/ Formulation of LP on column generation
form—Dantzig—Wolfe decomposition

~

Let X = {x € R} | Az = b} (or Az < b) be a polyhedron

with the extreme points P, p € P and the extreme
recession directions &', r € R2

P=1{1,2,...,7)
R =1{1,2)

Cutting Plane, Column generation and
Dantzig—Wolfe decomposition

26 September 2008

0-0

/ An LP and its complete master problem

[LP1] 2* = minimum clr

subject to Ax = b (“simple” constraints)

~

Dx = d (complicating constraints)

x>0

Let X ={x > 0| Ax = b} with the extreme points &?,
p € P and the extreme directions ", r € R =

\

x = Z)\p:ianZuT:%’" \

peEP reER

=1
e X <= e

A >0, peP

pr 20, reR

x € X is a convex combination of the extreme points plus

a conical combination of the extreme directions

This inner representation of the set X can be used to

reformulate a linear optimization problem according to the

Dantzig-Wolfe decomposition principle, which is then
Qolved by column generation. J




/The dual of [LP2] is given by (not all extreme pts./dirs.
found yet: P C P; R CR)

[DLP2] z* < max d'm +q

(7,9)

with solutions (7, q)
Reduced cost for the variable )\, p € P \ P is given by
(cTxP) — (DxP)"n — G = (c — D w)Ta? — g
Reduced cost for the variable u,, 7 € R \ R is given by
(c'z") — (D&")"® = (c — D &) &"

st. (DzP)'m+q<(c"z?), peP |X
(Dz")'m <(c*z"), reR |ur

~

/
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[LP2] 2* = min Z M\ (cTZP) + Z e (cT&")

peEP reR
st. Y A(Da?)+ Y p(DE)=d |«
peP reR

Z)‘pzl | q

peEP
Aps tir > 0, Vp, 7

Number of constraints in [LP2] equals to “the number of
constraints in Dz =d” + 1

Number of columns very large (# extreme pts./dirs. to X)

\ /

/ Example

2ip =min 2x;+3z2+ x3+ 414

IP]  st. 3214222+ 323+224=5 | Dx =d
T14+ o+ T3+ x4=2
x1  xe x3 1x4€{0,1}

S =
= = o O
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0
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S = O =
—_ o o =~
S = = O
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\Optimal solution: x}» = (0,1,1,0)T 2p =

~

/ Column generation \

The least reduced cost is found by solving the subproblem

min (¢ — D m)Tx (alt: min (¢ — D'7)Tx — q)
zeX zeX

Gives as solution an extreme point, &P, or an extreme
direction "

= a new column in [LP2]: (if < 0)

ctzp ctz"
Either | DzP | or | Dx" | enters the problem and
1 0

Kimproves the solution J




//ﬁpm 2 —min B+ 30 4 6h 4+ it TAs+ 5 )
s.t. BAy 4 6Xg + BAg + 5Ag + 4hs + BAg =5

A+ et As+ M+ A+ =1

Ay Az, Az, Ay As, Ag>0

LP-relaxation

z* <max 5w +q
2" S min 5)\1 + 3)\2 + 6)\3 + 4)\4

s.t. bm+qg<5
s.t. 5>\1+6)\2+5)\3+5)\4:5
67 +q<3
M+ A+ A+ =1
5m 4+ q<6
)\17 >\2) >\37 )\420
om +q<4
Solution:
x: (0,0,0,1)T, = _17 q:9

Reduced costs: mi)r(1{(5, 5,4,6)x — 9} =0
k4SS

. /

. _ PTa\T,.. =
lgél)l(l(c D 7m)'x—q

= ml)I(l{[(Qa 37 1a4) - (37 2a37 2) ’ (_2)} T — 15}
TE

- 15} = 1
Z1:111122{(8, 7,7,8)x — 15} <0

New extreme point in [LP1]: 2* = (0,1,1,0)T

clz?

Column in [LP2]:

4
Azt | =15
1 1

\

Start columns: A, A2, A3 T1+ To+ T3+ 4=2 [z€X
[LP2] [DLP2] 0< @1z a3 a4<1 [zeX
z* <min 5A; + 3Ag + 63 z* <max bm+q 1 1 1 0 0 0
s.t. BA1 +6My +D5A3=5 st. bmr+q<5 X = conv ! , 0 , 0 , ! , ! 0 =conv{z!,..., 2%}
0 1 0 1 0 1
)\1+ )\2+ )\3:1 67T+Q§3 0 0 1 0 1 1
> <
) Al; )\2; >\3_0 57T+q_6 :{$ER4‘w:Z§=1)\piﬁp; Zf;:lApzl; /\p20,p=1,,6}
Solution: A=(1,0,0)T, T=-2, = 15/ K /
11 10
/ New, extended problem \ / Reduced costs \
[DLP2]
[LP2]




-

Numerical example of Dantzig-Wolfe

\

~

decomposition
min r, — 3.T2 (0)
st. — 1 + 215 < 6 (1) (complicating)
T + T2 S 5 (2)
r zo > 0 (3)
x
( 2
(1
X = {zeRi|n+2, <5}
— T T T
= conv {(0,0)",(0,5)",(5,0)"} "
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/ Optimal solution to [LP2] and [LP1]
A*=(0,0,0,1,0,0)T, a*=-1, ¢ =9
— z*=z'=(0,1,1,0)T =z}, Z*=4=z

It was a coincidence that the solution was integral!

In general, the solution * to [LP1] can have fractional
variable values. In this case we could have found an
integral (not necessary optimal) solution among the
extrempoints generated so far.

\

/
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/ Iteration 1 \
min — 15X, (0)
s.t. 10A2<6 (1) | Solution: A= (34T
M+ =1 Dual solution: 7 = —%, qg=20

>\17)\2 20

Least reduced cost: néin [(c" — D)z — q]
= min ([(1,=3) = (-2)(—1,2)] = — 0)

c'z = (1,-3)(5,0)" =5
Dz = (-1,2)(5,0)T = -5

=min{-lz; |11+ 2, <52>0"}=-3<0= 17
New column:
=

\
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/ Complete DW-master problem

( 0 0 5 5As
r = )\1 + )\2 + )\3 =
0 5 0 5

x € X < {
M+ A+ A3=1
\ A1, A2, A3 > 0
min  — 15Xy + 53 (0)
st 10ds— 5\ <6 (1)
M+ A+ =1
A1, A2, A3 >0

The first master problem is constructed from the points

K(O’O)T and (0,5)" (corresponds to A\; and \,)

)

~

/
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Block-angular structure

max ¢; &+ T2+ + crx,
st.Dixy+ Doxo+ - + Dz, <d |7
Az <b |z € X4
Az <by|xy € Xy

Ax,<b,|xz, € X,

L1, L2, , Ly 20

X=X xXox...xX,

17

/ Iteration 2 \

min —15)\2 + 5)\3

s.t.  10A2 —B5A3 <6 | Solution: A= (0, %’ %)T
Al + A2+ A3=1 | Dual solution: 7 = —%, q= —g
A1, A2, A3 >0
Least reduced cost: II}:_I)I(I [(cT —rD)x — q]
=min ([(1,=8) = (-§)(-1.2)] = - (-§))
=min{-lz1-1zo+ 3|21+ 22 <5z > 0%} =0
Optimal solution: A* = (0, 11, 14—5)T
= x" = (5M\3,50)T = (5, 5)T; z*=5-3-4=-92

\
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/ DW decomposition as decentralized planning \

e Main office (master problem) sets prizes (7) for the
common resources (complicating constraints).

e Departments (subproblems) suggest (production) plans
(D;x%) based on given prices.

e Main office mixes suggested plans optimally; new prices.

Master problem

prices prices
plan pla N

Subproblem 2

Subproblem 1 Subproblem n

. /
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