TMA521/MMAS510

Optimization, project course
[ntroduction: simple/difficult problems, matroid
problems

Ann-Brith Stromberg
2008-09-02

0-0

TMA521/MMAS510 Optimization, project course

e =~ 3 meetings/lectures per week during three—four weeks

e Projects:

— Lagrangian relaxation for a VLSI design problem (Matlab
package)

— Large-scale set covering problems: heuristics and optimizing
methods (competition!)

e Literature:
Optimization Theory for Large Systems (L.S. Lasdon, Dover
2002), lecture notes, hand-outs from books and articles.

e Examination: Written reports on the two projects. Oral
presentations and opposition!

e For higher grades than pass (4, 5, VG): oral exam.

Topics: Turning difficult problems into a sequence
of simpler problems (decomposition—coordination)

e Lagrangian relaxation (IP, NLP)

e Dantzig-Wolfe decomposition (LP)

e Benders decomposition (IP, NLP)

e Column generation (LP, IP, NLP)

e Heuristics (IP)

e Branch & Bound (IP, non-convex NLP)
e Greedy algorithms (IP, NLP)

e Subgradient optimization (convex NLP, Lagrangian duals)

Simple problems—Wolsey

For simple problems, there exist polynomial algorithms (they
belong to the complexity class P), preferably with a small largest

exponent.

Network flow problems (shortest paths; maximum flows;
minimum cost (single-commodity) network flows; transportation

problem; assignment problem; maximum cardinality matching).
See Wolsey!

Linear programming

Problems over simple matroids (next!)

Matroids and the greedy algorithm (Lawler)

o Greedy algorithm: Create a “complete solution” by
iteratively choosing the best alternative. Never regret a

previous choice.

e Which problems can be solved using such a simple
method?

— Problems whose feasible sets can be described by

matroids.

Matroids and independent sets

e Given a finite set £ and a family F of subsets of £.

If 7€ FandZ CZimply 7’ € F, then the elements of F are
called independent.

e A matroid M = (£, F) is a structure in which £ is a finite set of
elements and F is a family of subsets of £, such that

1.) € F and all proper subsets of a set Z in F are in F.
2. If 7, and Z, 4, are sets in F with |Z,| = p and |Z,41| =p+ 1,
then 3 an element e € Z, 11 \ Z, such that Z, + e € F.

e Let M = (£,F) be a matroid and A C E. If Z and Z' are
mazimal independent subsets of A, then |Z| = |Z'|.

Matroids—Example I:
E = a set of column vectors in R"”

F = the set of linearly independent subsets of vectors in £.

10 2 1 0]
Example n=3and £ =[e1,...,e5]= [0 1 1 0 0
320 0 1

We have {e1,e3,e3} € F but {e1,eq,e3,e5} € F and
{61764765} 95-7:

Matroids—Example 11:

£ = the set of links (edges, arcs) in an undirected graph =

{e1,e3,€3,€e4,€5,€6, €7}

F = the set of all cycle-free subsets of links in £

!

€1

i

€4

€9 eo
e1
@67 @MS
€9 eo
€6
e1| &3 O 61E—E5>@
€4
{61762764767} S F) {62764767} S F) {62763765} ¢ -T-.a
{61762763767} € :’ta {61764765766767} ¢ fa {62} cF.

O
O

Matroids and the greedy algorithm—Example II:

e Let w(e) be the cost of element e € £.
Problem: Find the element Z € F of maximal cardinality such

that the total cost is at minimum /maximum.

e Example II-continued: w(€) = (7,4,2,15,6, 3,2)

An element Z € F of maximal

cardinality with minimum total cost

The Greedy algorithm for minimization problems
1. A=10.
2. Sort the elements of £ in increasing order with respect to w(e).

3. Take the first element e € £ in the list. If AU {e} is still
independent = let A := AU {e}.

4. Repeat from step 3. with the next element—until either the list

is empty, or A has the maximal cardinality.

What are the corresponding algorithms in Examples I and II?

Examples

e Example I (linearly independent vectors): Let

(1 0 2 0 1)
0 -1 -1 1 1
A= ,
3 2 8 1 4
\2 1 5 0 2

wT:(m 9 8 4 1).

e Choose the maximal independent set with the maximal weight.

e Can this technique solve linear programming problems?

10

11

e Example II (minimum spanning trees): The maximal set of
cycle-free links in an undirected graph is a spanning tree; in a

graph G = (N, €), it has |[N| — 1 links.

e Classic greedy algorithm (Kruskal’s algorithm) has complexity
O(|€| -1og(|€])). The main cost is in the sorting itself.

e Prim’s algorithm builds the spanning tree through graph search
techniques, from node to node; complexity O(|JN[?).

e Example III (in fact not a matroid problem):
Continuous relaxation of the 0/1-knapsack problem (BKP):

n

maximize f(x) := chxj,

7=1

subject to Zaja;j < b, (aj,be Z4)
g=1
OSCC]'SL jzl,...,n.

e Greedy algorithm: Sort ¢;/a; in descending order; set the
variables to 1 until the knapsack is full. One variable may

become fractional and the rest zero.

e Linear programming duality shows that the greedy algorithm is

correct.

12

Linear programming dual:

n
minimize bu + E wj,
j=1
subject to a;u + w;
U
Wj

Hint: Complementarity slackness.

AVARR AVARR V]

13

e Rounding down gives a feasible solution to (BKP).
Is it also optimal in (BKP)?
maximize f(x) := 2x1 + cxa,
subject to x1 + cxa < ¢, (ce Z,)
z1,x2 € {0,1},

e If c>2then z* = (0,1)! and f* =c.

e The greedy algorithm, plus rounding, always gives = (1,0)!,
with f(&) = 2; an arbitrarily bad solution (for ¢ large).

14

e Example IV: the traveling salesman problem (TSP)

e The greedy algorithm would select the next best city which does
not lead to a sub-tour. Optimal?

2 2

e At e

2

Figure 1: Greedy Optimal when ¢ > 4

e Not optimal when ¢ > 0.

15

e Example V: the shortest path problem (SPP)

e The greedy algorithm constructs a path that uses, locally, the
cheapest link to reach a new node. Optimal?

Figure 2: Greedy Optimal when ¢ > 9

e Not optimal when ¢ > 0.

16

e Example VI: Semi-matching:

m n
maximize f(x) := Zzwz’jxija

i=1 j=1

n
subject to Z:I:Z-j <1, 1=1,...,m,
j=1
xijE{O,l}, r=1,....,m, 3=1,...,n.

e Semi-assignment: replace maximum = minimum;
44 2 G__7”, -
< = "=y m=n.

e Algorithm: For each 4: take best w;;, set w;; =1 for that j, and
w;; = 0 for every other j.

17

Matroid types

e Graph matroid: F = the set of forests in a graph G = (W, £).
Example problem: MST.

e Partition matroid: Consider a partition of £ into m sets

By,...,B, and let d; (i =1,...,m) be non-negative integers. Let
.7::{I|I§8, ‘IQBZ|§dz,Z:1,,m}
Example problems: semi-matching in bipartite graphs.

e Matrix matroid: S = (€, F), where £ is a set of column vectors
and F is the set of subsets of £ with linearly independent vectors.

Observe: The above matroids can be written as matrix matroids!

18

19

Problems over matroid intersections

Given two matroids M = (£,P) and N = (£,R), find the

maximum cardinality set in P N'R.

Ezample 1. maximum-cardinality matching in a bipartite graph
is the intersection of two partition matroids (with d; = 1).

The intersection of two matroids can not be solved by using the

greedy algorithm.

There exist polynomial algorithms for them. For example,
bipartite matching and assignment problems can be solved as
maximum flow problems, which are polynomially solvable.

e Fxample 2: The traveling salesman problem (TSP) is the
intersection of three matroids: a graph matroid and two partition
matroids (see its formulation using assignment + tree

constraints).
e TSP is not solvable in polynomial time.

e Conclusion:
— Matroid problems are extremely easy to solve
— Two-matroid problems are polynomially solvable

— Three-matroid problems are very difficult!

20

The traveling salesman problem—three different
mathematical formulations

Different formulations of the (undirected) TSP, which give
rise to different algorithms when Lagrangian relaxed or
otherwise manipulated.

21

Tree-based formulation
(1)—(2): assignment; (3): cycle-free

n o n
minimize E E CijLij

i=1 j=1
subject to inj =1, i €N, (1)
j=1
Y my=1, jEN, (2)
i=1
NS w<lsl o1 SN, @
i€S jes

xijE{O,l}, ’i,jEN.
e Relax (3): Assignment.

e Relax (1)—(2): 1-MST, if adding redundant constraints from the
original problem.

Node adjacency based formulation. (1): Adjacency condition;

(2): Redundant; (3): cycle-free (alternative version)

[Hamilton cycle = spanning tree 4+ one link: every node adjacent to
two nodes]

n n
minimize E E CijLij

i=1 j=1

subject to Z?Zl Tij = 2, i €N, (1)
>3 es=n ®
i=1 j=1
Z xi; > 1, S CN, (3)

(1,7)€(S, N\S)
Tij € {0,1}, 1,7 eN.
e Relax (1), except for node s: 1-tree relaxation.

e Relax (3): 2-matching.

Tree-based formulation for directed graphs
(1)—(2): assignment; (3): Redundant; (4) Cycle-free

minimize Z CijLij
(i,7)€E
subject to Z Tij = 1, i €N, (1)
j:(3,7)€E
Z Ti; = 1, jeN, (2)
i:(1,5)€E
> @ =N, (3)
(i,7)€€
Z Ti; + Z xi; > 1, S CWN, (4)
(4,5)€(S, N\S) T (7,9)E(S, N\S)~

Tij € {07 1}7 (7’7]) Sy
e Relax (1) or (2), plus (4): semi-assignment.
e Relax (3) plus (4): assignment.

e Relax (1), and (2) except for node s: directed 1-tree relaxation.

24

