at µ ∈ R
m in the direction of

p ∈ R
m is

q′(µ; p) = minimum
g∈∂q(µ)

gTp.

Proof. (a) Theorem 6.4 stated the concavity of q on its effective domain.
Weierstrass’ Theorem 4.6 states that q is finite on R

m, which is then
also its effective domain. The continuity of q follows from that of any
finite concave function, as we have already seen in Theorem 4.26. The
closedness property of the solution set is a direct consequence of the
continuity of q (the upper level set then automatically is closed), and
complements the result of Theorem 6.9(a).
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(b) Let {µk} be a sequence of vectors in R
m converging to µ̄, and

let xk ∈ X(µk) be arbitrary. Let x be arbitrary in X , and let further
x̄ ∈ X be an arbitrary limit point of {xk} (at least one exists by the
compactness of X). From the property that for all k,

L(xk, µk) ≤ L(x, µk),

follows, by the continuity of L, that, in the limit of k in the subsequence
in which {xk} converges to x̄,

L(x̄, µ̄) ≤ L(x, µ̄),

so that x̄ ∈ X(µ̄), as desired. The special case of a singleton set X(µ̄)
follows.

(c) Let µ̄ ∈ R
m be arbitrary and let x̄ ∈ X(µ̄). We have that

q(µ̄) = infimum
y∈X

L(y, µ̄) = f(x) + µ̄Tg(x)

= f(x) + µTg(x) + (µ̄ − µ)Tg(x) ≥ q(µ) + (µ̄ − µ)Tg(x),

which implies that g(x) ∈ ∂q(µ).
(d) The inclusion ∂q(µ) ⊆ conv { g(x) | x ∈ X(µ) } follows from (c)

and the convexity of ∂q(µ). The opposite inclusion follows by applying
the Separation Theorem 3.24.5

(e) See Proposition 6.17(c).

The result in (c) is an independent proof of the concavity of q on R
m.

The result (d) is particularly interesting, because by Carathéodory’s
Theorem 3.8 every subgradient of q at any point µ is the convex combi-
nation of a finite number (in fact, at most m + 1) of vectors of the form
g(xs) with xs ∈ X(µ). Computationally, this has been utilized to devise
efficient (proximal) bundle methods for the Lagrangian dual problem as
well as to devise methods to recover primal optimal solutions.

Next, we establish the differentiability of the dual function under
additional assumptions.

Proposition 6.20 (differentiability of the dual function) Suppose that, in
the problem (6.4), the compactness condition (6.37) holds.

(a) Let µ ∈ R
m. The dual function q is differentiable at µ if and

only if { g(x) | x ∈ X(µ) } is a singleton set, that is, if the value of the
vector of constraint functions is invariant over the set of solutions X(µ)
to the Lagrangian subproblem. Then, we have that

∇q(µ) = g(x),

5See [BSS93, Theorem 6.3.7] for a detailed proof.
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for every x ∈ X(µ).
(b) The result in (a) holds in particular if the Lagrangian subproblem

has a unique solution, that is, X(µ) is a singleton set. In particular, this
property is satisfied for µ ≥ 0m if further X is a convex set, f is strictly
convex on X , and gi (i = 1, . . . , m) are convex, in which case q ∈ C1.

Proof. (a) The concave function q is differentiable at the point µ (where
it is finite) if and only if its subdifferential ∂q(µ) there is a singleton, cf.
Proposition 6.17(c).

(b) Under either one of the assumptions stated, X(µ) is a singleton,
whence the result follows from (a). Uniqueness follows from the con-
vexity of the feasible set and strict convexity of the objective function,
according to Proposition 4.10. That q ∈ C1 follows from the continuity
of g and Proposition 6.19(b).

Proposition 6.21 (twice differentiability of the dual function) Suppose that,
in the problem (6.4), X = R

n, and f and gi (i = 1, . . . , m) are convex
functions in C2. Suppose that, at µ ∈ R

m, the solution x to the La-
grangian subproblem not only is unique, but also that the partial Hessian
of the Lagrangian is positive definite at the pair (x, µ), that is,

∇2
xx

L(x, µ) is positive definite.

Then, the dual function q is twice differentiable at µ, with

∇2q(µ) = −∇g(x)T[∇2
xx

L(x, µ)]−1∇g(x).

Proof. The result follows from the Implicit Function Theorem, which
is stated in Chapter 2, applied to the Lagrangian subproblem.6

6.4 ∗Subgradient optimization methods

We begin by establishing the convergence of classic subgradient opti-
mization methods as applied to a general convex optimization problem.

6.4.1 Convex problems

Consider the convex optimization problem to

minimize
x

f(x), (6.39a)

subject to x ∈ X, (6.39b)

6See [Ber99, Pages 596–598] for a detailed analysis.
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where f : R
n → R is convex and the set X ⊆ R

n is nonempty, closed
and convex.

The subgradient projection algorithm is as follows: select x0 ∈ X ,
and for k = 0, 1, . . . generate

gk ∈ ∂f(xk), (6.40a)

xk+1 = ProjX (xk − αkgk), (6.40b)

where the sequence {αk} is generated from one of the following three
rules:

The first rule is termed the divergent series step length rule, and
requires that

αk > 0, k = 0, 1, . . . ; lim
k→∞

αk = 0;
∞
∑

k=0

αk = +∞. (6.41)

The second rule adds to the requirements in (6.41) the square-summable
restriction

∞
∑

k=0

α2
k < +∞. (6.42)

The conditions in (6.41) allow for convergence to any point from any
starting point, since the total step is infinite, but convergence is therefore
also quite slow; the additional condition in (6.42) means fast sequences
are selected. An instance of the step length formulas which satisfies both
(6.41) and (6.42) is the following:

αk = γ + β/(k + 1), k = 0, 1, . . . ,

where β > 0, γ ≥ 0.
The third step length rule is

αk = θk
f(xk) − f∗

‖gk‖
2

, 0 < σ1 ≤ θk ≤ 2 − σ2 < 2, (6.43)

where f∗ is the optimal value of (6.39). We refer to this step length for-
mula as the Polyak step, after the Russian mathematician Boris Polyak
who invented the subgradient method in the 1960s together with Er-
mol’ev and Shor.

How is convergence established for subgradient optimization meth-
ods? As shall be demonstrated in Chapters 11 and 12 convergence of
algorithms for problems with a differentiable objective function is typi-
cally based on generating descent directions, and step length rules that
result in the sequence {xk} of iterates being strictly descending in the
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value of f . For the non-differentiable problem at hand, generating de-
scent directions is a difficult task, since it is not true that the negative of
an arbitrarily chosen subgradient of f at a non-optimal vector x defines
a descent direction.

In bundle methods one gathers information from more than one sub-
gradient (hence the term bundle) around a current iteration point so
that a descent direction can be generated, followed by an inexact line
search. We concentrate here on the simpler methodology of subgradient
optimization methods, in which we apply the formula (6.40) where the
step length αk is chosen based on very simple rules.

We establish below that if the step length is small enough, an itera-
tion of the subgradient projection method leads to a vector that is closer
to the set of optimal solutions. This technical result also motivates the
construction of the Polyak step length rule, and hence shows that the
convergence of subgradient methods is based on the reduction of the Eu-
clidean distance to the optimal solutions rather than on the reduction of
the value of the objective function f .

Proposition 6.22 (decreasing distance to the optimal set) Suppose that
xk ∈ X is not optimal in (6.39), and that xk+1 is given by (6.40) for
some step length αk > 0.

Then, for every optimal solution x∗ in (6.39),

‖xk+1 − x∗‖ < ‖xk − x∗‖

holds for every step length αk in the interval

αk ∈ (0, 2[f(xk) − f∗]/‖gk‖
2). (6.44)

Proof. We have that

‖xk+1 − x∗‖2 = ‖ProjX (xk − αkgk) − x∗‖2

= ‖ProjX (xk − αkgk) − ProjX (x∗)‖2

≤ ‖xk − αkgk − x∗‖2

= ‖xk − x∗‖2 − 2αk(xk − x∗)Tgk + α2
k‖gk‖

2

≤ ‖xk − x∗‖2 − 2αk[f(xk) − f∗] + α2
k‖gk‖

2

< ‖xk − x∗‖2,

where we have utilized the property that the Euclidean projection is non-
expansive (Theorem 4.31), the subgradient inequality (6.33) for convex
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functions, and the bounds on αk given by (6.44).

Our first convergence result is based on the divergent series step
length formula (6.41), and establishes convergence to the optimal solu-
tion set X∗ under an assumption on its boundedness. With the other
two step length formulas, this condition will be possible to remove.

Recall the definition (3.11) of the minimum distance from a vector to
a closed and convex set; our interest is in the distance from an arbitrary
vector x ∈ R

n to the solution set X∗:

distX∗ (x) := minimum
y∈X∗

‖y − x‖.

Theorem 6.23 (convergence of subgradient optimization methods, I) Let
{xk} be generated by the method (6.40), (6.41). If X∗ is bounded and
the sequence {gk} is bounded, then f(xk) → f∗ and distX∗(xk) → 0
holds.

Proof. We show that the iterates will eventually belong to an arbitrarily
small neighbourhood of the set of optimal solutions to (6.39).

Let δ > 0 and Bδ := {x ∈ R
n | ‖x‖ ≤ δ }. Since f is convex,

X is nonempty, closed and convex, and X∗ is bounded, it follows from
[Roc70, Theorem 27.2], applied to the lower semi-continuous, proper7

and convex function f +χX
8 that there exists an ε = ε(δ) > 0 such that

the level set {x ∈ X | f(x) ≤ f∗ + ε } ⊆ X∗ + Bδ/2; this level set is
denoted by Xε. Moreover, since for all k, ‖gk‖ ≤ sups{‖gs‖} < ∞, and
αk → 0, there exists an N(δ) such that αk‖gk‖

2 ≤ ε and αk‖gk‖ ≤ δ/2
for all k ≥ N(δ).

The sequel of the proof is based on induction and is organized as
follows. In the first part, we show that there exists a finite k(δ) ≥ N(δ)
such that xk(δ) ∈ X∗ + Bδ. In the second part, we establish that if xk

belongs to X∗ + Bδ for some k ≥ N(δ) then so does xk+1, by showing
that either distX∗(xk+1) < distX∗(xk) holds, or xk ∈ Xε so that xk+1 ∈
X∗ + Bδ since the step taken is not longer than δ/2.

Let x∗ ∈ X∗ be arbitrary. In every iteration k we then have

‖x∗ − xk+1‖
2

= ‖x∗ − ProjX (xk − αkgk)‖2
(6.45a)

≤ ‖x∗ − xk + αkgk‖
2 (6.45b)

= ‖x∗ − xk‖
2

+ αk

(

2gT
k (x∗ − xk) + αk ‖gk‖

2
)

, (6.45c)

7A proper function is a function which is finite at least at some vector and nowhere
attains the value −∞. See also Section 1.4.

8For any set S ⊂ Rn the function χS is the indicator function of the set S, that
is, χS(x) = 0 if x ∈ S; and χS(x) = +∞ if x 6∈ S. See also Section 13.1.
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where the inequality follows from the projection property. Now, suppose

2 gT
s (x∗ − xs) + αs ‖gs‖

2
< −ε (6.46)

for all s ≥ N(δ). Then, using (6.45) repeatedly, we obtain that for any
k ≥ N(δ),

‖x∗ − xk+1‖
2 <

∥

∥x∗ − xN(δ)

∥

∥

2
− ε

k
∑

s=N(δ)

αs,

and from (6.40) it follows that the right-hand side of this inequality tends
to minus infinity as k → ∞, which clearly is impossible. Therefore,

2 gT
k (x∗ − xk) + αk ‖gk‖

2 ≥ −ε (6.47)

for at least one k ≥ N(δ), say k = k(δ). From the definition of N(δ), it
follows that gT

k(δ)(x
∗−xk(δ)) ≥ −ε. From the definition of a subgradient

(cf. Definition 6.16) we have that f(x∗) − f(xk(δ)) ≥ gT
k(δ)(x

∗ − xk(δ)),

since x∗, xk(δ) ∈ X . Hence, f(xk(δ)) ≤ f∗ + ε, that is, xk(δ) ∈ Xε ⊆

X∗ + Bδ/2 ⊂ X∗ + Bδ.
Now, suppose that xk ∈ X∗ + Bδ for some k ≥ N(δ). If (6.46) holds

for s = k, then, by using (6.45), we have that ‖x∗ −xk+1‖ < ‖x∗ −xk‖
for any x∗ ∈ X∗. Hence,

distX∗(xk+1) ≤ ‖ProjX∗ (xk) − xk+1‖ < ‖ProjX∗ (xk) − xk‖

= distX∗(xk) ≤ δ.

Thus, xk+1 ∈ X∗+Bδ. Otherwise, (6.47) must hold and, using the same
arguments as above, we obtain that f(xk) ≤ f∗ + ε, i.e., xk ∈ Xε ⊆
x∗ + Bδ/2. As

‖xk+1 − xk‖ = ‖ProjX (xk − αkgk) − xk‖ ≤ ‖xk − αkgk − xk‖

= αk ‖gk‖ ≤ δ/2

whenever k ≥ N(δ), it follows that xk+1 ∈ X∗+Bδ/2 +Bδ/2 = X∗+Bδ.
By induction with respect to k ≥ k(δ), it follows that xk ∈ X∗ + Bδ

for all k ≥ k(δ). Since this holds for arbitrarily small values of δ > 0
and f is continuous, the theorem follows.

We next introduce the additional requirement (6.42); the resulting
algorithm’s convergence behaviour is now much more favourable, and
the proof is at the same time less technical.
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Theorem 6.24 (convergence of subgradient optimization methods, II) Let
{xk} be generated by the method (6.40), (6.41), (6.42). If X∗ is nonempty
and the sequence {gk} is bounded, then f(xk) → f∗ and xk → x∗ ∈ X∗

holds.

Proof. Let x∗ ∈ X∗ and k ≥ 1. Repeated application of (6.45) yields

‖x∗ − xk‖
2 ≤ ‖x∗ − x0‖

2
+ 2

k−1
∑

s=0

αsg
T
s (x∗ − xs) +

k−1
∑

s=0

α2
s ‖gs‖

2
.(6.48)

Since x∗ ∈ X∗ and gs ∈ ∂f(xs) for all s ≥ 0 we obtain that

f(xs) ≥ f∗ ≥ f(xs) + gT
s (x∗ − xs) , s ≥ 0, (6.49)

and hence that gT
s (x∗ − xs) ≤ 0 for all s ≥ 0. Define c := supk{‖gk‖}

and p =
∑∞

k=0 α2
k, so that ‖gs‖ ≤ c for any s ≥ 0 and

∑k−1
s=0 α2

s < p.
From (6.48) we then conclude that ‖x∗ − xk‖2 < ‖x∗ − x0‖2 + pc2 for
any k ≥ 1, and thus that the sequence {xk} is bounded.

Assume now that there is no subsequence {xki
} of {xk} with gT

ki
(x∗−

xki
) → 0. Then there must exist an ε > 0 with gT

s (x∗−xs) ≤ −ε for all
sufficiently large values of s. From (6.48) and the conditions on the step
lengths it follows that ‖x∗ − xs‖ → −∞, which clearly is impossible.
The sequence {xk} must therefore contain a subsequence {xki

} such
that gT

ki
(x∗ − xki

) → 0. From (6.49) it follows that f(xki
) → f∗. The

boundedness of {xk} implies the existence of an accumulation point of
the subsequence {xki

}, say x∞. From the continuity of f it follows that
x∞ ∈ X∗.

To show that x∞ is the only accumulation point of {xk}, let δ > 0
and choose an M(δ) such that ‖x∞−xM(δ)‖

2 ≤ δ/2 and
∑∞

s=M(δ) α2
s ≤

δ/(2c2). Consider any k > M(δ). Analogously to the derivation of
(6.48), and using (6.49), we then obtain that

‖x∞ − xk‖
2 ≤

∥

∥x∞ − xM(δ)

∥

∥

2
+

k−1
∑

s=M(δ)

α2
s‖gs‖

2 <
δ

2
+

δ

2c2
c2 = δ.

Since this holds for arbitrarily small values of δ > 0, we are done.

Note that the boundedness condition on {gk} is fulfilled whenever
we know before-hand that the sequence {xk} is bounded, such as in the
case when X itself is bounded; cf. Proposition 6.17(a).

We finally present the even stronger convergence properties of the
subgradient projection method using the Polyak step.
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Theorem 6.25 (convergence of subgradient optimization methods, III) Let
{xk} be generated by the method (6.40), (6.43). If X∗ is nonempty then
f(xk) → f∗ and xk → x∗ ∈ X∗ holds.

Proof. From Proposition 6.22 follows that the sequence {‖xk − x∗‖}
is strictly decreasing for every x∗ ∈ X∗, and therefore has a limit. By
construction of the step length, in which the step lengths are bounded
away from zero and 2[f(xk) − f∗]/‖gk‖

2, it follows from the proof of
Proposition 6.22 that [f(xk) − f∗]2/‖gk‖

2 → 0 must hold. Since {gk}
must be bounded due to the boundedness of {xk} [Proposition 6.17(a)],
we have that f(xk) → f∗. Further, xk is bounded, and due to the
continuity property of f every limit point must then belong to X∗.

It remains to show that there can be only one limit point. This
property follows from the monotone decrease of the distance ‖xk −x∗‖.
In detail, the proof is as follows. Suppose two subsequences of {xk}
exist, such that they converge to two different vectors in X∗:

xmi
→ x∗

1; xli → x∗
2; x∗

1 6= x∗
2.

We must then have ‖xli − x∗
1‖ → ρ > 0. Since x∗

1 ∈ X∗ and the
distance to X∗ is decreasing, ‖xk − x∗

1‖ → ρ holds, and in particular
‖xmi

− x∗
1‖ → ρ, which is a contradiction.

Contrary to the slow convergence of the subgradient projection al-
gorithms that rely on the divergent series step length rule, under addi-
tional conditions on the function f a subgradient algorithm based on the
Polyak step length (6.43) is geometrically convergent, in the sense that
there exist c > 0 and η ∈ (0, 1) with

‖xk − x∗‖ ≤ cηk, k = 0, 1, . . . .

See Section 6.8 for references to other subgradient algorithms than those
presented here.

6.4.2 Application to the Lagrangian dual problem

We remind ourselves that the Lagrangian dual problem is a concave
maximization problem, and that the appearance of the dual function is
similar to that of the following example:

Let h(x) := minimum {h1(x), h2(x)}, where h1(x) := 4 − |x| and
h2(x) := 4 − (x − 2)2. Then,

h(x) =

{

4 − x, if 1 ≤ x ≤ 4;

4 − (x − 2)2 if x ≤ 1, x ≥ 4;
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Figure 6.3: A convex min-function with three pieces.

cf. Figure 6.3.

The function h is non-differentiable at x = 1 and x = 4, since its
graph has non-unique supporting hyperplanes there:

∂h(x) =































{4 − 2x}, if x < 1;

[−1, 2] , if x = 1;

{−1}, if 1 < x < 4;

[−4,−1] , if x = 4;

{4 − 2x}, if x > 4.

the subdifferential is here either a singleton (at differentiable points) or
a closed interval (at non-differentiable points).

Note the monotonically decreasing nature of the relation x 7→ ∂h(x).
Note also that 0 ∈ ∂h(1), whence x∗ = 1 defines a maximum over R.

Now, let g ∈ ∂q(µ̄), and let U∗ be the set of optimal solutions to
(6.10). Then,

U∗ ⊆ {µ ∈ R
m | gT(µ − µ̄) ≥ 0 }.

In other words, any subgradient defines a half-space that contains the
set of optimal solutions; cf. Figure 6.4. We therefore know that a small
enough step in the direction of a subgradient gets us closer to the set of
optimal solutions; cf. Proposition 6.22. But again consider Figure 6.4:
an arbitrary subgradient, like the on depicted, may not define an ascent
direction! As we saw in the previous section, convergence must be based
on other arguments, like the decreasing distance to U∗ alluded to above
and in the previous section. In the next subsection we discuss in brief
the generation of ascent directions.

We consider the Lagrangian dual problem (6.10). We suppose, as
in the previous section, that X is compact so that the infimum in (6.9)
is attained for every µ ≥ 0m (which is the set over which we wish to
maximize q) and q is real-valued over R

m
+ .
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1

2

3

4

5

q

g

µ

∂q(µ)

Figure 6.4: The half-space defined by the subgradient g of q at µ. Note
that the subgradient is not an ascent direction.

In the case of our special concave maximization problem, the iteration
has the form

µk+1 = Proj
R

m

+
[µk + αkgk] = [µk + αkgk]+

= (maximum {0, (µk)i + αk(gk)i})
m
i=1, (6.50)

where gk ∈ ∂q(µk) is arbitrarily chosen; we would typically use gk =
g(xk), where xk ∈ argminimumx∈X L(x, µk). The projection operation
onto the first orthant is, as we can see, very simple.

Replacing the Polyak step (6.43) with the corresponding dual form

αk = θk
q∗ − q(µk)

‖gk‖
2

, 0 < σ1 ≤ θk ≤ 2 − σ2 < 2, (6.51)

convergence will now be a simple consequence of the above theorems.
The compactness condition (6.37) and the fact that the feasible set of

(6.4) is nonempty ensure that the problem (6.4) has an optimal solution;
in particular, the feasibility condition (6.5) then holds. Further, if we
introduce the Slater condition (6.16), we are ensured that there is no
duality gap, and that the dual problem (6.10) has a compact set U∗

of optimal solutions. Under these assumptions, we have the following
results for subgradient optimization methods.

Theorem 6.26 (convergence of subgradient optimization methods) Suppose
that the problem (6.4) is feasible, and that the compactness condition
(6.37) and the Slater condition (6.16) hold.
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(a) Let {µk} be generated by the method (6.50), (6.41). Then,
q(µk) → q∗, and distU∗(µk) → 0.

(b) Let {µk} be generated by the method (6.50), (6.41), (6.42). Then,
{µk} converges to an optimal solution to (6.10).

(c) Let {µk} be generated by the method (6.50), (6.51). Then, {µk}
converges to an optimal solution to (6.10).

Proof. The results follow from Theorems 6.23, 6.24, and 6.25, respec-
tively. Note that in the first two cases, boundedness conditions were
assumed for X∗ and the sequence of subgradients. The corresponding
conditions for the Lagrangian dual problem are fulfilled under the CQs
imposed, since they imply that the search for an optimal solution is done
over a compact set; cf. Theorem 6.9(a) and its proof.

6.4.3 The generation of ascent directions

Proposition 6.18 shows that the existence of a descent direction with
respect to the convex function f : R

n → R at some x̄ ∈ R
n hinges on

the existence of some vector p̄ ∈ R
n such that f ′(x̄; p̄) < 0. According

to the definition of the directional derivative and the compactness of
∂f(x̄), this is equivalent to the statement that gTp̄ ≤ ε < 0 for every
g ∈ ∂f(x̄). In the context of Lagrangian duality we show below how we
can generate an ascent directions for q at some µ ∈ R

m.

Definition 6.27 (steepest ascent direction) Suppose that the problem
(6.4) is feasible, and that the compactness condition (6.37) holds. Con-
sider the Lagrangian dual problem (6.10), and let µ ∈ R

m. A vector
p̄ ∈ R

m is a steepest ascent direction if

q′(µ; p̄) = maximum
‖p‖≤1

q′(µ; p)

holds.

Proposition 6.28 (the shortest subgradient yields the steepest ascent di-
rection) Suppose that the problem (6.4) is feasible, and that the com-
pactness condition (6.37) holds. Consider the Lagrangian dual problem
(6.10). The direction p̄ of steepest ascent with respect to q at µ is given
below, where ḡ ∈ ∂q(µ) is the shortest subgradient in ∂q(µ) with respect
to the Euclidean norm:

p̄ =

{

0m, if ḡ = 0m,
ḡ

‖ḡ‖
, if ḡ 6= 0m.
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Proof. By Definition 6.27 and Proposition 6.19(e), the following string
of equalities and inequalities can easily be verified:

maximum
‖p‖≤1

q′(µ; p) = maximum
‖p‖≤1

infimum
g∈∂q(µ)

gTp

≤ infimum
g∈∂q(µ)

maximum
‖p‖≤1

gTp

= infimum
g∈∂q(µ)

‖g‖

= ‖ḡ‖. (6.52)

If we can construct a direction p̄ such that q′(µ; p̄) = ‖ḡ‖ then by (6.52)
p̄ is the steepest ascent direction. If ḡ = 0m then for p̄ = 0m we
obviously have that q′(µ; p̄) = ‖ḡ‖. Suppose then that p̄ 6= 0m, and let
p̄ := ḡ/‖ḡ‖. Note that

q′(µ; p) = infimum
g∈∂q(µ)

gTp̄ = infimum
g∈∂q(µ)

ḡTg

‖g‖

=
1

‖g‖
infimum
g∈∂q(µ)

{

‖ḡ‖2 + ḡT(g − ḡ)
}

= ‖ḡ‖ +
1

‖g‖
infimum
g∈∂q(µ)

ḡT(g − ḡ). (6.53)

Since ḡ is the shortest vector in ∂q(µ), then, by the variational inequality
characterization of the projection of 0m onto ∂q(µ) established in The-
orem 4.23, we obtain that ḡT(g − ḡ) ≥ 0 for every g ∈ ∂q(µ). Hence,
infimumg∈∂q(µ) ḡT(g − ḡ) = 0 is achieved at ḡ. From (6.53) it then fol-
lows that q′(µ, p̄) = ‖ḡ‖. We are done.

6.5 ∗Obtaining a primal solution

It remains for us to show how an optimal dual solution µ∗ can be trans-
lated into an optimal primal solution x∗. Obviously, convexity and
strong duality will be needed in general, if we are to be able to utilize
the primal–dual optimality characterization in Theorem 6.7. It turns
out that the generation of a primal optimum is automatic if q is dif-
ferentiable at µ∗, which is also the condition under which the famous
Lagrange multiplier method works. Unfortunately, in many cases, such
as for most non-strictly convex optimization problems (like linear pro-
gramming), this will not be the case, and then the translation work
becomes more complex.

We start with the ideal case.
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6.5.1 Differentiability at the optimal solution

The following results summarize the optimality conditions for the La-
grangian dual problem (6.10), and their consequences for the availability
of a primal optimal solution in the absence of a duality gap.

Proposition 6.29 (optimality conditions for the dual problem) Suppose that,
in the problem (6.4), the compactness condition (6.37) holds. Suppose
further that the Lagrangian dual problem has an optimal solution, µ∗.

(a) The dual optimal solution is characterized by the inclusion

0m ∈ −∂q(µ∗) + NRm

+
(µ∗). (6.54)

In other words, there then exists γ∗ ∈ ∂q(µ∗)—an optimality-characterizing
subgradient of q at µ∗—such that

0m ≤ µ∗ ⊥ γ∗ ≤ 0m. (6.55)

There exists a finite set of solutions xi ∈ X(µ∗) (i = 1, . . . , k) where
k ≤ m + 1 such that

γ∗ =

k
∑

i=1

αig(xi);

k
∑

i=1

αi = 1; αi ≥ 0, i = 1, . . . , k. (6.56)

Hence, we have that

k
∑

i=1

αiµ
∗
i gi(x

i) = 0, j = 1, . . . , m. (6.57)

(b) If there is a duality gap, then q is non-differentiable at µ∗.
(c) If q is differentiable at µ∗, then there is no duality gap. Further,

any vector in X(µ∗) then solves the primal problem (6.4).

Proof. (a) The first result is a direct statement of the optimality condi-
tions of the convex and subdifferentiable program (6.10); the complemen-
tarity conditions in (6.55) are an equivalent statement of the inclusion
in (6.54).

The second result is an application of Carathéodory’s Theorem 3.8
to the compact and convex set ∂q(µ∗).

(b) The result is established once (c) is.
(c) Let x̄ be any vector in X(µ∗) for which ∇q(µ∗) = g(x̄) holds, cf.

Proposition 6.20(a). We obtain from (6.55) that

0m ≤ µ∗ ⊥ g(x̄) ≤ 0m.

Hence, the pair (µ, x̄) fulfills all the conditions stated in (6.12), so that,
by Theorem 6.7, x̄ is an optimal solution to (6.4).
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Remark 6.30 (the non-coordinability phenomenon and decomposition al-
gorithms) Many interesting problems do not comply with the conditions
in (c); for example, linear programming is one where the Lagrangian
dual problem often is non-differentiable at every dual optimal solu-
tion.9 This is sometimes called the non-coordinability phenomenon (cf.
[Las70, DiJ79]). It was in order to cope with this phenomenon that
Dantzig–Wolfe decomposition ([DaW60, Las70]) and other column gen-
eration algorithms, Benders decomposition ([Ben62, Las70]) and general-
ized linear programming were developed; noticing that the convex com-
bination of a finite number of candidate primal solutions are sufficient to
verify an optimal primal–dual solution [cf. (6.57)], methodologies were
developed to generate those vectors algorithmically. See also [LPS99]
for overviews on the subject of generating primal optimal solutions from
dual optimal ones, and [BSS93, Theorem 6.5.2] for an LP procedure that
provides primal feasible solutions for convex programs.

Note that the equation (6.57) in (a) reduces to the complementar-
ity condition that µ∗

i gi(x̄) = 0 holds, for the averaged solution, x̄ :=
∑k

i=1 αix
i, whenever all the functions gi are affine.

6.5.2 Everett’s Theorem

The next result shows that the solution to the Lagrangian subproblem
solves a perturbed version of the original problem. We state the result
for the general problem to find

f∗ := infimum
x

f(x), (6.58)

subject to x ∈ X,

gi(x) ≤ 0, i = 1, . . . , m,

hj(x) = 0, j = 1, . . . , ℓ,

where f : R
n → R, gi : R

n → R (i = 1, 2, . . . , m), and hj : R
n → R

(j = 1, 2, . . . , ℓ) are given functions, and X ⊆ R
n.

Theorem 6.31 (Everett’s Theorem) Let (µ, λ) ∈ R
m
+ × R

ℓ. Consider
the Lagrangian subproblem to

minimize
x∈X

{

f(x) + µTg(x) + λTh(x)
}

. (6.59)

Suppose that x̄ is an optimal solution to this problem, and let I(µ) ⊆
{1, . . . , m} denote the set of indices i for which µi > 0.

9In other words, even if a Lagrange multiplier vector is known, the Lagrangian
subproblem may not identify a primal optimal solution.
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(a) x̄ is an optimal solution to the perturbed primal problem to

minimize
x

f(x), (6.60)

subject to x ∈ X,

gi(x) ≤ gi(x̄), i ∈ I(x̄),

hj(x) = hj(x̄), j = 1, . . . , ℓ.

(b) If x̄ is feasible in (6.58) and µTg(x̄) = 0 holds, then x̄ solves
(6.58), and the pair (µ, λ) then solves the Lagrangian dual problem.

Proof. (a) The proof proceeds by showing that the triple (x̄, µ, λ) is
a saddle point of the function (x, µ, λ) 7→ f(x) + µT[g(x) − g(x̄)] +
λT[h(x) − h(x̄)] over X × R

m
+ × R

ℓ.
Let x satisfy the constraints of (6.60). Since we have that h(x) =

h(x̄) and µTg(x) ≤ µTg(x̄), the optimality of x̄ in (6.59) yields

f(x) + µTg(x̄) + λTh(x̄) ≥ f(x) + µTg(x) + λTh(x)

≥ f(x̄) + µTg(x̄) + λTh(x̄),

which shows that f(x) ≥ f(x̄). We are done.
(b) µTg(x̄) = 0 implies that gi(x̄) = 0 for i ∈ I(µ); from (a) x̄ solves

the problem to

minimize
x

f(x), (6.61)

subject to x ∈ X,

gi(x) ≤ 0, i ∈ I(x̄),

hj(x) = 0, j = 1, . . . , ℓ.

In particular, then, since the feasible set of (6.58) is contained in that
of (6.61) and x̄ is feasible in the former, x̄ must also solve (6.58). That
the pair (µ, λ) solves the dual problem follows by the equality between
the primal and dual objective functions at (x̄, µ, λ), and weak duality.

One important consequence of the result is that if the right-hand side
perturbations gi(x̄) and hi(x̄) all are close to zero, the vector x̄ being
near-feasible might mean that it is in fact acceptable as an approximate
solution to the original problem. (This interpretation hinges on the
dualized constraints being soft constraints, in the sense that a small
violation is acceptable. See Section 1.8 for an introduction to the topic
of soft constraints.)
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6.6 ∗Sensitivity analysis

6.6.1 Analysis for convex problems

Consider the inequality constrained convex program (6.4), where f :
R

n → R and gi (i = 1, . . . , m) are convex functions and X ⊆ R
n is

a convex set. Suppose that the problem (6.4) is feasible, and that the
compactness condition (6.37) and Slater condition (6.16) hold. This is
the classic case where there exist multiplier vectors µ∗, according to
Theorem 6.9, and strong duality holds.

For certain types of problems where the duality gap is zero and where
there exist primal–dual optimal solutions, we have access to a beautiful
theory of sensitivity analysis. The classic meaning of the term is the
answer to the following question: what is the rate of change in f∗ when
a constraint right-hand side changes? This question answers important
practical questions, like the following in manufacturing: If we buy one
unit of additional resource at a given price, or if the demand of a product
that we sell increases by a certain amount, then how much additional
profit do we make?

We will here provide a basic result which states when this sensitivity
analysis of the optimal objective value can be performed for the problem
(6.4), and establish that the answer is determined precisely by the value
of the Lagrange multiplier vector µ∗, provided that it is unique.

Definition 6.32 (perturbation function) Consider the function p : R
m →

R ∪ {±∞} defined by

p(u) := infimum
x

f(x), (6.62)

subject to x ∈ X,

gi(x) ≤ ui, i = 1, . . . , m, u ∈ R
m;

it is called the perturbation function, or primal function, associated with
the problem (6.4). Its effective domain is the set P := {u ∈ R

m | p(u) <
+∞}.

Under the above convexity conditions, we can establish that p is a
convex function. Indeed, it holds that for any value of the Lagrange
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multiplier vector µ∗ for the problem (6.4) that

q(µ∗) = infimum
x∈X

{f(x) + (µ∗)Tg(x)}

= infimum
{ (u,x)∈P×X|g(x)≤u }

{f(x) + (µ∗)Tg(x)}

= infimum
{ (u,x)∈P×X|g(x)≤u }

{f(x) + (µ∗)Tu}

= infimum
u∈P

infimum
{x∈X|g(x)≤u }

{f(x) + (µ∗)Tu}.

Since µ∗ is assumed to be a Lagrange multiplier vector, we have that
q(µ∗) = f∗ = p(0m). By the definition of infimum, then, we have that

p(0m) ≤ p(u) + (µ∗)Tu, u ∈ R
m,

that is, −µ∗ (notice the sign!) is a subgradient of p at u = 0m (see
Definition 6.16). Moreover, by the result in Proposition 6.17(c), p is
differentiable at 0m if and only if p is finite in a neighbourhood of 0m

and µ∗ is a unique Lagrange multiplier vector, that is, the Lagrangian
dual problem (6.10) has a unique optimal solution. We have therefore
proved the following result:

Proposition 6.33 (a sensitivity analysis result) Suppose that in the in-
equality constrained problem (6.4), f : R

n → R and gi : R
n → R

(i = 1, . . . , m) are convex functions and X ⊆ R
n is a convex set. Sup-

pose that the problem (6.4) is feasible, and that the compactness as-
sumption (6.37) and Slater condition (6.16) hold. Suppose further that
the perturbed problem defined in (6.62) has an optimal solution in a
neighbourhood of u = 0m, and that on the set of primal–dual optimal
solutions to (6.4)–(6.10), the dual optimal solution µ∗ is unique. Then,
the perturbation function p is differentiable at u = 0m, and

∇p(0m) = −µ∗

holds.

It is intuitive that the sign of ∇p(0m) should be non-positive; if a
right-hand side of the (less-than) inequality constraints in (6.4) increases,
then the feasible set becomes larger. [This means that we might be able
to find feasible vectors x in the new problem with f(x) < f∗, where
f∗ = p(0) is the optimal value of the minimization problem (6.4).]

The result specializes immediately to linear programming problems,
which is the problem type where this type of analysis is most often
utilized. The proof of differentiability of the perturbation function at
zero for that special case can however be done much more simply. (See
Section 10.3.1.)

178



∗Sensitivity analysis

6.6.2 Analysis for differentiable problems

There exist local versions of the analysis valid also for non-convex prob-
lems, where we are interested in the effect of a problem perturbation
on a KKT point. A special such analysis was recently performed by
Bertsekas [Ber04], in which he shows that even when the problem is
non-convex and the set of Lagrange multipliers are not unique, a sensi-
tivity analysis is available as long as data is differentiable. Suppose then
that in the problem (6.4) the functions f and gi, i = 1, . . . , m are in
C1 and that X is nonempty. We generalize the concept of a Lagrange
multiplier vector to here mean that it is a vector µ∗ associated with a
local minimum x∗ such that

(

∇f(x∗) +
m
∑

i=1

µ∗
i∇gi(x

∗)

)T

p ≥ 0, p ∈ TX(x∗), (6.63a)

µ∗
i ≥ 0, i = 1, . . . , m, (6.63b)

µ∗
i = 0, i 6∈ I(x∗), (6.63c)

where TX(x∗) is the tangent cone to X at x∗ (cf. Definition 5.2). Note
that under an appropriate CQ this is equivalent to the KKT conditions,
in which case we are simply requiring here that x∗ is a local minimum.

In the below result we utilize the notation

g+
i (x) := maximum {0, gi(x)}, i = 1, . . . , m,

and let g+(x) be the m-vector of elements g+
i (x), i = 1, . . . , m.

Theorem 6.34 (sensitivity from the minimum norm multiplier vector) Suppose
that x∗ is a local minimum in the problem (6.4), and that the set of La-
grange multipliers is nonempty. Let µ∗ denote the Lagrange multiplier
vector of minimum Euclidean norm. Then, for every sequence {xk} ⊂ X
of infeasible vectors such that xk → x∗ we have that

f(x∗) − f(xk) ≤ ‖µ∗‖ · ‖g+(xk)‖ + o(‖xk − x∗‖). (6.64)

Furthermore, if µ∗ 6= 0m and TX(x∗) is convex, the above inequality
is sharp in the sense that there exists a sequence of infeasible vectors
{xk} ⊂ X such that

lim
k→∞

f(x∗) − f(xk)

‖g+(xk)‖
= ‖µ∗‖,

and for this sequence

lim
k→∞

g+
i (xk)

‖g+(xk)‖
=

µ∗
i

‖µ∗‖
, i = 1, . . . , m,
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holds.

Theorem 6.34 establishes the optimal rate of cost improvement with
respect to infeasible constraint perturbations (in effect, those that imply
an enlargement of the feasible set).

We finally remark that under stronger conditions still, even the op-
timal solution x∗ is differentiable. Such a result is reminiscent to the
Implicit Function Theorem, which however only covers equality systems.
If we are to study the sensitivity of x∗ to changes in the right-hand sides
of inequality constraints as well, then the analysis becomes complicated
due to the fact that we must be able to predict if some active constraints
may become inactive in the process. In some circumstances, different di-
rections of change in the right-hand sides may cause different subsets of
the active constraints I(x∗) at x∗ to become inactive, and this would
most probably then be a non-differentiable point. A sufficient condition
(but not necessary, at least in the case of linear constraints) for this to
not happen is when x∗ is strictly complementary, that is, when there
exists a multiplier vector µ∗ with µ∗

i > 0 for every i ∈ I(x∗).

6.7 Applications

We provide two example applications of Lagrangian duality. The first
describes the primal–dual relationship between currents and voltages in
an electrical network of devices (voltage sources, diodes, and resistors);
this application illustrates that Lagrange multipliers often have direct
interpretations. The second application concerns a classic combinatorial
optimization problem: the traveling salesman problem. We show how
to approximately solve this problem through Lagrangian relaxation and
subgradient optimization.

6.7.1 Electrical networks

An electrical network (or, circuit) is an interconnection of analog elec-
trical elements such as resistors, inductors, capacitors, diodes, and tran-
sistors. Its size varies from the smallest integrated circuit to an entire
electricity distribution network. A circuit is a network that has at least
one closed loop. A network is a connection of 2 or more simple circuit
elements, and may not be a circuit. The goal when designing electrical
networks for signal processing is to apply a predefined operation on po-
tential differences (measured in volts) or currents (measured in amperes).
Typical functions for these electrical networks are amplification, oscil-
lation and analog linear algorithmic operations such as addition, sub-
traction, multiplication, and division. In the case of power distribution
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networks, engineers design the circuit to transport energy as efficiently
as possible while at the same time taking into account economic factors,
network safety and redundancy. These networks use components such
as power lines, cables, circuit breakers, switches and transformers.

To design any electrical circuits, electrical engineers need to be able
to predict the voltages and currents in the circuit. Linear circuits (that
is, an electrical network where all elements have a linear current–voltage
relation) can be quite easily analyzed through the use of complex num-
bers and systems of linear equations,10 while nonlinear elements require
a more sophisticated analysis. The classic electrical laws describing
the equilibrium state of an electrical network are due to G. Kirchhoff
[Kir1847]; referred to as Kirchhoff’s circuit laws they express in a math-
ematical form the conservation of charge and energy.11

Formally, we let an electrical circuit be described by branches (or,
links) connecting nodes. We present a simple example where the only
devices are voltage sources, resistors, and diodes. The resulting equi-
librium conditions will be shown to be represented as the solution to a
strictly convex quadratic program. In general, devices such as resistors
can be non-linear, but linearity is assumed throughout this section.� A voltage source maintains a constant branch voltage vs irrespec-

tive of the branch current cs. The power absorbed by the device
is −vscs.� A diode permits the branch current cd to flow in one direction only,
but consumes no power regardless of the current or voltage on the
branch. Denoting the branch voltage by vd, the direction condition
can be stated as a complementarity condition:

cd ≥ 0; vd ≥ 0; vdcd = 0. (6.65)� A resistor consumes power in relation with its resistance, denoted
by Rr. We recognize the following law describing the relationship
between the branch current and voltage in a linear resistor:

vr = −Rrcr. (6.66)

The power consumed is given by

−vrcr =
v2

r

Rr
= Rrc

2
r, (6.67)

where we have utilized (6.67) to derive two alternative relations.

10For such networks already Maxwell [Max1865] had stated equilibrium conditions.
11These laws can be derived from Maxwell’s equations, but Kirchhoff preceded

Maxwell and derived his equations from work done by G. Ohm.
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We must be careful about the direction of flow of currents and volt-
ages, and thus define, for each type of device, a node–branch incidence
matrix of the form

nij :=











−1, if branch j has node i as its origin,

1, if branch j ends in node i,

0, otherwise.

The interpretation of a current flow variable is that the direction is
from the negative to the positive terminal of the device, that is, from
the origin to the ending node of the branch; a negative variable value
will therefore correspond to a flow in the opposite direction. Note that
for the diodes, the latter is not allowed, as seen in (6.66).

For the three types of devices we hence yield incidence matrices
denoted by NS , NR, and ND, creating a partitioned matrix N =
[NS ND NR]. Similarly, we let c = (cT

S , cT
D, cT

R)T and v = (vT
S , vT

D, vT
R)T

represent the vectors of branch currents and voltages. We also let p =
(pT

S , pT
D, pT

R)T denote the vector of node potentials. Before stating the
optimization problem whose minimum describes the equilibrium of the
system, we recall the two fundamental equilibrium laws:

Kirchhoff’s current law: The sum of all currents entering a node is equal
to the sum of all currents leaving the node. In other words, Nc = 0,
or,12

NScS + NDcD + NRcR = 0. (6.68)

Kirchhoff’s voltage law: The difference between the node potentials at
the ends of each branch is equal to the branch voltage. In other words,
NTp = v, or,13

NT
S p = vS , (6.69a)

NT
Dp = vD, (6.69b)

NT
R p = vR. (6.69c)

We summarize the equations representing the characteristics of the
electrical devices as follows: For the diodes, (6.66) yields

vD ≥ 0; cD ≥ 0; vT
DcD = 0. (6.70)

For the resistors, (6.67) yields

vR = −RcR, (6.71)

12This law is also referred to as the first law, the point rule, the junction rule, and
the node law.

13This law is a corollary to Ohm’s law, and is also referred to as the loop law.
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R being the diagonal matrix with elements equal to the values Rr.

Hence, (6.69)–(6.72) represent the equilibrium conditions of the cir-
cuit. We will now describe the optimization problem whose optimality
conditions are, precisely, (6.69)–(6.72) [note that vS is fixed]:

minimize
1

2
cT

RRcR − vT
ScS , (6.72)

subject to NScS + NDcD + NRcR = 0,

−cD ≤ 0.

In the problem (6.73) we wish to determine branch currents cS , cD,
and cR so as to minimize the sum of half the energy absorbed in the re-
sistors and the energy loss of the voltage source. Note the sign condition
on the diode currents.

Note that this is a convex program with linear constraints, and thus
the KKT conditions are both necessary and sufficient for the global op-
timality of the currents. It is instrumental to check that the KKT condi-
tions for (6.73) are given by (6.69)–(6.72), where the Lagrange multipliers
are given by (pT, vT

D)T.

In the discussion terminating in the Strong Duality Theorem 6.13,
we showed that the Lagrangian dual of a strictly convex quadratic opti-
mization problem is yet another convex quadratic optimization problem.
In our case, following that development, we can derive the following dual
optimization problem in terms of the node potentials p (notice, again,
that vS is fixed):

maximize −
1

2
vT

RR−1vR, (6.73)

subject to NT
S p = vS ,

NT
Dp − vD = 0,

NT
R p − vR = 0,

vD ≥ 0.

In the dual problem (6.74) the matrix R−1 is the diagonal matrix of
conductances. The objective function is equivalent to the minimization
of the power absorbed by the resistors, and we wish to determine the
branch voltages vD and vR, and the potential vector p.

Verify that the KKT conditions for this problem, again, reduce to
the equilibrium conditions (6.69)–(6.72). In other words, the Lagrange
multipliers for the dual problem (6.74) are the (primal) branch currents.
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Finally, let us note that by Theorem 6.13(a) the two problems (6.73)
and (6.74) have the same objective value at optimality. That is,

1

2
cT

RRcR +
1

2
vT

RR−1cR − vT
ScS = 0.

By (6.71)–(6.72), the above equation reduces to

vT
ScS + vT

DcD + vT
RcR = 0,

which is precisely the principle of energy conservation.

6.7.2 A Lagrangian relaxation of the traveling sales-

man problem

Lagrangian relaxation has shown to be remarkably efficient for some
combinatorial optimization problems. This is surprising when taking
into account that such problems are integer or mixed-integer problems,
which suffer from non-zero duality gaps in general. What then lies behind
their popularity?� One can show that Lagrangian relaxation of an integer program is

always at least as good as that of a continuous relaxation14 (in the
sense that the value of fR is higher for Lagrangian relaxation than
for a continuous relaxation);� Together with heuristics for finding primal feasible solution, good
feasible solutions are often found;� The Lagrangian relaxed problems can be made computationally
much simpler than the original problem, while still keeping a lot
of the structure of the original problem.

6.7.2.1 The traveling salesman problem

Let the graph G = (N ,L) be defined by a number of cities (or, nodes)
i ∈ N and undirected links in between subsets of pairs of them: (i, j) ∈
L ⊆ N ×N . Notice that the links (i, j) and (j, i) are identical, and are
in L represented by one non-directed link only.

Let cij denote the distance between the cities i and j, {i, j} ⊂ N .
We introduce the following binary variables:

xij :=

{

1, if link (i, j) is part of the TSP tour,

0, otherwise,
(i, j) ∈ L.

14The continuous relaxation amounts to removing the integrality conditions, re-
placing, for example, xj ∈ {0, 1} by xj ∈ [0, 1].
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With these definitions, the undirected traveling salesman problem
(TSP) is to

minimize
x

∑

(i,j)∈L

cijxij , (6.74a)

subject to
∑

(i,j)∈L:{i,j}⊆S

xij ≤ |S| − 1, S ⊂ N , (6.74b)

∑

(i,j)∈L

xij = n, (6.74c)

∑

i∈N :(i,j)∈L

xij = 2, j ∈ N , (6.74d)

xij ∈ {0, 1}, (i, j) ∈ L. (6.74e)

The constraints have the following interpretation: (6.75b) implies
that there can be no sub-tours, that is, a tour where fewer than n cities
are visited (if S ⊂ N then there can be at most |S| − 1 links between
nodes in the set S, where |S| is the cardinality–number of members–of
the set S); (6.75c) implies that in total n cities must be visited; and
(6.75d) implies that each city is connected to two others, such that we
make sure to arrive from one city and leave for the next.

This problem is NP-hard, which implies that there is no known
polynomial algorithm for solving it. We resort therefore to the use
of relaxation techniques, in particular Lagrangian relaxation. We have
more than one alternative relaxation to perform: If we Lagrangian re-
lax the tree constraints (6.75b) and (6.75c) the remaining problem is a
2-matching problem; it can be solved in polynomial time. If we instead
Lagrangian relax the degree constraints (6.75d) for every node except for
one node the remaining problem is a 1-MST problem, that is, a special
type of minimum spanning tree problem.

The following definition is classic: a Hamiltonian path (respectively,
cycle) is a path (respectively, cycle) which passes every node in the graph
exactly once. Every Hamiltonian cycle is a Hamiltonian path from a node
s to another node, t, followed by a link (t, s); a subgraph which consists
of a spanning tree plus an extra link such that all nodes have degree two.
This is then a feasible solution to the TSP.

A 1-MST problem is the problem to find an MST in the graph that
excludes node s, followed by the addition of the two least expensive links
from node s to that tree. If all nodes happen to get degree two, then
the 1-MST solution is a traveling salesman tour (that is, a Hamiltonian
cycle). The idea behind solving the Lagrangian dual problem is then
to find proper multiplier values such that the Lagrangian relaxation will
produce feasible solutions.

185

Lagrangian duality

6.7.2.2 Lagrangian relaxation of the traveling salesman prob-
lem

Suppose that we Lagrangian relax the degree constraints (3), except for
node 1. We assume that the starting node for the trip, node s ∈ N , and
all the links in L connected to it, have been removed temporarily (in
the 1-MST, this data is re-introduced later), but without changing the
notation to reflect this.

The subproblem is the following: a 1-MST defined by

q(λ) = minimum
x

∑

(i,j)∈L

cijxij +
∑

j∈N

λj



2 −
∑

i∈N :(i,j)∈L

xij





= 2
∑

j∈N

λj + minimum
x

∑

(i,j)∈L

(cij − λi − λj)xij .

We see immediately the role of the Lagrange multipliers: a high (low)
value of the multiplier λj makes node j attractive (unattractive) in the
above 1-MST problem, and will therefore lead to more (less) links being
attached to it.

When solving the Lagrangian dual problem, we will use the class
of subgradient optimization methods, an overview of which is found in
Section 6.4.

What is the updating step in the subgradient method, and what is its
interpretation? It is as usual an update in the direction of a subgradient,
that is, the direction of

hi(x(λ)) := 2 −
∑

i∈N :(i,j)∈L

xij(λ), i ∈ N ,

where the value of xij ∈ {0, 1} is the solution to the 1-MST solution
with link costs cij − λi − λj . We see from the direction formula that

λnew
j := λj + α



2 −
∑

i∈N :(i,j)∈L

xij(λ)



 , j ∈ N ,

where α > 0 is a step length. It is interesting to investigate what the
update means:

current degree at node j :







> 2 =⇒ λj ↓ (link cost ↑)
= 2 =⇒ λj − (link cost constant)
< 2 =⇒ λj ↑ (link cost ↓)

In other words, the updating formula in a subgradient method is
such that the link cost in the 1-MST subproblem is shifted upwards
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(downwards) if there are too many (too few) links connected to node j
in the 1-MST. We are hence adjusting the node prices of the nodes in
such a way as to try to influence the 1-MST problem to always choose 2
links per node to connect to.

6.7.2.3 A feasibility heuristic

A feasibility heuristic takes the optimal solution from the Lagrangian
minimization problem over x and adjusts it such that a feasible solution
to the original problem is constructed. As one cannot predict if, or when,
a primal feasible solution will be found directly from the subproblem, the
heuristic will provide a solution that can be used in place of an optimal
one, should one not be found. Moreover, as we know from Lagrangian
duality theory, we then have access to both lower and upper bounds on
the optimal value f∗ of the original problem, and so we have a quality
measure of the feasible solutions found.

A feasibility heuristic which can be used together with our Lagrangian
heuristic is as follows.

Identify a path in the 1-MST with many links. Then form a subgraph
with the remaining nodes and find a path that passes all of them. Put the
two paths together in the best way. The resulting path is a Hamiltonian
cycle, that is, a feasible solution.

6.7.2.4 The Philips example

In 1987–1988 an M.Sc. project was performed at the department of
mathematics at Linköping University, in cooperation with the company
Philips, Norrköping. The project was initiated with the goal to improve
the current practice of solving a production planning problem.

The problem was as follows: Philips produce circuit boards, perhaps
several hundreds or thousands of the same type. There is a new batch of
patterns (holes) to be drilled every day, and perhaps even several such
batches per day.

In order to speed up the production process the drilling machine is
connected to a microcomputer that selects the ordering of the holes to
be drilled automatically, given their coordinates. The algorithm for per-
forming the sorting used to be a simple sorting operation that found,
for every fixed x-coordinate, the corresponding y-coordinates and sorted
them in increasing order. The movement of the drill was therefore from
left to right, and for each fixed x-coordinate the movement was vertical.
The time it took to drill the holes on one circuit board was, however,
far too long, simply because the drill traveled around a lot without per-
forming any tasks, following a path that was too long. (On the other
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hand, the actual ordering was very fast to produce!) All in all, the com-
plete batch production took too long because of the poorly planned drill
movement.

It was observed that the production planning problem is a travel-
ing salesman problem, where the cities are the holes to be drilled, and
the distances between them correspond to the Euclidean distances be-
tween them. Therefore, an efficient TSP heuristic was devised and im-
plemented, for use in conjunction with the microcomputer. In fact, it
was based on precisely the above Lagrangian relaxation, a subgradient
optimization method, and a graph-search type heuristic of the form dis-
cussed above.

A typical run with the algorithm took a few minutes, and was always
stopped after a fixed number of subgradient iterations; the generation of
feasible solutions with the above-mentioned graph search technique was
performed at every Kth iteration, where K was set to a value strictly
larger than one. (Moreover, feasible solutions were not generated during
the first iterations of the dual procedure, because of the poor quality of
λk for low values of k; it is often the case that the traveling salesman
tour resulting from the heuristic is better when the multipliers are near-
optimal in the Lagrangian dual problem.)

In one of the examples implemented it was found that the optimal
path length was in the order to 2 meters, and that the upper and lower
bounds on f∗ produced lead to the conclusion that the relative error of
the path length of the best feasible solution found was less than 7 %, a
quite good result, also showing that the duality gap for the problem at
hand (together with the Lagrangian relaxation chosen) is quite small.

After implementing the new procedure, Philips could report an in-
crease in production by some 70 %. Hence, the slightly longer time it
took to provide a better production plan, that is, the traveling salesman
tour for the drill to follow, was more than well compensated by the fact
that the drilling could be done much faster.

Here is hence an interesting case where Lagrangian relaxation helped
to solve a large-scale, complex and difficult problem by utilizing problem
structure.

6.8 Notes and further reading

Lagrangian duality has been developed in many sources, including early
developments by Arrow, Hurwicz, and Uzawa [AHU58], Everett [Eve63],
and Falk [Fal67], and later on by Rockafellar [Roc70]. Our development
follows to a large extent that of portions of the text books by Bert-
sekas [Ber99], Bazaraa et al. [BSS93], and Rockafellar [Roc70].
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The Relaxation Theorem 6.1 can almost be considered to be folklore,
and can be found in a slightly different form in [Wol98, Proposition 2.3].

The differentiability properties of convex functions were developed
largely by Rockafellar [Roc70], whose text we mostly follow.

Subgradient methods were developed in the Soviet Union in the
1960s, predominantly by Ermol’ev, Polyak, and Shor. Text book treat-
ments of subgradient methods are found, for example, in [Sho85, HiL93,
Ber99]. Theorem 6.23 is essentially due to Ermol’ev [Erm66]; the proof
stems from [LPS96]. Theorem 6.24 is due to Shepilov [She76]; finally,
Theorem 6.25 is due to Polyak [Pol69].

Everett’s Theorem is due to Everett [Eve63].
Theorem 6.34 stems from [Ber04, Proposition 1.1].
That the equilibrium conditions of an electrical or hydraulic network

are attained as the minimum of the total energy loss were known more
than a century ago. Mathematical programming models for the electri-
cal network equilibrium problems described in Section 6.7.1 date at least
as far back as to Duffin [Duf46, Duf47] and d’Auriac [dAu47]. Duffin
constructs his objective function as a sum of integrals of resistance func-
tions. The possibility of viewing the equilibrium problem in at least two
related, dual, ways as that of either finding the optimal flows of currents
or the optimal potentials was also known early in the analysis of electri-
cal networks; these two principles are written out in [Cro36] in work on
pipe networks, and explicitly stated as a pair of primal–dual quadratic
programming problems in [Den59]; we followed his development, as rep-
resented in [BSS93, Section 1.2.D].

The traveling salesman problem is an essential model problem in
combinatorial optimization. Excellent introductions to the field can be
found in [Law76, PaS82, NeW88, Wol98, Sch03]. It was the work in
[HWC74, Geo74, Fis81, Fis85], among others, in the 1970s and 1980s on
the traveling salesman problem and its relatives that made Lagrangian
relaxation and subgradient optimization popular, and it remains most
popular within the combinatorial optimization field.

6.9 Exercises

Exercise 6.1 (numerical example of Lagrangian relaxation) Consider the
convex problem to

minimize
1

x1
+

4

x2
,

subject to x1 + x2 ≤ 4,

x1, x2 ≥ 0.
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(a) Lagrangian relax the first constraint, and write down the resulting
implicit dual objective function and the dual problem. Motivate why the
relaxed problem always has a unique optimum, whence the dual objective
function is everywhere differentiable.

(b) Solve the implicit Lagrangian dual problem by utilizing that the
gradient to a differentiable dual objective function can be expressed by
using the functions that are involved in the relaxed constraints and the
unique solution to the relaxed problem.

(c) Write down an explicit Lagrangian dual problem, that is, a dual
problem only in terms of the Lagrange multipliers. Solve it, and confirm
the results in (b).

(d) Find the original problem’s optimal solution.
(e) Show that strong duality holds.

Exercise 6.2 (global optimality conditions) Consider the problem to

minimize f(x) := x1 + 2x2
2 + 3x3

3,

subject to x1 + 2x2 + x3 ≤ 3,

2x2
1 + x2 ≥ 2,

2x1 + x3 = 2,

xj ≥ 0, j = 1, 2, 3.

(a) Formulate the Lagrangian dual problem that results from La-
grangian relaxing all but the sign constraints.

(b) State the global primal–dual optimality conditions.

Exercise 6.3 (Lagrangian relaxation) Consider the problem to

minimize f(x) := x2
1 + 2x2

2,

subject to x1 + x2 ≥ 2,

x2
1 + x2

2 ≤ 5.

Find an optimal solution through Lagrangian duality.

Exercise 6.4 (Lagrangian relaxation) In many circumstances it is of in-
terest to calculate the Euclidean projection of a vector onto a subspace.
Especially, consider the problem to find the Euclidean projection of the
vector y ∈ R

n onto the null space of the matrix A ∈ R
m×n, that is, to

find an x ∈ R
n that solves the problem to

minimize f(x) :=
1

2
‖y − x‖2,

subject to Ax = 0m,
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where A is such that rankA = m.
The solution to this problem is classic: the projection is given by

x∗ = y − AT(AAT)−1Ay.

If we let P := In−AT(AAT)−1A, where In ∈ R
n×n is the unit matrix,

be the projection matrix, the formula is simply x∗ = Py.
Your task is to derive this formula by utilizing Lagrangian duality.

Motivate every step made by showing that the necessary properties are
fulfilled.

[Note: This exercise is similar to that in Example 5.51, but utilizes
Lagrangian duality rather than the KKT conditions to derive the pro-
jection formula.]

Exercise 6.5 (Lagrangian relaxation, exam 040823) Consider the follow-
ing linear optimization problem:

minimize f(x, y) := x − 0.5y,

subject to −x + y ≤ −1,

−2x + y ≤ −2,

(x, y) ∈ R
2
+.

(a) Show that the problem satisfies Slater’s constraint qualification.
Derive the Lagrangian dual problem corresponding to the Lagrangian
relaxation of the two linear inequality constraints, and show that its set
of optimal solutions is convex and bounded.

(b) Calculate the set of subgradients of the Lagrangian dual function
at the dual points (1/4, 1/3)T and (1, 0)T.

Exercise 6.6 (Lagrangian relaxation) Provide an explicit form of the La-
grangian dual problem for the problem to

minimize

m
∑

i=1

n
∑

j=1

xij lnxij

subject to
m
∑

i=1

xij = bj, j = 1, . . . , n,

n
∑

j=1

xij = ai, i = 1, . . . , m,

xij ≥ 0, i = 1, . . . , m, j = 1, . . . , n,

where ai > 0, bj > 0 for all i, j, and where the linear equalities are
Lagrangian relaxed.
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Exercise 6.7 (Lagrangian relaxation) Given is the problem to

minimize
x

f(x) = 2x2
1 + x2

2 + x1 − 3x2, (6.75a)

subject to x2
1 + x2 ≥ 8, (6.75b)

x1 ∈ [1, 3], (6.75c)
x2 ∈ [2, 5]. (6.75d)

Lagrangian relax the constraint (6.76b) with a multiplier µ. Formu-
late the Lagrangian dual problem and calculate the dual function’s value
at µ = 1, µ = 2, and µ = 3. Within which interval lies the optimal value
f∗? Also, draw the dual function.

Exercise 6.8 (Lagrangian duality for integer problems) Consider the pri-
mal problem to

minimize f(x),

subject to g(x) ≤ 0m,

x ∈ X,

where X ⊆ R
n, f : R

n → R, and g : R
n → R

m. If the restrictions g(x) ≤
0m are complicating side constraints which are Lagrangian relaxed, we
obtain the Lagrangian dual problem to

maximize
µ≥0m

q(µ),

where
q(µ) := minimum

x∈X
{f(x) + µTg(x)}, µ ∈ R

m.

(a) Suppose that the set X is finite (for example, consisting of a
finite number of integer vectors). Denote the elements of X by xp,
p = 1, . . . , P . Show that the dual objective function is piece-wise linear.
How many linear segments can it have, at most? Why is it not always
built up by that many segments?

[Note: This property holds regardless of any properties of f and g.]
(b) Illustrate the result in (a) on the linear 0/1 problem to find

z∗ = maximum z = 5x1 + 8x2 + 7x3 + 9x4,
subject to 3x1 + 2x2 + 2x3 + 4x4 ≤ 5,

2x1 + x2 + 2x3 + x4 = 3,
x1 , x2 , x3 , x4 = 0/1,

where the first constraint is considered complicating.
(c) Suppose that the function f and all components of g are linear,

and that the set X is a polytope (that is, a bounded polyhedron). Show
that the dual objective function is also in this case piece-wise linear.
How many linear pieces can it be built from, at most?

192



Exercises

Exercise 6.9 (Lagrangian relaxation) Consider the problem to

minimize z = 2x1 + x2,
subject to x1 + x2 ≥ 5,

x1 ≤ 4,
x2 ≤ 4,

x1 , x2 ≥ 0, integer.

Lagrangian relax the first constraint. Describe the Lagrangian function
and the dual problem. Calculate the Lagrangian dual function at these
four points: µ = 0, 1, 2, 3. Give the best lower and upper bounds on the
optimal value of the original problem that you have found.

Exercise 6.10 (surrogate relaxation) Consider an optimization problem
of the form

minimize f(x),

subject to gi(x) ≤ 0, i = 1, . . . , m, (P )

x ∈ X,

where the functions f, gi : R
n → R are continuous and the set X ⊂ R

n

is closed and bounded. The problem is assumed to have an optimal
solution, x∗. Introduce parameters µi ≥ 0, i = 1, . . . , m, and define

s(µ) := minimum f(x),

subject to µTg(x) ≤ 0, (S)

x ∈ X.

This problem therefore has exactly one explicit constraint.
(a) [weak duality] Show that x∗ is a feasible solution to the problem

(S) and that s(µ) ≤ f∗ therefore always holds, that is, the problem (S) is
a relaxation of the original one. Motivate also why maximumµ≥0m s(µ) ≤
f∗ must hold. Explain the potential usefulness of this result!

(b) [example] Consider the linear 0/1 problem

z∗ = maximum z =5x1 + 8x2 +7x3 + 9x4,
subject to 3x1 + 2x2 +3x3 + 3x4 ≤ 6, (1)

2x1 + 3x2 +3x3 + 4x4 ≤ 5, (2)
2x1 + x2 +2x3 + x4 = 3,
x1 , x2 , x3 , x4 ∈ 0/1.

Surrogate relax the constraints (1) and (2) with multipliers µ1, µ2 ≥ 0
and formulate the problem (S). Let µ̄ = (1, 2)T. Calculate s(µ̄).
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Consider again the original problem and Lagrangian relax the con-
straints (1) and (2) with multipliers µ1, µ2 ≥ 0. Calculate the Lagrangian
dual objective value at µ = µ̄.

Compare the two results!
(c) [comparison with Lagrangian duality] Let µ ≥ 0m and

q(µ) := minimum
x∈X

{f(x) + µTg(x)}.

Show that q(µ) ≤ s(µ), and that

maximum
µ≥0m

q(µ) ≤ maximum
µ≥0m

s(µ) ≤ f∗

holds.
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