
Project course: Optimization TM

Introduction: simple/difficult

problems; matroid problems

Michael Patriksson

0-0

1'

&

$

%

Project course: Optimization TM� ≈ 3 meetings per week during three–four weeks� Projects:

– Lagrangian relaxation for a VLSI design problem

(Matlab package)

– Large-scale set covering problems: heuristics and

optimizing methods (competition!)� Literature: Lecture notes, hand-outs from books.� Examination: Written reports on the two projects.

Oral presentation, with opposition!� For better grades than pass (4, 5, VG): oral exam.

2'

&

$

%

Topics: Turning difficult problems into a sequence

of simpler problems (decomposition–coordination)� Lagrangian relaxation (IP, NLP)� Dantzig–Wolfe decomposition (LP)� Benders decomposition (IP, NLP)� Column generation (LP, IP, NLP)� Heuristics (IP)� Branch & Bound (IP, non-convex NLP)� Greedy algorithms (IP, NLP)� Subgradient optimization (convex NLP)

3'

&

$

%

Simple problems—Wolsey� For simple problems, there exist polynomial algorithms

(they belong to the complexity class P), preferably

with a small largest exponent.� Network flow problems (shortest paths; maximum

flows; minimum cost single-commodity network flows;

transportation problem; assignment problem;

maximum cardinality matching)—see Wolsey!� Linear programming� Problems over simple matroids (next!)

4'

&

$

%

Matroids and the greedy algorithm—Lawler� Greedy algorithm: Create a “complete solution” by

iteratively choosing the best alternative. In the greedy

algorithm, one never regrets a choice made previously.� Which problems can be solved using such a simple

method?� Problems that can be described by matroids.� Given a finite set E and a family F of subsets of E . If

A ∈ F and A′ ⊆ A implies that A′ ∈ F , then the

system S = (E ,F) is an independent system.

5'

&

$

%

� Example, I:

E = a set of column vectors in R
n,

F = the set of linearly independent subsets of vectors in E .� Example, II:

E = the set of links (edges, arcs) in an undirected graph,

F = the set of all cycle-free subsets of links in E .� Let w(e) be the cost of an element in E . Problem: Find

the element A ∈ F of maximal cardinality such that

the total cost is minimal/maximal.

6'

&

$

%

The Greedy algorithm for minimization problems� A = ∅.� Sort the elements of E in increasing order with respect

to w(e).� Take the first element e ∈ E in the list. If A∪ {e} is

still independent =⇒ let A := A ∪ {e}.� Continue with the next element.� Continue until either the list is empty, or A has the

maximal cardinality.� What are the corresponding algorithms in Examples I

and II?

7'

&

$

%

Examples� Example I (linearly independent vectors): Let

A =















1 0 2 0 1

0 −1 −1 1 1

3 2 8 1 4

2 1 5 0 2















,

w
T =

(

10 9 8 4 1
)

.� Choose the maximal independent set with the maximal

weight.� Can this technique solve LP problems?

8'

&

$

%

� Example II (minimum spanning trees): The maximal

set of cycle-free links in an undirected graph is a

spanning tree; in a graph G = (N , E), it has |N | − 1

links.� Classic greedy algorithm (Kruskal’s algorithm) has

complexity O(|E| · log(|E|)). The main cost is in the

sorting itself.� Prim’s algorithm builds the spanning tree through

graph search techniques, from node to node; complexity

O(|N |2).

9'

&

$

%

� Example III (in fact not a matroid problem):

LP relaxation of the 0/1 knapsack problem (BKP):

maximize f(x) =

n
∑

j=1

cjxj,

subject to

n
∑

j=1

ajxj ≤ b, (aj, b ∈ Z+)

0 ≤ xj ≤ 1, j = 1, . . . , n.� Greedy algorithm: Sort cj/aj in descending order; set

the variables to 1 until the knapsack is full. The last

variable may become fractional.� LP duality shows that the greedy algorithm is correct.

10'

&

$

%

� Rounding down gives a feasible solution to (BKP). Is it

also optimal in (BKP)?

maximize f(x) = 2x1 + cx2,

subject to
n

∑

j=1

x1 + cx2 ≤ c,

x1, x2 ∈ {0, 1},

where c is a positive integer.� If c ≥ 2 then x
∗ = (0, 1)T and f ∗ = c.� The greedy algorithm, plus rounding, always gives

x̄ = (1, 0)T, with f(x̄) = 2; an arbitrarily bad solution.

11'

&

$

%

� Example IV: the traveling salesman problem (TSP)� The greedy algorithm would select the next best city

which does not lead to a sub-tour. Optimal?

c

1

1

1 1
2

2

2

2 2

3

4 5
c

1

1

1 1
2

2

2

2 2

3

4 5

Figure 1: Greedy Optimal

� Not optimal when c ≫ 0.

12'

&

$

%

� Example V: the shortest path problem (SPP)� The greedy algorithm constructs a path that uses,

locally, the cheapest link to reach a new node.

Optimal?

c

s t

1

1
2

5 5

c

s t

1

1
2

55

Figure 2: Greedy Optimal� Not optimal when c ≫ 0.

13'

&

$

%

� Example VI: Semi-matching:

maximize f(x) =
m

∑

i=1

n
∑

j=1

wijxij,

subject to
n

∑

j=1

xij ≤ 1, i = 1, . . . ,m,

xij ∈ {0, 1}, i = 1, . . . ,m, j = 1, . . . , n.� Semi-assignment: replace maximum =⇒ minimum;

“≤” =⇒ “=”; m = n.� Algorithm: For each i: take best wij, set wij = 1 for

that j, and wij = 0 for every other j.

14'

&

$

%

Matroid types� Graph matroid: F = the set of forests in a graph

G = (N , E). Example problem: MST.� Partition matroid: Consider a partition of E into m

sets B1, . . . ,Bm and let di (i = 1, . . . ,m) be

non-negative integers. Let

F = { I | I ⊆ E ; |I ∩ Bi| ≤ di, i = 1, . . . ,m }.

Example problems: semi-matching; bipartite graphs.� Matrix matroid: S = (E ,F), where E is a set of column

vectors and F is the set of subsets of E with linearly

independent vectors. Observe: The above matroids can

be written as matrix matroids!

15'

&

$

%

Problems over matroid intersections� Given two matroids M = (E ,P) and N = (E ,R), find

the maximum cardinality set in P ∩R.� Example 1: maximum-cardinality matching is the

intersection of two partition matroids.� The intersection of two matroids can not be solved by

using the greedy algorithm.� There exist polynomial algorithms for them. For

example, matching and assignment problems can be

solved as maximum flow problems, which are

polynomially solvable.

16'

&

$

%

� Example 2: The traveling salesman problem (TSP) is

the intersection of three matroids: a graph matroid and

two partition matroids (see its formulation using

assignment + tree constraints).� Conclusion: Matroid problems are extremely easy;

two-matroid problems are polynomial; three-matroid

problems are very difficult!

17'

&

$

%

The traveling salesman problem—three

formulations

Three formulations of the undirected TSP, which give rise

to different algorithms when Lagrangian relaxed or

otherwise manipulated.

18'

&

$

%

minimize
n

∑

i=1

n
∑

j=1

cijxij

subject to
n

∑

j=1

xij = 1, i ∈ N , (1)

n
∑

i=1

xij = 1, j ∈ N , (2)

∑

i∈S

∑

j∈S

xij ≤ |S| − 1, S ⊂ N , (3)

xij ∈ {0, 1}, i, j ∈ N .

19'

&

$

%

� Tree-based formulation. (1)–(2): Assignment; (3):

cycle-free.� Lagrangian relax (3): Assignment.� Lagrangian relax (1)–(2): 1-MST, if adding redundant

constraints from the original problem.

20'

&

$

%

minimize
n

∑

i=1

n
∑

j=1

cijxij

subject to
n

∑

j=1

xij = 2, i ∈ N , (1)

n
∑

i=1

n
∑

j=1

xij = n, (2)

∑

(i,j)∈(S,N\S)

xij ≥ 1, S ⊂ N , (3)

xij ∈ {0, 1}, i, j ∈ N .

21'

&

$

%

� Node adjacency based formulation. (1): Adjacency

condition; (2): Redundant; (3): cycle-free (alternative

version). [Hamilton cycle is a spanning tree + one link,

such that every node is adjacent to two nodes.]� Lagrangian relax (1), except for node s: 1-tree

relaxation.� Lagrangian relax (3): 2-matching.

22'

&

$

%

For directed graphs:

minimize
∑

(i,j)∈E

cijxij

subject to
∑

j:(i,j)∈E

xij = 1, i ∈ N , (1)

∑

i:(i,j)∈E

xij = 1, j ∈ N , (2)

∑

(i,j)∈E

xij = |N |, (3)

∑

(i,j)∈(S,N\S)+

xij +
∑

(j,i)∈(S,N\S)−

xij ≥ 1, S ⊂ N , (4)

xij ∈ {0, 1}, (i, j) ∈ E .

23'

&

$

%

� Tree-based formulation. (1)–(2): assignment; (3):

Redundant; (4) Cycle-free.� Lagrangian relax (1) or (2), plus (4): semi-assignment.� Lagrangian relax (3) plus (4): assignment.� Lagrangian relax (1), and (2) except for node s:

directed 1-tree relaxation.

