Project course: Optimization TM Introduction: simple/difficult problems; matroid problems

Michael Patriksson

Project course: Optimization TM

- ≈ 3 meetings per week during three-four weeks
- Projects:
- Lagrangian relaxation for a VLSI design problem (Matlab package)
- Large-scale set covering problems: heuristics and optimizing methods (competition!)
- Literature: Lecture notes, hand-outs from books.
- Examination: Written reports on the two projects. Oral presentation, with opposition!
- For better grades than pass $(4,5, \mathrm{VG})$: oral exam.

Topics: Turning difficult problems into a sequence

 of simpler problems (decomposition-coordination)- Lagrangian relaxation (IP, NLP)
- Dantzig-Wolfe decomposition (LP)
- Benders decomposition (IP, NLP)
- Column generation (LP, IP, NLP)
- Heuristics (IP)
- Branch \& Bound (IP, non-convex NLP)
- Greedy algorithms (IP, NLP)
- Subgradient optimization (convex NLP)

Simple problems-Wolsey

- For simple problems, there exist polynomial algorithms (they belong to the complexity class \mathcal{P}), preferably with a small largest exponent.
- Network flow problems (shortest paths; maximum flows; minimum cost single-commodity network flows; transportation problem; assignment problem; maximum cardinality matching) - see Wolsey!
- Linear programming
- Problems over simple matroids (next!)

Matroids and the greedy algorithm—Lawler

- Greedy algorithm: Create a "complete solution" by iteratively choosing the best alternative. In the greedy algorithm, one never regrets a choice made previously.
- Which problems can be solved using such a simple method?
- Problems that can be described by matroids.
- Given a finite set \mathcal{E} and a family \mathcal{F} of subsets of \mathcal{E}. If $\mathcal{A} \in \mathcal{F}$ and $\mathcal{A}^{\prime} \subseteq A$ implies that $\mathcal{A}^{\prime} \in \mathcal{F}$, then the system $S=(\mathcal{E}, \mathcal{F})$ is an independent system.
- Example, I:
$\mathcal{E}=$ a set of column vectors in \mathbb{R}^{n},
$\mathcal{F}=$ the set of linearly independent subsets of vectors in \mathcal{E}.
- Example, II:
$\mathcal{E}=$ the set of links (edges, arcs) in an undirected graph, $\mathcal{F}=$ the set of all cycle-free subsets of links in \mathcal{E}.
- Let $w(e)$ be the cost of an element in \mathcal{E}. Problem: Find the element $\mathcal{A} \in \mathcal{F}$ of maximal cardinality such that the total cost is minimal/maximal.

The Greedy algorithm for minimization problems

- $\mathcal{A}=\emptyset$.
- Sort the elements of \mathcal{E} in increasing order with respect to $w(e)$.
- Take the first element $e \in \mathcal{E}$ in the list. If $\mathcal{A} \cup\{e\}$ is still independent \Longrightarrow let $\mathcal{A}:=\mathcal{A} \cup\{e\}$.
- Continue with the next element.
- Continue until either the list is empty, or \mathcal{A} has the maximal cardinality.
- What are the corresponding algorithms in Examples I and II?

Examples

- Example I (linearly independent vectors): Let

$$
\begin{aligned}
\boldsymbol{A} & =\left(\begin{array}{ccccc}
1 & 0 & 2 & 0 & 1 \\
0 & -1 & -1 & 1 & 1 \\
3 & 2 & 8 & 1 & 4 \\
2 & 1 & 5 & 0 & 2
\end{array}\right), \\
\boldsymbol{w}^{\mathrm{T}} & =\left(\begin{array}{lllll}
10 & 9 & 8 & 4 & 1
\end{array}\right) .
\end{aligned}
$$

- Choose the maximal independent set with the maximal weight.
- Can this technique solve LP problems?
- Example II (minimum spanning trees): The maximal set of cycle-free links in an undirected graph is a spanning tree; in a graph $\mathcal{G}=(\mathcal{N}, \mathcal{E})$, it has $|\mathcal{N}|-1$ links.
- Classic greedy algorithm (Kruskal's algorithm) has complexity $O(|\mathcal{E}| \cdot \log (|\mathcal{E}|))$. The main cost is in the sorting itself.
- Prim's algorithm builds the spanning tree through graph search techniques, from node to node; complexity $O\left(|\mathcal{N}|^{2}\right)$.
- Example III (in fact not a matroid problem): LP relaxation of the $0 / 1$ knapsack problem (BKP):

$$
\begin{aligned}
& \operatorname{maximize} f(\boldsymbol{x})=\sum_{j=1}^{n} c_{j} x_{j}, \\
& \text { subject to } \sum_{j=1}^{n} a_{j} x_{j} \leq b, \quad\left(a_{j}, b \in \mathcal{Z}_{+}\right) \\
& \quad 0 \leq x_{j} \leq 1, \quad j=1, \ldots, n
\end{aligned}
$$

- Greedy algorithm: Sort c_{j} / a_{j} in descending order; set the variables to 1 until the knapsack is full. The last variable may become fractional.
- LP duality shows that the greedy algorithm is correct.
- Rounding down gives a feasible solution to (BKP). Is it also optimal in (BKP)?

$$
\begin{gathered}
\operatorname{maximize} \\
\text { subject to } \\
\sum_{j=1}^{n} x_{1}+c x_{2} \leq c, \\
\\
x_{1}, x_{2} \in\{0,1\},
\end{gathered}
$$

where c is a positive integer.

- If $c \geq 2$ then $\boldsymbol{x}^{*}=(0,1)^{\mathrm{T}}$ and $f^{*}=c$.
- The greedy algorithm, plus rounding, always gives $\overline{\boldsymbol{x}}=(1,0)^{\mathrm{T}}$, with $f(\overline{\boldsymbol{x}})=2$; an arbitrarily bad solution.
- Example IV: the traveling salesman problem (TSP)
- The greedy algorithm would select the next best city which does not lead to a sub-tour. Optimal?

Figure 1: Greedy

Optimal

- Not optimal when $c \gg 0$.
- Example V: the shortest path problem (SPP)
- The greedy algorithm constructs a path that uses, locally, the cheapest link to reach a new node. Optimal?

Figure 2: Greedy

Optimal

- Not optimal when $c \gg 0$.
- Example VI: Semi-matching:

$$
\begin{aligned}
& \text { maximize } f(\boldsymbol{x})=\sum_{i=1}^{m} \sum_{j=1}^{n} w_{i j} x_{i j}, \\
& \text { subject to } \sum_{j=1}^{n} x_{i j} \leq 1, \quad i=1, \ldots, m, \\
& \\
& \quad x_{i j} \in\{0,1\}, \quad i=1, \ldots, m, j=1, \ldots, n .
\end{aligned}
$$

- Semi-assignment: replace maximum \Longrightarrow minimum;

$$
" \leq " \Longrightarrow "=" ; m=n .
$$

- Algorithm: For each i : take best $w_{i j}$, set $w_{i j}=1$ for that j, and $w_{i j}=0$ for every other j.

Matroid types

- Graph matroid: $\mathcal{F}=$ the set of forests in a graph $\mathcal{G}=(\mathcal{N}, \mathcal{E})$. Example problem: MST.
- Partition matroid: Consider a partition of \mathcal{E} into m sets $\mathcal{B}_{1}, \ldots, \mathcal{B}_{m}$ and let $d_{i}(i=1, \ldots, m)$ be non-negative integers. Let

$$
\mathcal{F}=\left\{\mathcal{I}|\mathcal{I} \subseteq \mathcal{E} ; \quad| \mathcal{I} \cap \mathcal{B}_{i} \mid \leq d_{i}, i=1, \ldots, m\right\}
$$

Example problems: semi-matching; bipartite graphs.

- Matrix matroid: $S=(\mathcal{E}, \mathcal{F})$, where \mathcal{E} is a set of column vectors and \mathcal{F} is the set of subsets of \mathcal{E} with linearly independent vectors. Observe: The above matroids can be written as matrix matroids!

Problems over matroid intersections

- Given two matroids $M=(\mathcal{E}, \mathcal{P})$ and $N=(\mathcal{E}, \mathcal{R})$, find the maximum cardinality set in $\mathcal{P} \cap \mathcal{R}$.
- Example 1: maximum-cardinality matching is the intersection of two partition matroids.
- The intersection of two matroids can not be solved by using the greedy algorithm.
- There exist polynomial algorithms for them. For example, matching and assignment problems can be solved as maximum flow problems, which are polynomially solvable.
- Example 2: The traveling salesman problem (TSP) is the intersection of three matroids: a graph matroid and two partition matroids (see its formulation using assignment + tree constraints).
- Conclusion: Matroid problems are extremely easy; two-matroid problems are polynomial; three-matroid problems are very difficult!

The traveling salesman problem-three formulations

Three formulations of the undirected TSP, which give rise to different algorithms when Lagrangian relaxed or otherwise manipulated.

$$
\begin{align*}
& \operatorname{minimize} \sum_{i=1}^{n} \sum_{j=1}^{n} c_{i j} x_{i j} \\
& \text { subject to } i \in \mathcal{N} \\
& \sum_{j=1}^{n} x_{i j}=1, j \in \mathcal{N} \tag{1}\\
& \sum_{i=1}^{n} x_{i j}=1, \mathcal{S} \subset \mathcal{N} \tag{2}\\
& \sum_{i \in \mathcal{S}} \sum_{j \in \mathcal{S}} x_{i j} \leq|\mathcal{S}|-1, \tag{3}\\
& x_{i j} \in\{0,1\}, i, j \in \mathcal{N}
\end{align*}
$$

- Tree-based formulation. (1)-(2): Assignment; (3): cycle-free.
- Lagrangian relax (3): Assignment.
- Lagrangian relax (1)-(2): 1-MST, if adding redundant constraints from the original problem.

$$
\begin{array}{ll}
\operatorname{minimize} & \sum_{i=1}^{n} \sum_{j=1}^{n} c_{i j} x_{i j} \\
\text { subject to } & i \in \mathcal{N} \\
\sum_{j=1}^{n} x_{i j}=2, & \\
\sum_{i=1}^{n} \sum_{j=1}^{n} x_{i j}=n, & \mathcal{S} \subset \mathcal{N} \\
\sum_{(i, j) \in(\mathcal{S}, \mathcal{N} \backslash \mathcal{S})} x_{i j} \geq 1, & x_{i j} \in\{0,1\}, \quad i, j \in \mathcal{N} \tag{3}
\end{array}
$$

- Node adjacency based formulation. (1): Adjacency condition; (2): Redundant; (3): cycle-free (alternative version). [Hamilton cycle is a spanning tree + one link, such that every node is adjacent to two nodes.]
- Lagrangian relax (1), except for node s : 1-tree relaxation.
- Lagrangian relax (3): 2-matching.

For directed graphs:

$$
\begin{array}{ll}
\text { minimize } & \sum_{(i, j) \in \mathcal{E}} c_{i j} x_{i j} \\
\sum_{j:(i, j) \in \mathcal{E}} x_{i j}=1, & i \in \mathcal{N}, \\
\sum_{i:(i, j) \in \mathcal{E}} x_{i j}=1, & j \in \mathcal{N}, \\
\sum_{(i, j) \in \mathcal{E}} x_{i j}=|\mathcal{N}|, & \\
\sum_{(i, j) \in \mathcal{S}, \mathcal{N} \backslash \mathcal{S})^{+}} x_{i j}+\sum_{(j, i) \in(\mathcal{S}, \mathcal{N} \backslash \mathcal{S})^{-}} x_{i j} \geq 1, & \mathcal{S} \subset \mathcal{N}, \\
x_{i j} \in\{0,1\}, & (i, j) \in \mathcal{E} . \tag{4}
\end{array}
$$

- Tree-based formulation. (1)-(2): assignment; (3): Redundant; (4) Cycle-free.
- Lagrangian relax (1) or (2), plus (4): semi-assignment.
- Lagrangian relax (3) plus (4): assignment.
- Lagrangian relax (1), and (2) except for node s : directed 1-tree relaxation.

