Optimization of maintenance planning at Volvo Aero Corporation (VAC)

Fraunhofer CHALMERS Research Centre Industrial Mathematics

Ann-Brith Strömberg 2 October 2007

Background

Maintenance of aircraft engines is expensive:

- spare parts cost up to 2 Mkr
- total cost for maintenance of a jet engine: 15-30 Mkr
- rent for a spare engine: 15 kkr/day

Opportunistic maintenance:

At each maintenance occation, possible to *replace more componentes than* what is absolutely *necessary*

⇒ totally fewer maintenance occations

⇒ totally lower cost

The purpose of the project

 Create a *methodology* that generates good *replacement schedules* for components in aircraft engines

- Consider:
 - Life time restricted and "on condition"-components
 - Fixed cost when an engine/module is taken to the workshop
 - *Work costs* to set free engine modules and components
 - Utilize a *store* of used components
- *Minimize total flight hour cost* during the contract period

An optimization model for the whole contract period

- For each component *i* in the module:
 - Cost for a new component: c_i
 - Life of a new component: T_i
 - *Remaining life* of current component: τ_i
- *Contract period* divided into *T time periods* t = 1,...,T
 (a' 50 flight hours)
- Maintenance possible at start of each time period (*discrete time steps*)
- A *fixed cost* per maintenance occation: *d*

Industrial Mathematics

A mathematical optimization model for maintenance planning of a module

Definition of variables

Basic mathematical model: one module, N parts, T time steps

minimize $\sum_{i=0}^{T-1} \left(\sum_{i=N} c_i x_{it} + dz_i \right)$ subject to $\sum_{i=1}^{\tau_i} x_{it} \ge 1, \quad i \in N,$ replace part before its remaining life is over $\sum_{i=1}^{T_i+l-1} x_{it} \ge 1, \qquad l = 1, \dots, T - T_i, \quad i \in N, \quad \text{replace part at least once in a lifetime}$ $x_{it} \leq z_t$, $t = 0, \dots, T-1$, $i \in N$, replace part only at maintenance occation $x_{it} \in \{0, 1\}, \quad t = 0, \dots, T - 1, \quad i \in N,$ $z_t \in \{0, 1\}, \quad t = 0, \dots, T - 1.$

 $x_{it} \in \{0, 1\}$ can be relaxed to $x_{it} \ge 0$

Integrality property (TU)!

Costs for spare parts vs. fixed maintenance costs

d = fixed cost per maintenance occation (inspection, transport, admin, ...)

Optimal maintenance plans for 3 levels of the fixed cost

Comparison of the methods

- An engine module with 10 components
- Only life time restricted components

Value policyOptimization

Comparison of the methods using stochastic simulations

- An engine module with 10 components
- Parts 1, 4, 5, 6, 9, 10 are OC (Weibull)

• Average values from 200 scenarios

Value policy

Optimization

Conclusions from the simulations

- + Optimization ⇒ *always best plan w.r.t. cost (10-30% savings)*
- + Solution time typically a few CPU-seconds (one module)
- Compared also with
 - *"age policy"* (replace part older than a certain age limit, optimize age limits)
 - *"no method"* (replace only broken parts, not opportunistic)
 - + The optimization model is *best* also here

+ Optimization ⇒ *fewer maintenance occations*

A store of used components

- For each part *i* in the module there is a *store of used* components at time 0 (at present maintenance occation):
 - *Costs* for used components: k_{i1} , k_{i2} , ...
 - *Remaining lives* of used components: *t*_{*i*1}, *t*_{*i*2}, ...
- Additional variables:

A tool for optimization and decision support at maintenance planning

- For one engine module and a store of new and used (at time 0) parts
- Implemented in Excel for input and presentation of results
- With Xpress-MP as IP solver

Life of part Maintenance Start of planning period over End of planning period occations Del 1 Del 2 Replace by a used part at time 0 Del 3 Del 4 Del 5 Let the current Dei 6 part remain in the module Del 7 Replace by Life of current Life left at end of Replace by a new part part over planning period a new part

Replace by a new part before life is over

An optimal maintenance schedule for 7 components in an engine module

at time 0

Several modules in an engine

- Work costs to set modules free
- Work costs to set components free

A model for a whole engine

if component i in module m is replaced at time t $x_{it}^m = \begin{cases} \\ \end{cases}$ otherwise *if* component *i* in module *m* is removed at time *t* otherwise if the engine is maintained at time t $W_t = \begin{cases} 1 \\ 0 \end{cases}$ otherwise *if* acitivity *n* is done at time *t* $v_{nt} = \begin{cases} 1 \\ 0 \end{cases}$ otherwise *if* module *m* is maintained at time *t* $z_t^m = \langle$ otherwise

A model for a whole engine

Includes:

- Costs for several work tasks
- Dependencies between components – graph structure
- Possibility to *fix* certain activities in advance

minimize	$\sum_{t} \left(\sum_{m} \left(\sum_{i} \left(c_{i}^{m} \cdot x_{it}^{m} + a_{i}^{m} \cdot y_{it}^{m} \right) \right) \right) \right)$	$\left) \right) + d_t \cdot w_t + \sum_n b_n \cdot v_{nt} \right)$
subject to	$\sum_{t} z_t^m \le T f_m$	$\forall M$
	$ \widetilde{T}_{i}^{m} \underset{t=0}{\overset{\sum}{\sum}} x_{it}^{m} \ge f_{m} $	if $(\tilde{T}_i^m \le T-1)$, $i \in N^m$, $\forall m$
S	$T_i^m + l - 1$ $\sum_{t=l} x_{it}^m \ge f_m$	$l=1,\ldots,T-T_i^m, i\in N^m, \forall m$
	$\sum_{j \in \delta^{m}(i)} y_{jt}^{m} \ge y_{it}^{m}$	$i \in N^m$, $\forall m$, $\forall t$
Ire	$z_t^m \le \sum_{n \in A^m} v_{nt}$	$\forall m, \forall t$
	$v_{nt} \le \sum_{n' \in A(n)} v_{n't}$	$\forall n, \forall t$
	$x_{it}^m \le y_{it}^m \le z_t^m \le w_t$	$i \in N^m, \ \forall m, \ \forall t$
	$y_{it}^{m}, z_{t}^{m}, v_{nt} \in \{0,1\}$	$i \in N^m, \forall m, \forall n, \forall t$
	$x_{it}^m, w_t \ge 0$	$i \in N^m, \ \forall m, \ \forall t$

Results from initial tests for a whole engine

More ...

- Alternative *solution approaches*, decomposition methods:
- Solve the basic model very many times
 - Benefit from solving it efficiently
- Study the *structure* of the basic mathematical *model*
 - New formulations ⇒ significant *reduction of execution time*
- Tests are going on
 - Vary fixed costs and # time steps
 - Vary age of existing engine
 - How good is the first feasible solution found (for time 0)?

