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Benders decomposition for mixed-integer
optimization problems—Lasdon (1970)

e Model:

minimum c'x + f(y),
subject to Ax + F(y) > b,
x>0" yeSs.

e The variables y are “difficult” because:
— the set S may be complicated, like S C {0, 1}

— f and/or F may be nonlinear

— the vector F(y) may cover every row, while the
problem in x for fixed y may separate

e The problem is linear, possibly separable in x; “easy”



Example: Block-angular structure in x, binary
constraints on y, linear in x, nonlinear in y

min ¢ X1+ -+ cox, + f(y)
S.t. A1X1 -+ Fl(y') Z b1

X1,X2, ", Xp >0

y €40,1}?



e Typical application: Multi-stage stochastic
programming (optimization under uncertainty)

— Some parameters (constants) are uncertain

— Choose y (e.g., investment) such that an expected
cost over time is minimized

— Uncertainty in data is represented by future
scenarios (£)

— Variables x, represent future activities

— y must be chosen before the outcome of the
uncertain parameters is known

— Choose y s.t. the expected value over scenarios ¢ of
the future optimization over x; (= x,(y)) is the best



A two-stage stochastic program

min Zp£ .c;x, + dly
el
S.t. Ang + Tgy

b,, €L
0, /€L

XY

Vv



e Solution idea: Temporarily fix y, solve the remaining
problem over x parameterized over y = solution x(y).
Utilize the problem structure to improve the guess of
an optimal value of y. Repeat.

e Similar to minimizing a function n over two vectors, v
and w:

inf n(v,w) = inf £(v), where &{(v) = inf n(v,w), v € R™.

V,W

e In effect, we substitute the variable w by always
minimizing over it, and work with the remaining

problem in v



e Benders decomposition: construct an approximation
of this problem over v by utilizing LP duality

e If the problem over y is also linear

= cutting plane methods from above

e Benders decomposition is more general:

Solves problems with positive duality gaps!

e Benders decomposition does not rely on the existence
of optimal Lagrange multipliers and strong duality



The Benders sub- and master problems
e The model revisited:

minimum c¢'x + f(y),
subject to Ax + F(y) > b,
x>0" yes.
e Which values of y are feasible?

Choose y € S such that the remaining problem in x is
teasible

e Choose y in the set
R:={yeS|3dIx>0" with Ax>b—-F(y)}



Apply Farkas’ Lemma to this system, or rather to the
equivalent system (with y fixed):

Ax —s=b - F(y)
x>0" s>0"

e rom Farkas’ Lemma, y € R if and only if
Atu<0" , u>0" = [b-F(y)|'u<o0

This means that y € R if and only if [b — F(y)]*u? <0
holds for every extreme direction u},2=1,...,n, of
the polyhedral cone C = {u € R? | ATu < 0"}

e We here made good use of the Representation Theorem
for a polyhedral cone



e Given y € R, the optimal value in Benders’ subproblem
1S

minimum c'x,

X

subject to Ax > b — F(y),
x > 0",
e By LP duality, this equals
maximum [b — F(y)]'u,

u

subject to ATu < c,
u> 0",

provided that the first problem has a finite solution



e We prefer the dual formulation, since its constraints do
not depend on y

e Moreover, the extreme directions of its feasible set are

given by the vectors u}, 7 =1,...,n,, discussed above
e Let u;,i=1,...,n,, denote the extreme points of this
set

e This completes the subproblem

o Let’s now study the restricted master problem (RMP)
of Benders’ algorithm
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e The original model:

minimum c¢'x -+ / (Y)a

subject to Ax + F(y) > b,
x>0" yebs.

e This is equivalent to

min {f(y)%—mxin{CTX |Ax > b—F(y);x > 0" }}

yeSsS

— min { f(y)+max {[b-F(y)]"u [ATu < c; uz 0"} )

YER

~mip {7()+ max (b P}

yeER
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.. continued ...

i {1v)+ mox (b~ F(y)]"ul

YER 1,

= min 2

st. 2> f(y) +[b—F(y)]'u?, i=1,...

y € R,

= min 2

st. 2> f(y) +[b—F(y)]'u?, i=1,...

0>[b—-F(y)] u

79

1 =1,....n,,

yeS.
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e Suppose that not the whole sets of constraints in the
latter problem is known

e This means that not all extreme points and directions
tor the dual problem are known

e Replace e =1,...,n,” with s € [;” and
““=1,...,n,” with “ € I,” where I; C {1,...,n,}
and I, C {1, ,nr}

e Since not all constraints are included, we get a lower
bound on the optimal value of the original problem
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e Suppose that (z°,y") is a finite optimal solution to this
problem

e To check if this is indeed an optimal solution to the
original problem: check for the most violated

constraint, which we
— either satisfy, = y' is optimal

— or not, = include this new constraint, extending
either the set I; or I, and possibly improving the

lower bound.
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e The search for a new constraint is solving the dual of
Benders’ subproblem with y = y':

maximum [b — F(y")]'u,

subject to ATu < c,
u>0",

= a new extreme point or direction due to a new

objective

e The solution u(y") to this (dual) problem corresponds
to a feasible (primal) solution (x(y"),y") to the original
problem, and therefore also an upper bound on the
optimal value, provided that it is finite
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e If this problem has an unbounded solution, then it is
unbounded along an extreme direction:

[b—F(y°)["uj >0
= Add the constr. 0 > [b — F(y)]*u’ to RMP (enlarge I)
e Suppose instead that the optimal solution is finite:

= Let u; be an optimal extreme point
If 2° < f(y") + [b — F(y")]'u?, add the constraint
z> f(y)+[b—F(y)]*u? to RMP (enlarge I)
o If 2° > f(y") + [b — F(y")]*u? then equality must hold
(> cannot happen—why?)

= We then have an optimal solution to the original
problem and terminate.



Convergence

e Suppose that S is closed and bounded and that f and
F are both continuous on S. Then, provided that the
computations are exact, we terminate in a finite

number of iterations with an optimal solution.

e Proof is due to the finite number of constraints in the
complete master problem, that is, the number of
extreme points and directions in any polyhedron.

e A numerical example of the use of Benders

decomposition is found in Lasdon (1970,
Sections 7.3.3-7.3.5).
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e Note the resemblance to the Dantzig—Wolfe algorithm!
In fact, if f and F both are linear, then they coincide,
in the sense that (the duals of) their subproblems and
restricted master problems are identical!

e Modern implementations of the Dantzig—Wolfe and
Benders algorithms are inexact, that is, at least their
RMP:s are not solved exactly.

e Moreover, their RMP:s are often restricted such that
there 1s an additional “box constraint” added. This
constraint forces the solution to the next RMP to be

relatively close to the previous one.
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e The effect is that of a stabilization; otherwise, there is
a risk that the sequence of solutions to the RMP:s
“jump about,” and convergence becomes slow as the
optimal solution is approached.

e This was observed quite early on with the
Dantzig—Wolte algorithm, which even can be enriched
with non-linear “penalty” terms in the RMP to further

stabilize convergence.

e In any case, convergence holds also under these
modifications, except perhaps for the finiteness.



Branch and Price

Branch and Bound with column generation
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A linear integer problem

Z¥=min  x1 + 229 = (1,0), z* =1

S.t. 201 + 229 > 1

r1,x9 € {0, 1},

Zip=min T + 29 T7p = (
S.t. 2331 -+ 2513'2 Z 1

L1, L2 < [07 1]
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About Branch—and—Bound
[LP] 1 %2

min ry + 2, 1 1
s.t. 201 + 229 > 1 ZLP

r1,Te € [0,1] - \?\
x1=0 r1=1 = Tl
z=1 zppo =1 \1

xrpo = (0,2)| LPO IP1 |z;pp=1 271
xrp1 = (1,0)
[LPO] LP1]
min 2z, min 1 + 2x5
s.t. 209 > 1 s.t. 2421, > 1

Ty € [O, 1] Ty € [0, 1]



A Branch—and—Bound tree

((z1p)1=7.315)

r3=1

<7 >8
(21<7) p (212>8)
Tr1= r1=1
LPO LP1
x3=0 r3=1 x4=0 Tr4=1
LPO00 LPO01 LP10 LP11
xo=0 ro=1 x5=0 r5=122=0 ro=1 xr3=0
LP000 LPO001 [LP010 [LPO1]1 LP100 LP101 LP110 [LP111

etc.
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Branch—and—price for linear 0/1 problems

Consider the DW—column generation setting:

[IP] 2% = min c'x

s.t. Dx=d
xeX={xeB" | Ax=b}={x"|pe P}

Inner representation (and convexification):

ConVX—{XZ)\pxp > A =1 A >0, peP}

pEP pEP

Let ¢, = ¢'x? and d, = DX, p € P.
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Stronger formulation—Master problem
|CP] 2p = Zep = Min Zcp/\p

st. Y dp),=d

Ay € {0,1}, peP

A continuous relaxation ([CP®™] to A, > 0) of [CP] gives
the same lower bound as the Lagrangian dual for the
constraints Dx = d. (2} p < 288" < 25p)

The continuous relaxation [LP] of [IP] is never better than
any Lagrange dual bound.
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Restricted master problem

Let P C P—only a subset of the columns are generated

[C_P} zép > 288" < Zop = min Z CpAp

pEP
st. Y dpA,=d

pEP
D=1 (%)
pEP

Ap 2> 0, pEP
(cp clx?
e Generate columns | d, | = | DxP | until an (almost) optimal

p
\ 1 1
solution to [CPc°"?], Xp (p € P), is found = X = D peP prcp
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Branching over variable z; with 0 < z; <1

zr; =0 or r; =1
0 0
szz:)\pa_??:() QZJ:Z/\pZ?Z;:l

p€EP pEP
Y 4
delete col’s Z Ap = Z A, =1 replaces (%)
peP:z=1 peP:zh=1
0 )
replaces (x) Z Ap =1 Z A, = 0 delete col’s

p€75:a_3§:O pEﬁ:a‘:?zO
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CPE

ij:() CI?jzl

CPEO CPEk1

k *k
26pk1 2 2CPk
k k
26pPk0 2 2CPk

e In each node (CP, CP0O, CP1, ...): Generate columns
until (almost) optimal (all reduced costs > 0) or
verified infeasible

o If x7.p;, feasible = 2fp., > 27p = Cut off the
branch (k,¢,...)

— Cut branches (Ta Sy ) with ZE’P?“S... > Zé’Pkﬁ...
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The column generation subproblem, reduced costs

e min (c—DT7"Tx —¢* = (c—DT#")TxP — ¢ =: &(xP)
xeX

o (7",4%) is a dual solution to the RMP and
XF=Xn{x|z; =k}, k €{0,1} (etc. down the tree)

cTxP

o If ¢(xP) < 0 then (Dxp> is a new column in [CPk]

1
e Minimization? X" is good enough if ¢(X") < 0
e If ¢(xP) > 0 then no more columns are needed to solve
|[CPE] to optimality.

e Same columns may be generated in different nodes —
create “column pool” to check w.r.t. reduced costs ¢
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An instance solved by Branch—and—price

Zfp=min x1 +2xy =2z5p >2&P'=z2}p=min z1+ 2z
s.t. 2x1+2x9 >1 s.t. 2x1+ 229> 1
xy, 22 € {0,1} 0<z1,20 <1
(
0 0 1 1 A3+ 2 Ay >0
conv.X = conv A« : , , — 3T Z)\p =1 P =
\ 0 1 0 1 Ao+ p=1 \V/p

CP 2&BY =min 2y + A3 + 34
S.t. 2A9 +2X3+4M4>1
M+ A+ A3+ =1
A, Ao, Az, Ay >0
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Start columns: )\ and \;

0 1
Choose e.g., and , that is, the variables A1 and As
0 0

288" < min A3 = max m+gq
s.t. 2 3 >1 s.t. q<0
A1+ A3=1 2n+¢g<1
A1, 23>0 T >0

Solution: (A1,A3) = (3,3) = x=(2,00T,7=1,3=0

Reduced costs: minyejo 12 {(0,1)x} = 0 = Optimum for CP!

Fixations: 1 =0 or z1=1

| ¢
A3 =0 A =0



Branching, left (CPO0): A3 =0

min 0

s.t. 0>1
A =1
A1 >0

—

= maxX T +¢(q

s.t. q

infeasible

U
add

column

<0

2m +q <2

™

>

zopo < min 2o
s.t. 2X9 >1
A1+ =1
A1, A9 >0

Solution: (/)\\1,/):2) = (%7 %)

Reduced costs: minyej 12 {(—1,0)x -0} = -1 <0
—> New column! (A3 or A4, but A3 = 0) = Choose A4
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zopo < min  2\y + 34
s.t. 2 o +4M4>1
AL+ A+ A =1
A1, A2, A4 >0

e Solution: ()\1, )\3, )\4) <470 %) —
e Reduced costs: minyepp 152 {(—3, %)x

e Generate new column: Az, but A3 =

33



Branching, right (CP1): A\; =0

Zep1 S min - A3 N
— max 7w+gq

S.t. 2)\321
s.t. 2n4+¢<l1

A3 =1
T >0

A3 >0

e Solution: A3 =1 == (1,0)T,7=0,5=1
e Reduced costs: mingepo 112 {(1,2)x -1} = -1 <0 =

e Generate new column: A\, but Ay = 0 = Optimum for CP1 !!

Branching, left, left: (CP00) Ay = \y, =0
CPO00: A =A3=M\=0— infeasible
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Branching, left, right: (CP01) A\, =0
CPO1: )\1 — )\3 =0

zopolr < min 22Xy + 3\ = max w+gq
s.t. 2Xo +4X4>1 s.t. 2m4+q<2
Ao+ =1 4 +q<3
A2, Ay >0 >0

e Solution: (A, \s) = (1,0)T = %= (0,1)T,7=0,§=2

0
e Reduced costs: minygepo 12 {(1,2)x — 2} = -2 <0
—> Generate new column: A, but Ay =0
—> Generate new column: A3, but A3 =0
— Optimum for CP01 !!
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infeasible

Branch—and—price tree

CP
Ir1 =
A3 =

CPO
Iro =
A =
CP01
zcpol = 2

/}ZC’P01 — (07 1)

r1 =
A1 =
CP1
zcp1 =1
Xcp1 = (1,0)"
z1p <1
T
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el
N
|

o]

CPO1

XCPO

XCP

X

-
P

AN >k
= XcprP1 = Xjp

201 + 229 > 1
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