Lecture 3-4: Lagrangian duality and algorithms for the Lagrangian dual problem

Ann-Brith Strömberg

2008-09-05

The Relaxation Theorem

• Problem: find

$$f^* = \underset{\mathbf{x}}{\text{infimum}} f(\mathbf{x}),$$
 (1a)

subject to
$$\mathbf{x} \in S$$
, (1b)

where $f: \mathbb{R}^n \to \mathbb{R}$ is a given function and $S \subseteq \mathbb{R}^n$

• A relaxation to (1a)–(1b) has the following form: find

$$f_R^* = \inf_{\mathbf{x}} f_R(\mathbf{x}),$$
 (2a)

subject to
$$\mathbf{x} \in S_R$$
, (2b)

where $f_R : \mathbb{R}^n \to \mathbb{R}$ is a function with $f_R \leq f$ on S and $S_R \supseteq S$.

Relaxation example—Maximization!!

• The binary knapsack problem

$$z^* = \underset{\mathbf{x} \in \{0,1\}^4}{\text{maximize}} \quad 7x_1 + 4x_2 + 5x_3 + 2x_4$$

subject to $3x_1 + 3x_2 + 4x_3 + 2x_4 \le 5$

has the optimal solution $\mathbf{x}^* = (1, 0, 0, 1), z^* = 9$

• Its continuous relaxation

$$z_{\text{LP}}^* = \underset{\mathbf{x} \in [0,1]^4}{\text{maximize}} \quad 7x_1 + 4x_2 + 5x_3 + 2x_4$$

subject to $3x_1 + 3x_2 + 4x_3 + 2x_4 \leq 5$

has the optimal solution $\mathbf{x}_{R}^{*} = (1, \frac{2}{3}, 0, 0), z_{R}^{*} = 9\frac{2}{3} > z^{*}$

• \mathbf{x}_{R}^{*} is not feasible in the binary problem

The relaxation theorem

1. [relaxation]

$$f_R^* \le f^*$$

- 2. [infeasibility] If (2) is infeasible, then so is (1)
- 3. [optimal relaxation]

If the problem (2) has an optimal solution, \mathbf{x}_{R}^{*} , for which it holds that

$$\mathbf{x}_R^* \in S$$
 and $f_R(\mathbf{x}_R^*) = f(\mathbf{x}_R^*),$

then \mathbf{x}_{R}^{*} is an optimal solution to (1) as well.

• Proof portion. For 3., note that

$$f(\mathbf{x}_R^*) = f_R(\mathbf{x}_R^*) \le f_R(\mathbf{x}) \le f(\mathbf{x}), \quad \mathbf{x} \in S$$

Lagrangian relaxation

• Consider the optimization problem:

$$f^* = \inf_{\mathbf{x}} \inf f(\mathbf{x}), \tag{3a}$$

subject to
$$\mathbf{x} \in X$$
, (3b)

$$g_i(\mathbf{x}) \le 0, \qquad i = 1, \dots, m, \qquad (3c)$$

where $f: \mathbb{R}^n \to \mathbb{R}$ and $g_i: \mathbb{R}^n \to \mathbb{R}$ (i = 1, 2, ..., m) are given functions, and $X \subseteq \mathbb{R}^n$

• Here we assume that

$$-\infty < f^* < \infty, \tag{4}$$

that is, that f is bounded from below and that the problem has at least one feasible solution

• For a vector $\boldsymbol{\mu} \in \mathbb{R}^m$, we define the Lagrange function

$$L(\mathbf{x}, \boldsymbol{\mu}) = f(\mathbf{x}) + \sum_{i=1}^{m} \mu_i g_i(\mathbf{x}) = f(\mathbf{x}) + \boldsymbol{\mu}^{\mathrm{T}} \mathbf{g}(\mathbf{x})$$

• We call the vector $\boldsymbol{\mu}^* \in \mathbb{R}^m$ a Lagrange multiplier if it is non-negative and if $f^* = \inf_{\mathbf{x} \in X} L(\mathbf{x}, \boldsymbol{\mu}^*)$ holds.

Lagrange multipliers and global optima

• Let μ^* be a Lagrange multiplier. Then, \mathbf{x}^* is an optimal solution to

$$f^* = \inf\{f(\mathbf{x}) \mid \mathbf{x} \in X, g_i(\mathbf{x}) \le 0, i = 1, \dots, m\},\$$
if and only if it is feasible and

$$\mathbf{x}^* \in \arg\min_{\mathbf{x} \in X} L(\mathbf{x}, \boldsymbol{\mu}^*), \text{ and } \mu_i^* g_i(\mathbf{x}^*) = 0, i = 1, \dots, m$$

• Notice the resemblance to the KKT conditions! If $X = \mathbb{R}^n$ and all functions are in C^1 then " $\mathbf{x}^* \in \arg\min_{\mathbf{x} \in X} L(\mathbf{x}, \boldsymbol{\mu}^*)$ " is the same as the force equilibrium condition, the first row of the KKT conditions. The second item, " $\mu_i^* g_i(\mathbf{x}^*) = 0$ for all i" is the complementarity conditions

The Lagrangian dual problem associated with the Lagrangian relaxation

• The Lagrangian dual function is

$$q(\boldsymbol{\mu}) = \underset{\mathbf{x} \in X}{\text{infimum}} L(\mathbf{x}, \boldsymbol{\mu})$$

• The Lagrangian dual problem is to

$$q^* = \underset{\boldsymbol{\mu} \ge \mathbf{0}^m}{\operatorname{aximize}} \ q(\boldsymbol{\mu}) \tag{5}$$

• For some μ , $q(\mu) = -\infty$ is possible. If this is true for all $\mu > 0^m$ then

$$q^* = \underset{\boldsymbol{\mu} \geq \mathbf{0}^m}{\operatorname{supremum}} \ q(\boldsymbol{\mu}) = -\infty$$

• The effective domain of q is

$$D_q = \{ \boldsymbol{\mu} \in \mathbb{R}^m \mid q(\boldsymbol{\mu}) > -\infty \}$$

[Theorem] D_q is convex, and q is concave on D_q

- That the Lagrangian dual problem always is convex is very good news!
- We indeed maximize a concave function
- But we need still to show how a Lagrangian dual optimal solution can be used to generate a primal optimal solution

Weak Duality Theorem

Let \mathbf{x} and $\boldsymbol{\mu}$ be feasible in

$$f^* = \inf\{f(\mathbf{x}) \mid \mathbf{x} \in X, g_i(\mathbf{x}) \le 0, i = 1, \dots, m\}$$

and $q^* = \max\{q(\boldsymbol{\mu}) \mid \boldsymbol{\mu} \ge \mathbf{0}^m\},$ respectively.
Then,

$$q(\boldsymbol{\mu}) \le f(\mathbf{x})$$

In particular,

$$q^* \le f^*$$

If $q(\boldsymbol{\mu}) = f(\mathbf{x})$, then the pair $(\mathbf{x}, \boldsymbol{\mu})$ is optimal in the respective problem and $q^* = q(\boldsymbol{\mu}) = f(\mathbf{x}) = f^*$

• Weak duality is also a consequence of the Relaxation Theorem: For any $\mu \geq 0^m$, let

$$S = X \cap \{ \mathbf{x} \in \mathbb{R}^n \mid \mathbf{g}(\mathbf{x}) \le \mathbf{0}^m \},$$

$$S_R = X,$$

$$f_R = L(\boldsymbol{\mu}, \cdot)$$

Apply the Relaxation Theorem

- If $q^* = f^*$, there is no duality gap.
- If there exists a Lagrange multiplier vector, then by the weak duality theorem, there is no duality gap.

Global optimality conditions

• The vector $(\mathbf{x}^*, \boldsymbol{\mu}^*)$ is a pair of an optimal primal solution and a Lagrange multiplier if and only if

$$\boldsymbol{\mu}^* \geq \mathbf{0}^m, \qquad \text{(Dual feasibility)} \qquad \text{(6a)}$$

$$\mathbf{x}^* \in \arg\min_{\mathbf{x} \in X} L(\mathbf{x}, \boldsymbol{\mu}^*), \qquad \text{(Lagrangian optimality)}$$

$$\mathbf{x}^* \in X, \quad \mathbf{g}(\mathbf{x}^*) \leq \mathbf{0}^m, \qquad \text{(Primal feasibility)} \qquad \text{(6c)}$$

$$\mu_i^* g_i(\mathbf{x}^*) = 0, \quad i = 1, \dots, m \qquad \text{(Complementary slackness)}$$

$$\text{(6d)}$$

• If $\exists (\mathbf{x}^*, \boldsymbol{\mu}^*)$ that fulfil (6), then there is a zero duality gap and Lagrange multipliers exist

Saddle points

• The vector $(\mathbf{x}^*, \boldsymbol{\mu}^*)$ is a pair of an optimal primal solution and a Lagrange multiplier if and only if $\mathbf{x}^* \in X$, $\boldsymbol{\mu}^* \geq \mathbf{0}^m$, and $(\mathbf{x}^*, \boldsymbol{\mu}^*)$ is a saddle point of the Lagrangian function on $X \times \mathbb{R}^m_+$, that is,

$$L(\mathbf{x}^*, \boldsymbol{\mu}) \le L(\mathbf{x}^*, \boldsymbol{\mu}^*) \le L(\mathbf{x}, \boldsymbol{\mu}^*), \quad (\mathbf{x}, \boldsymbol{\mu}) \in X \times \mathbb{R}^m_+,$$
holds

• If $\exists (\mathbf{x}^*, \boldsymbol{\mu}^*)$, equivalent to the global optimality conditions, the existence of Lagrange multipliers, and a zero duality gap

Strong duality for convex programs, introduction

- Convexity of the dual problem comes with very few assumptions on the original, primal problem
- The characterization of the primal—dual set of optimal solutions is also quite easily established
- To establish *strong duality*—sufficient conditions under which there is no duality gap—takes much more
- In particular—as with the KKT conditions—we need regularity conditions (constraint qualifications) and separation theorems

Strong duality Theorem

• Consider the problem (3), that is,

$$f^* = \inf\{f(\mathbf{x}) | \mathbf{x} \in X, g_i(\mathbf{x}) \le 0, i = 1, \dots, m\},\$$

where $f: \mathbb{R}^n \to \mathbb{R}$ and g_i (i = 1, ..., m) are convex and $X \subseteq \mathbb{R}^n$ is a convex set

• Introduce the following constraint qualification (CQ):

$$\exists \mathbf{x} \in X \text{ with } \mathbf{g}(\mathbf{x}) < \mathbf{0}^m \tag{7}$$

Strong duality Theorem

Suppose that $-\infty < f^* < \infty$, and that the CQ (7) holds for the (convex) problem (3)

- (a) There is no duality gap and there exists at least one Lagrange multiplier μ^* . Moreover, the set of Lagrange multipliers is bounded and convex
- (b) If infimum in (3) is attained at some \mathbf{x}^* , then the pair $(\mathbf{x}^*, \boldsymbol{\mu}^*)$ satisfies the global optimality conditions (6)
- (c) If the functions f and g_i are in C^1 and X is open (for example, $X = \mathbb{R}^n$) then (6) equal the KKT conditions

If all constraints are linear we can remove the CQ(7).

Example I: An explicit, differentiable dual problem

• Consider the problem to

minimize
$$f(\mathbf{x}) := x_1^2 + x_2^2$$
, subject to $x_1 + x_2 \ge 4$, $x_j \ge 0$, $j = 1, 2$

• Let $g(\mathbf{x}) = -x_1 - x_2 + 4$ and $X = \{ (x_1, x_2) \mid x_j \ge 0, \ j = 1, 2 \} = \mathbb{R}^2_+$

• The Lagrangian dual function is

$$\begin{split} q(\mu) &= \min_{\mathbf{x} \in X} L(\mathbf{x}, \mu) := f(\mathbf{x}) + \mu(-x_1 - x_2 + 4) \\ &= 4\mu + \min_{\mathbf{x} \geq \mathbf{0}} \left\{ x_1^2 + x_2^2 - \mu x_1 - \mu x_2 \right\} \\ &= 4\mu + \min_{x_1 \geq 0} \left\{ x_1^2 - \mu x_1 \right\} + \min_{x_2 \geq 0} \left\{ x_2^2 - \mu x_2 \right\}, \ \mu \geq 0 \end{split}$$

- For a fixed $\mu \geq 0$, the minimum is attained at $x_1(\mu) = \frac{\mu}{2}, x_2(\mu) = \frac{\mu}{2}$
- Substituting this expression into $q(\mu)$, we obtain that $q(\mu) = f(\mathbf{x}(\mu)) + \mu(-x_1(\mu) x_2(\mu) + 4) = 4\mu \frac{\mu^2}{2}$
- Note that q is *strictly concave*, and it is differentiable everywhere (due to the fact that f, g are differentiable and $\mathbf{x}(\mu)$ is unique)

• Recall the dual problem

$$q^* = \max_{\mu \ge 0} q(\mu) = \max_{\mu \ge 0} \left(4\mu - \frac{\mu^2}{2}\right)$$

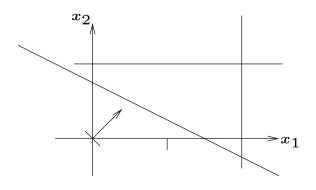
- We have that $q'(\mu) = 4 \mu = 0 \iff \mu = 4$. As $4 \ge 0$, this is the optimum in the dual problem!
- $\Rightarrow \mu^* = 4 \text{ and } \mathbf{x}^* = (x_1(\mu^*), x_2(\mu^*))^T = (2, 2)^T$
 - Also: $f(\mathbf{x}^*) = q(\mu^*) = 8$
 - In this example, the dual function is differentiable. The optimum \mathbf{x}^* is also unique and automatically given by $\mathbf{x}^* = \mathbf{x}(\mu^*)$

Example II: Implicit non-differentiable dual problem

• Consider the linear programming problem to

minimize
$$f(\mathbf{x}) := -x_1 - x_2$$
, subject to $2x_1 + 4x_2 \le 3$, $0 \le x_1 \le 2$, $0 \le x_2 \le 1$

• The optimal solution is $\mathbf{x}^* = (3/2, 0)^T$, $f(\mathbf{x}^*) = -3/2$

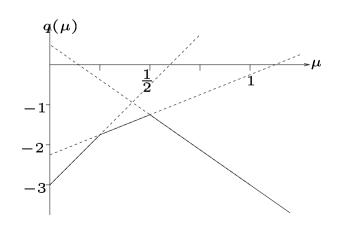


Lagrangian relax the first constraint:

$$L(\mathbf{x}, \mu) = -x_1 - x_2 + \mu(2x_1 + 4x_2 - 3);$$

$$q(\mu) = -3\mu + \min_{0 \le x_1 \le 2} \left\{ (-1 + 2\mu)x_1 \right\} + \min_{0 \le x_2 \le 1} \left\{ (-1 + 4\mu)x_2 \right\}$$

$$= \begin{cases} -3 + 5\mu, & 0 \le \mu \le 1/4, & \Leftrightarrow & x_1(\mu) = 2, x_2(\mu) = 1 \\ -2 + \mu, & 1/4 \le \mu \le 1/2, & \Leftrightarrow & x_1(\mu) = 2, x_2(\mu) = 0 \\ -3\mu, & 1/2 \le \mu & \Leftrightarrow & x_1(\mu) = x_2(\mu) = 0 \end{cases}$$



$$\mu^* = \frac{1}{2}, \ q(\mu^*) = -\frac{3}{2}$$

- For linear (convex) programs strong duality holds, but how obtain \mathbf{x}^* from μ^* ?
- q is non-differentiable at μ^* . Utilize the characterization given in (6)
- First, the subproblem solution set at μ^* is $X(\mu^*) = \{ \begin{pmatrix} 2\alpha \\ 0 \end{pmatrix} \mid 0 \le \alpha \le 1 \}.$
- Among the subproblem solutions, we next have to find one that is primal feasible as well as complementary
- Primal feasibility means that $2 \cdot 2\alpha + 4 \cdot 0 \leq 3 \iff \alpha \leq 3/4$
- Further, complementarity means that $\mu^* \cdot (2x_1^* + 4x_2^* 3) = 0 \iff \alpha = 3/4$, since $\mu^* \neq 0$.
- Conclusion: the only primal vector \mathbf{x} that satisfies the system (6) together with the dual solution $\mu^* = 1/2$ is $\mathbf{x}^* = (3/2, 0)^{\mathrm{T}}$

- Observe finally that $f^* = q^*$
- Why must $\mu^* = 1/2$?
- According to the global optimality conditions, the optimal solution must in this convex case be among the subproblem solutions.
- Since x_1^* is not in one of the "corners" (it is between 0 and 2), the value of μ^* has to be such that the cost term for x_1 in $L(\mathbf{x}, \mu^*)$ is identically zero! That is, $-1 + \mu^* \cdot 2 = 0$ implies that $\mu^* = 1/2!$
- A non-coordinability phenomenon—a non-unique subproblem solution means that the optimal solution is not obtained automatically
- In non-convex cases (e.g., integrality constraints) the optimal solution may not be among the points in $X(\mu^*)$.
- What do we do then??

Subgradients of convex functions

• Let $f : \mathbb{R}^n \to \mathbb{R}$ be a convex function. A vector $\mathbf{p} \in \mathbb{R}^n$ is a subgradient of f at $\mathbf{x} \in \mathbb{R}^n$ if

$$f(\mathbf{y}) \ge f(\mathbf{x}) + \mathbf{p}^{\mathrm{T}}(\mathbf{y} - \mathbf{x}), \qquad \mathbf{y} \in \mathbb{R}^n$$

- The set of such vectors \mathbf{p} defines the subdifferential of f at \mathbf{x} , and is denoted $\partial f(\mathbf{x})$
- $\partial f(\mathbf{x})$ is the collection of "slopes" of the function f at \mathbf{x}
- For every $\mathbf{x} \in \mathbb{R}^n$, $\partial f(\mathbf{x})$ is a non-empty, convex, and compact set

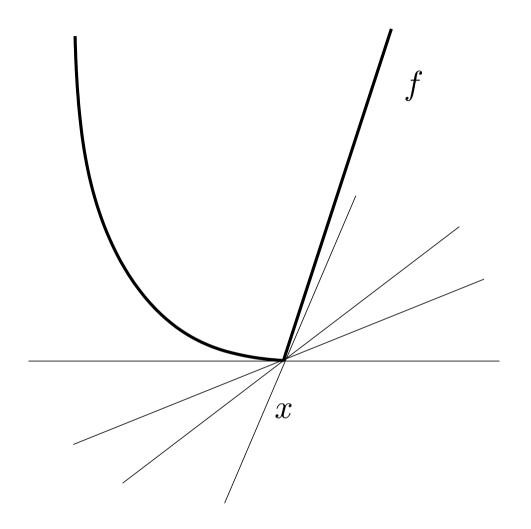


Figure 1: Four possible slopes of the convex function f at x

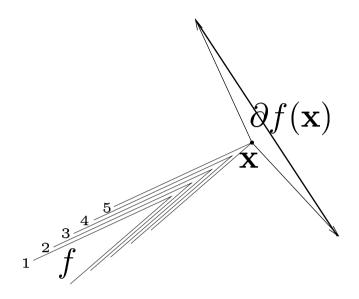


Figure 2: The subdifferential of a convex function f at \mathbf{x} . f is indicated by level curves.

• The convex function f is differentiable at \mathbf{x} when there exists one and only one subgradient of f at \mathbf{x} — the gradient of f at \mathbf{x} , $\nabla f(\mathbf{x})$

Differentiability of the Lagrangian dual function: Introduction

• Consider the problem (3): $f^* = \inf\{f(\mathbf{x}) \mid \mathbf{x} \in X, g_i(\mathbf{x}) \leq 0, i = 1, \dots, m\},$ and assume

$$f, g_i(\forall i)$$
 continuous; X nonempty and compact (8)

• The set of solutions to the Lagrangian subproblem

$$X(\boldsymbol{\mu}) = \arg\min_{\mathbf{x} \in X} L(\mathbf{x}, \boldsymbol{\mu})$$

is non-empty and compact for every $\boldsymbol{\mu} \in \mathbb{R}^m$

• We develop the sub-differentiability properties of the function q

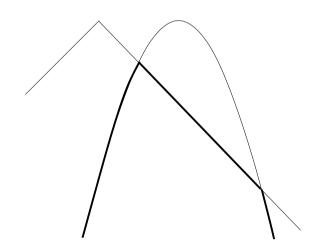
Subgradients and gradients of q

- Suppose that (8) holds in the problem (3)
- The dual function q is finite, continuous and concave on \mathbb{R}^m . If its supremum over \mathbb{R}^m_+ is attained, then the optimal solution set therefore is closed and convex
- Let $\mu \in \mathbb{R}^m$. If $\mathbf{x} \in X(\mu)$, then $\mathbf{g}(\mathbf{x})$ is a subgradient to q at μ , that is, $\mathbf{g}(\mathbf{x}) \in \partial q(\mu)$
- Proof. Let $\bar{\boldsymbol{\mu}} \in \mathbb{R}^m$ be arbitrary. We have that

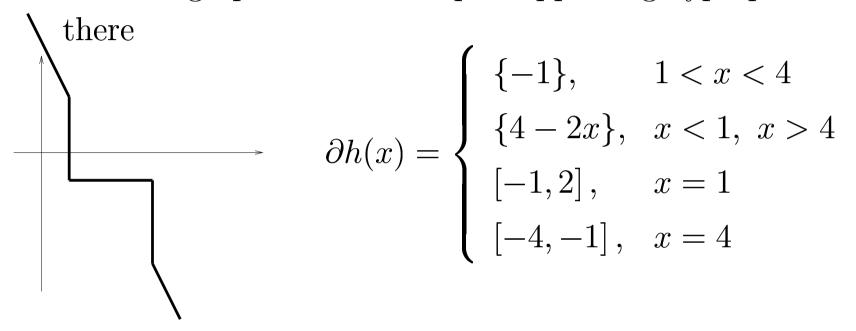
$$q(\bar{\boldsymbol{\mu}}) = \underset{\mathbf{y} \in X}{\text{infimum}} L(\mathbf{y}, \bar{\boldsymbol{\mu}}) \leq f(\mathbf{x}) + \bar{\boldsymbol{\mu}}^{T} \mathbf{g}(\mathbf{x})$$
$$= f(\mathbf{x}) + (\bar{\boldsymbol{\mu}} - \boldsymbol{\mu})^{T} \mathbf{g}(\mathbf{x}) + \boldsymbol{\mu}^{T} \mathbf{g}(\mathbf{x})$$
$$= q(\boldsymbol{\mu}) + (\bar{\boldsymbol{\mu}} - \boldsymbol{\mu})^{T} \mathbf{g}(\mathbf{x})$$

Example

- Let $h(x) = \min\{h_1(x), h_2(x)\}$, where $h_1(x) = 4 |x|$ and $h_2(x) = 4 (x 2)^2$
- Then, $h(x) = \begin{cases} 4-x, & 1 \le x \le 4, \\ 4-(x-2)^2, & x \le 1, x \ge 4 \end{cases}$



• The function h is non-differentiable at x = 1 and x = 4, since its graph has non-unique supporting hyperplanes



• The subdifferential is here either a singleton (at differentiable points) or an interval (at non-differentiable points)

The Lagrangian dual problem

- Let $\mu \in \mathbb{R}^m$. Then, $\partial q(\mu) = \text{conv} \{ \mathbf{g}(\mathbf{x}) \mid \mathbf{x} \in X(\mu) \}$
- Let $\mu \in \mathbb{R}^m$. The dual function q is differentiable at μ if and only if $\{ \mathbf{g}(\mathbf{x}) \mid \mathbf{x} \in X(\mu) \}$ is a singleton set. Then,

$$\nabla q(\boldsymbol{\mu}) = \mathbf{g}(\mathbf{x}),$$

for every $\mathbf{x} \in X(\boldsymbol{\mu})$

• Holds in particular if the Lagrangian subproblem has a unique solution $[X(\mu)]$ is a singleton set]. E.g., if X is convex, f is strictly convex on X, and g_i is convex $\forall i$

How do we write the subdifferential of h?

- Theorem: If $h(\mathbf{x}) = \min_{i=1,...,m} h_i(\mathbf{x})$, where each function h_i is concave and differentiable on \mathbb{R}^n , then h is a concave function on \mathbb{R}^n
- Let $\mathcal{I}(\bar{\mathbf{x}}) \subseteq \{1, \dots, m\}$ be defined by $h(\bar{\mathbf{x}}) = h_i(\bar{\mathbf{x}})$ for $i \in \mathcal{I}(\bar{\mathbf{x}})$ and $h(\bar{\mathbf{x}}) < h_i(\bar{\mathbf{x}})$ for $i \notin \mathcal{I}(\bar{\mathbf{x}})$ (the active segments at $\bar{\mathbf{x}}$)
- Then, the subdifferential $\partial h(\bar{\mathbf{x}})$ is the convex hull of $\{\nabla h_i(\bar{\mathbf{x}}) \mid i \in \mathcal{I}(\bar{\mathbf{x}})\}$, that is,

$$\partial h(\bar{\mathbf{x}}) = \left\{ \xi = \sum_{i \in \mathcal{I}(\bar{\mathbf{x}})} \lambda_i \nabla h_i(\bar{\mathbf{x}}) \left| \sum_{i \in \mathcal{I}(\bar{\mathbf{x}})} \lambda_i = 1; \ \lambda_i \ge 0, i \in \mathcal{I}(\bar{\mathbf{x}}) \right. \right\}$$

Optimality conditions for the dual problem

 \bullet For a differentiable, concave function h it holds that

$$\mathbf{x}^* \in \arg\max_{\mathbf{x} \in \mathbb{R}^n} h(\mathbf{x}) \iff \nabla h(\mathbf{x}^*) = \mathbf{0}^n$$

• Theorem: Assume that h is concave on \mathbb{R}^n . Then,

$$\mathbf{x}^* \in \arg\max_{\mathbf{x} \in \mathbb{R}^n} h(\mathbf{x}) \iff \mathbf{0}^n \in \partial h(\mathbf{x}^*)$$

• Proof. Suppose that $\mathbf{0}^n \in \partial h(\mathbf{x}^*) \Longrightarrow$ $h(\mathbf{x}) \leq h(\mathbf{x}^*) + (\mathbf{0}^n)^{\mathrm{T}}(\mathbf{x} - \mathbf{x}^*)$ for all $\mathbf{x} \in \mathbb{R}^n$, that is, $h(\mathbf{x}) \leq h(\mathbf{x}^*)$ for all $\mathbf{x} \in \mathbb{R}^n$ Suppose that $\mathbf{x}^* \in \arg\max_{\mathbf{x} \in \mathbb{R}^n} h(x) \Longrightarrow$ $h(\mathbf{x}) \leq h(\mathbf{x}^*) = h(\mathbf{x}^*) + (\mathbf{0}^n)^{\mathrm{T}}(\mathbf{x} - \mathbf{x}^*)$ for all $\mathbf{x} \in \mathbb{R}^n$, that is, $\mathbf{0}^n \in \partial h(\mathbf{x}^*)$

- The example: $0 \in \partial h(1) \Longrightarrow x^* = 1$
- For optimization with constraints the KKT conditions are generalized:

$$\mathbf{x}^* \in \arg\max_{\mathbf{x} \in X} h(\mathbf{x}) \iff \partial h(\mathbf{x}^*) \cap N_X(\mathbf{x}^*) \neq \emptyset,$$

where $N_X(\mathbf{x}^*)$ is the normal cone to X at \mathbf{x}^* , that is, the conical hull of the active constraints' normals at \mathbf{x}^*

- In the case of the dual problem we have only sign conditions $\mu \geq 0^m$
- Consider the dual problem

$$q^* = \underset{\boldsymbol{\mu} \geq \mathbf{0}^m}{\operatorname{maximize}} \ q(\boldsymbol{\mu})$$

• $\mu^* \geq 0^m$ is then optimal if and only if there exists a subgradient $\mathbf{g} \in \partial q(\mu^*)$ for which the following holds:

$$\mathbf{g} \leq \mathbf{0}^m; \quad \mu_i^* g_i = 0, \ i = 1, \dots, m$$

• Compare with a one-dimensional max-problem (h concave): $x^* \ge 0$ is optimal if and only if

$$h'(x^*) \le 0; \quad x^* \cdot h'(x^*) = 0$$