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The Relaxation Theorem
e Problem: find
f*= inﬁr)l;lum f(x), (1a)
subject to x € S, (1b)

where f : R" — R is a given function and S C R"”
e A relaxation to (1a)—(1b) has the following form: find

fi = infimum fp(x), (2)
subject to x € Skg, (2b)

where fr:R"™ — R is a function with fr < f on S and
Sr 2 S.



Relaxation example—Maximization!!

e The binary knapsack problem

*

2" = maximize 7Tx1 + 4xo + dx3 + 214
x€e{0,1}4
subject to 3r1 +3x9 +4x3+ 224 < 5
has the optimal solution x* = (1,0,0,1), z* =9

e [ts continuous relaxation

2{p = maximize Txq1 + 4xg + bxs + 214
x€[0,1]4

subject to 3z1 +3x0 +4x3+224 < 5

> z*

wN

has the optimal solution x} = (1, %, 0,0), 2z =9

e Xp is not feasible in the binary problem



The relaxation theorem

. [relaxation] fe < f*
. [infeasibility] If (2) is infeasible, then so is (1)
. [optimal relaxation]

If the problem (2) has an optimal solution, x%, for which it holds
that

xp €S and  fr(xg)= f(XR),

then x}, is an optimal solution to (1) as well.

Proof portion. For 3., note that

f(xg) = fr(xR) < fr(X) < f(x), x€§



Lagrangian relaxation
e Consider the optimization problem:
f*= inﬁr}r{mm f(x), (3a)
subject to x € X, (3b)
g;(x) <0, i=1,...,m, (3c)

where f:R"— Rand ¢g; :R*" — R (i =1,2,...,m) are
given functions, and X C R"

e Here we assume that
—o00 < f* < oo, (4)

that is, that f is bounded from below and that the
problem has at least one feasible solution



e For a vector u € R™, we define the Lagrange function
L(x,p) = f(x)+ Z pigi(x) = f(x) + p g(x)
i=1

e We call the vector u* € R™ a Lagrange multiplier if it
is non-negative and if f* = infycx L(x, u*) holds.



Lagrange multipliers and global optima

e Let u* be a Lagrange multiplier. Then, X* is an
optimal solution to
f*=inf{f(x)|x € X,9;(x) <0,i=1,...,m},
if and only if it is feasible and

X" € arg mi}r(l L(x,p"), and p;g;(x") =0,i=1,...,m
X€

e Notice the resemblance to the KKT conditions!
If X = R"” and all functions are in C! then

7 1s the same as the force

“x* € argmingex L(x, p*)
equilibrium condition, the first row of the KKT
conditions. The second item, “ufg;(x*) = 0 for all 7" is

the complementarity conditions



The Lagrangian dual problem associated with the
Lagrangian relaxation

e The Lagrangian dual function is

q(p) = infimum L(x, p)

e The Lagrangian dual problem is to

¢" = maximize q(1) (5)
e For some u, q(p) = —oo is possible. If this is true for
all > 0™ then
¢* = supremum q(pt) = —0oC

p>om



e The effective domain of q is
Dy={pneR"|q(p)>—oco}

[ Theorem] D, is convex, and ¢ is concave on D,

e That the Lagrangian dual problem always is convex is
very good news!

e We indeed maximize a concave function

e But we need still to show how a Lagrangian dual
optimal solution can be used to generate a primal
optimal solution



Weak Duality Theorem

Let x and p be feasible in

ff=inf{f(x)|x€ X,9;(x) <0,e=1,...,m}

and ¢* = max{ q(u) |pe > 0™}, respectively.
Then,

g(p) < f(x)
In particular,
¢ < [’
If (i) = f(x), then the pair (X, p) is optimal in the
respective problem and ¢* = q(pu) = f(x) = f*



e Weak duality is also a consequence of the Relaxation
Theorem: For any p > 0™, let

S=XN{xeR"|gx) <0™},
SR:X7
fR:L(u’))

Apply the Relaxation Theorem
o If ¢* = f*, there is no duality gap.

e If there exists a Lagrange multiplier vector, then by the
weak duality theorem, there is no duality gap.
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Global optimality conditions

e The vector (x*, u*) is a pair of an optimal primal
solution and a Lagrange multiplier if and only if

pt > 0" (Dual feasibility) (6a)

X" € arg Ll’él)I(l L(x, pu"), (Lagrangian optimality)
(6b)
x'eX, gx')<0m, (Primal feasibility) (6¢)
prgi(x*)=0, 1=1,...,m (Complementary slackness)
(6d)

o If J(x*, u*) that fulfil (6), then there is a zero duality
gap and Lagrange multipliers exist



Saddle points

e The vector (X*, u*) is a pair of an optimal primal
solution and a Lagrange multiplier if and only if
x* € X, p* > 0™ and (x*, u*) is a saddle point of the
Lagrangian function on X X R, that is,

L(x", p) < L(x" 1) < L(x, p7), (%, 1) € X X RY,

holds

o If J(x*, u*), equivalent to the global optimality
conditions, the existence of Lagrange multipliers, and a

zero duality gap
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Strong duality for convex programs, introduction

e Convexity of the dual problem comes with very few
assumptions on the original, primal problem

e The characterization of the primal-dual set of optimal
solutions is also quite easily established

e To establish strong duality—sufficient conditions under
which there is no duality gap—takes much more

e In particular—as with the KK'T conditions—we need
regularity conditions (constraint qualifications) and
separation theorems
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Strong duality Theorem

e Consider the problem (3), that is,
ff=inf{f(x)|x€ X,9:;(x) <0,e=1,...,m},

where f : R* — R and g; (i =1,...,m) are conver and
X C R" 1s a convezx set

e Introduce the following constraint qualification (CQ):

dx € X with g(x) < 0™ (7)
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Strong duality Theorem

Suppose that —oo < f* < oo, and that the CQ (7) holds
for the (convex) problem (3)

(a) There is no duality gap and there exists at least one
Lagrange multiplier pu*. Moreover, the set of Lagrange

multipliers is bounded and convex

(b) If infimum in (3) is attained at some X*, then the pair
(x*, u*) satisfies the global optimality conditions (6)

(c) If the functions f and g; are in C' and X is open (for
example, X = R") then (6) equal the KK'T' conditions

If all constraints are linear we can remove the CQ (7).



Example I: An explicit, differentiable dual problem
e Consider the problem to

minimize f(x) := x3 + z3,
X

subject to x1 + z9 > 4,
z; > 0, 7 =1,2

e Let g(x) = —x1 — 22+ 4 and
X ={(r1,22) |2; 20, j=1,2} =R}

16



17

e The Lagrangian dual function is

q(p) = min L(x, p) := f(x) + p(=21 — 22 +4)

= 4p+ mun {z] + 23 — pxy — pas}
= 4p + min {&] — pxq ¥ + min {5 — past, u >0

x1>0 x2>0

e For a fixed y > 0, the minimum is attained at

z1(p) = 5, 22(p) = 5

e Substituting this expression into g(u), we obtain that

2

g(p) = f(x(p) + p(—z1(p) — z2(p) +4) =4p — 5

e Note that q is strictly concave, and it is differentiable
everywhere (due to the fact that f, g are differentiable
and x(u) is unique)



e Recall the dual problem

2
¢ = maxq(p) = max | 4p — adl
p>0 p>0 2

e We have that ¢'(u) =4 — u=0<<= u = 4.
As 4 > 0, this is the optimum in the dual problem!

= p* =4 and x* = (xl(ﬂ*)vaj?(ﬂ*))T — (27 2)T
o Also: f(x*) =q(u*) =8

e In this example, the dual function is differentiable.
The optimum x* is also unique and automatically given

by x* = x(u*)
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Example II: Implicit non-differentiable dual
problem

e Consider the linear programming problem to
minixmize f(x) == —x1 — x2,
subject to 2z + 4x9 < 3,
0 <z <2,
0<zy<1

e The optimal solution is x* = (3/2,0)?, f(x*) = —3/2

z2

1
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Lagrangian relax the first constraint:

L(x,u) = —x1 — o + (221 + 4x9 — 3);
= — in {(—1+2 in {(—1+4
q(p) = —3p+ min {(—1+2p)z1}+ min {(—1+4p)zs}
[ 345, 0<p<1/4, & wi(p) =2,22(p) =1
L 3, 1/2< & z1(p) =z2(p) =0
a(p)
-1 o pr=1 q(p)=-3
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For linear (convex) programs strong duality holds, but how
obtain x* from p*?

q is non-differentiable at p*.
Utilize the characterization given in (6)

First, the subproblem solution set at u* is
X(pw)={(y)l0<a<1}

Among the subproblem solutions, we next have to find one that
is primal feasible as well as complementary

Primal feasibility means that 2-2a+4-0<3 <= a < 3/4

Further, complementarity means that
p* - 2z + 4a5 — 3) = 0 < a = 3/4, since p* # 0.

Conclusion: the only primal vector x that satisfies the system (6)
together with the dual solution p* = 1/2 is x* = (3/2,0)*
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Observe finally that f* = ¢*
Why must p* = 1/27

According to the global optimality conditions, the optimal
solution must in this convex case be among the subproblem
solutions.

Since x7 is not in one of the “corners” (it is between 0 and 2), the
value of p* has to be such that the cost term for z; in L(x, u*) is
identically zero! That is, —1 + p* - 2 = 0 implies that p* = 1/2!

A non-coordinability phenomenon—a non-unique subproblem
solution means that the optimal solution is not obtained
automatically

In non-convex cases (e.g., integrality constraints) the optimal
solution may not be among the points in X (u*).

What do we do then??



Subgradients of convex functions

e Let f:R" — R be a convex function.
A vector p € R” is a subgradient of f at x € R" if

fy)>fx)+p'(y—x), yeR"

e The set of such vectors p defines the subdifferential of
f at x, and is denoted 0 f(x)

e 0f(x) is the collection of “slopes” of the function f at x

e For every x € R", 0f(x) is a non-empty, convex, and
compact set
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Figure 1: Four possible slopes of the convex function f at x

24



f

Figure 2: The subdifferential of a convex function f at x.
f is indicated by level curves.

e The convex function f is differentiable at x when there
exists one and only one subgradient of f at x — the

gradient of f at x, V f(x)
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Differentiability of the Lagrangian dual function:
Introduction

e Consider the problem (3):
ff=inf{f(x)|x e X,9;(x)<0,i=1,...,m},
and assume

f, g; (Vi) continuous; X nonempty and compact  (8)
e The set of solutions to the Lagrangian subproblem

X(p) = argmin L(x, p)

is non-empty and compact for every pu € R™

e We develop the sub-difterentiability properties of the
tunction g



Subgradients and gradients of ¢
e Suppose that (8) holds in the problem (3)

e The dual function q is finite, continuous and concave on
R™. If its supremum over R is attained, then the
optimal solution set therefore is closed and convex

o Let p € R™. If x € X(u), then g(x) is a subgradient to
q at p, that is, g(x) € Jq(p)
e Proof. Let 1 € R™ be arbitrary. We have that

¢(p) = infimum L(y, i) < f(x) + o' g(x)

= f(x)+ (B — p)'g(x) + p'g(x)
=q(p) + (b — p) 'g(x)
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e The function A is non-differentiable at + = 1 and =z = 4,
since its graph has non-unique supporting hyperplanes

there (
{—1}, l<x <4

4 — 2 1 4
oh(z) = { r}, v<l1, z>

—1,2], z=1
—4,—1], =14

\

e The subdifferential is here either a singleton (at
differentiable points) or an interval (at
non-differentiable points)

29



The Lagrangian dual problem

o Let up € R™. Then, 0q(p) = conv{g(x) | x e X(u)}

e Let u € R™. The dual function q is differentiable at

if and only if {g(x) | x € X(u) } is a singleton set.
Then,

for every x € X ()

e Holds in particular if the Lagrangian subproblem has a
unique solution [X () is a singleton set].
E.g., if X is convex, f is strictly convex on X,

and g; 1s convex Vi [
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How do we write the subdifferential of h?

e Theorem: If h(x) = min;—y ., hi(X), where each

.....

function h; is concave and differentiable on R™, then h
is a concave function on R"

o Let Z(x) C{1,...,m} be defined by h(x) = h;(x) for
i € Z(x) and h(X) < hi(X) for i € Z(x) (the active
segments at X)

e Then, the subdifferential 0h(x) is the convex hull of
{Vh;(x) | i € Z(X)}, that is,

OR(X)=4€6= D AVh(R)| Y Ai=1; X > 0,i € I(X)

1€L(x) 1€Z(X)
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Optimality conditions for the dual problem

e For a differentiable, concave function A it holds that

X" € arg max h(x) <= Vh(x")=0"
XEIR"

e Theorem: Assume that h is concave on R™. Then,

x" € arg max h(x) <= 0" € 0h(x")
XEIR"™

e Proof. Suppose that 0" € Jh(x*) =
h(x) < h(x*) + (0™)1(x — x*) for all x € R™, that is,
h(x) < h(x*) for all x € R”
Suppose that x* € arg maxyere h(zr) =
h(x) < h(x*) = h(x*) + (0")*(x — x*) for all x € R"
that is, 0" € Oh(x*) i
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e The example: 0 € Oh(l) = z* =1

e Lor optimization with constraints the KKT conditions
are generalized:

x* € argmax h(x) <= Oh(x*)N Nx(x*) # 0,

xeX

where Ny (x*) is the normal cone to X at x*, that is,
the conical hull of the active constraints’ normals at x*
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e In the case of the dual problem we have only sign
conditions p > 0™

e Consider the dual problem

¢" = maximize q(1)

e 11* > 0™ is then optimal if and only if there exists a
subgradient g € dq(u*) for which the following holds:

g <0™ ug=01=1....m

e Compare with a one-dimensional max-problem (h

concave): x* > 0 is optimal if and only if

h'(z*) <0; z*-h'(z*)=0



