Lectures 3—4:
Lagrangian duality and algorithms for
the Lagrangian dual problem

Ann-Brith Stromberg
2008-09-09

0-0



The Relaxation Theorem
e Problem: find
f*= inﬁr)l;lum f(x), (1a)
subject to x € S, (1b)

where f : R" — R is a given function and S C R"”
e A relaxation to (1a)—(1b) has the following form: find

fi = infimum fp(x), (2)
subject to x € Skg, (2b)

where fr:R"™ — R is a function with fr < f on S and
Sr 2 S.



Relaxation example—Maximization!!

e The binary knapsack problem

*

2" = maximize 7Tx1 + 4xo + dx3 + 214
x€e{0,1}4
subject to 3r1 +3x9 +4x3+ 224 < 5
has the optimal solution x* = (1,0,0,1), z* =9

e [ts continuous relaxation

2{p = maximize Txq1 + 4xg + bxs + 214
x€[0,1]4

subject to 3z1 +3x0 +4x3+224 < 5

> z*

wN

has the optimal solution x} = (1, %, 0,0), 2z =9

e Xp is not feasible in the binary problem



The relaxation theorem

. [relaxation] fe < f*
. [infeasibility] If (2) is infeasible, then so is (1)
. [optimal relaxation]

If the problem (2) has an optimal solution, x%, for which it holds
that

xp €S and  fr(xg)= f(XR),

then x}, is an optimal solution to (1) as well.

Proof portion. For 3., note that

f(xg) = fr(xR) < fr(X) < f(x), x€§



Lagrangian relaxation
e Consider the optimization problem:
f*= inﬁr}r{mm f(x), (3a)
subject to x € X, (3b)
g;(x) <0, i=1,...,m, (3c)

where f:R"— Rand ¢g; :R*" — R (i =1,2,...,m) are
given functions, and X C R"

e Here we assume that
—o00 < f* < oo, (4)

that is, that f is bounded from below and that the
problem has at least one feasible solution



e For a vector u € R™, we define the Lagrange function
L(x,p) = f(x)+ Z pigi(x) = f(x) + p g(x)
i=1

e We call the vector u* € R™ a Lagrange multiplier if it
is non-negative and if f* = infycx L(x, u*) holds.



Lagrange multipliers and global optima

e Let u* be a Lagrange multiplier. Then, X* is an
optimal solution to
f*=inf{f(x)|x € X,9;(x) <0,i=1,...,m},
if and only if it is feasible and

X" € arg mi}r(l L(x,p"), and p;g;(x") =0,i=1,...,m
X€

e Notice the resemblance to the KKT conditions!
If X = R"” and all functions are in C! then

7 1s the same as the force

“x* € argmingex L(x, p*)
equilibrium condition, the first row of the KKT
conditions. The second item, “ufg;(x*) = 0 for all 7" is

the complementarity conditions



The Lagrangian dual problem associated with the
Lagrangian relaxation

e The Lagrangian dual function is

q(p) = infimum L(x, p)

e The Lagrangian dual problem is to

¢" = maximize q(p) (5)
e For some u, q(p) = —oc is possible. If this is true for
all o > 0™ then
¢* = supremum q(p) = —0oC

p>om



e The effective domain of q is
Dy={pneR"|q(p)>—oco}

[ Theorem] D, is convex, and ¢ is concave on D,

e That the Lagrangian dual problem always is convex is
very good news!

e We indeed maximize a concave function

e But we need still to show how a Lagrangian dual
optimal solution can be used to generate a primal
optimal solution



Weak Duality Theorem

Let x and p be feasible in

ff=inf{f(x)|x€ X,9;(x) <0,e=1,...,m}

and ¢* = max{ q(u) |pe > 0™}, respectively.
Then,

g(p) < f(x)
In particular,
¢ < [’
If (i) = f(x), then the pair (X, p) is optimal in the
respective problem and ¢* = q(pu) = f(x) = f*



e Weak duality is also a consequence of the Relaxation
Theorem: For any p > 0™, let

S=XN{xeR"|gx) <0™},
SR:X7
fR:L(u’))

Apply the Relaxation Theorem
o If ¢* = f*, there is no duality gap.

e If there exists a Lagrange multiplier vector, then by the
weak duality theorem, there is no duality gap.
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Global optimality conditions

e The vector (x*, u*) is a pair of an optimal primal
solution and a Lagrange multiplier if and only if

pt > 0" (Dual feasibility) (6a)

X" € arg Ll’él)I(l L(x, pu"), (Lagrangian optimality)
(6b)
x"eX, gx')<0m, (Primal feasibility) (6¢)
prgi(x*)=0, 1=1,...,m (Complementary slackness)
(6d)

o If J(x*, u*) that fulfil (6), then there is a zero duality
gap and Lagrange multipliers exist



Saddle points

e The vector (X*, u*) is a pair of an optimal primal
solution and a Lagrange multiplier if and only if
x* € X, p* > 0™ and (x*, u*) is a saddle point of the
Lagrangian function on X X R, that is,

L(x", p) < L(x" 1) < L(x, p7), (%, 1) € X X RY,

holds

o If J(x*, u*), equivalent to the global optimality
conditions, the existence of Lagrange multipliers, and a

zero duality gap
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Strong duality for convex programs, introduction

e Convexity of the dual problem comes with very few
assumptions on the original, primal problem

e The characterization of the primal-dual set of optimal
solutions is also quite easily established

e To establish strong duality—sufficient conditions under
which there is no duality gap—takes much more

e In particular—as with the KK'T conditions—we need
regularity conditions (constraint qualifications) and
separation theorems
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Strong duality Theorem

e Consider the problem (3), that is,
ff=inf{f(x)|x€ X,9;(x) <0,e=1,...,m},

where f : R* — R and g; (i =1,...,m) are conver and
X C R" 1s a convez set

e Introduce the following constraint qualification (CQ):

dx € X with g(x) < 0™ (7)
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Strong duality Theorem

Suppose that —oo < f* < oo, and that the CQ (7) holds
for the (convex) problem (3)

(a) There is no duality gap and there exists at least one
Lagrange multiplier pu*. Moreover, the set of Lagrange

multipliers is bounded and convex

(b) If infimum in (3) is attained at some X*, then the pair
(x*, u*) satisfies the global optimality conditions (6)

(c) If the functions f and g; are in C' and X is open (for
example, X = R") then (6) equal the KK'T' conditions

If all constraints are linear we can remove the CQ (7).



Example I: An explicit, differentiable dual problem
e Consider the problem to

minimize f(x) := x3 + z3,
X

subject to x1 + z9 > 4,
z; > 0, 7 =1,2

e Let g(x) = —x1 — 22+ 4 and
X ={(r1,22) |2; 20, j=1,2} =R
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e The Lagrangian dual function is

q(p) = min L(x, p) := f(x) + p(=21 — 22 +4)

= 4p+ mun {z] + 23 — pxy — pas}
= 4p + min {a] — pxq ¥ + min {5 — past, u >0

x12>0 x2>0

e For a fixed y > 0, the minimum is attained at

z1(p) = 5, w2(p) = 5

e Substituting this expression into g(u), we obtain that

2

g(p) = f(x(p) + p(—z1(p) —z2(p) +4) =4p — 5

e Note that q is strictly concave, and it is differentiable
everywhere (due to the fact that f, g are differentiable
and x(u) is unique)



e Recall the dual problem

2
¢* = maxq(p) = max | 4y — all
p>0 >0 2

e We have that ¢/(u) =4 — p=0<<= u = 4.
As 4 > 0, this is the optimum in the dual problem!

= p* =4 and x* = (xl(ﬂ*)vaj?(ﬂ*))T — (27 2)T
o Also: f(x*) =q(u*) =8

e In this example, the dual function is differentiable.
The optimum x* is also unique and automatically given

by x* = x(u*)
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Example II: Implicit non-differentiable dual
problem

e Consider the linear programming problem to
minixmize f(x) == —x1 — x2,
subject to 2z + 4x9 < 3,
0 <z <2,
0<zy9<1

e The optimal solution is x* = (3/2,0)?, f(x*) = —3/2

z2

1
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Lagrangian relax the first constraint:

L(x,u) = —x1 — xo + (221 + 4x9 — 3);
= — in {(—1+2 in {(—1+4
q(p) = —3p+ min {(—1+2p)z1}+ min {(—1+4p)zs}
[ 345, 0<p<1/4, & wi(p) =2,22(p) =1
L 3, 1/2<yp & zi(p) =z2(p) =0
a(p)
-1 o pr=1 q(p)=-3
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For linear (convex) programs strong duality holds, but how
obtain x* from u*?

g is non-differentiable at p* = Utilize the characterization in (6)

First, the subproblem solution set at u* is
X(p)={(y)l0<a<1}

Among the subproblem solutions, we next have to find one that
is primal feasible as well as complementary

Primal feasibility means that 2-2a+4-0<3 <= a < 3/4

Further, complementarity means that
p* - 2z +4x5 — 3) = 0 <= a = 3/4, since p* # 0.

Conclusion: the only primal vector x that satisfies the system (6)
together with the dual solution p* =1/2 is x* = (3/2,0)*

Observe finally that f* = ¢*
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A theoretical argument for y* = 1/2

Due to the global optimality conditions, the optimal solution

must in this convex case be among the subproblem solutions

Since z7 is not in one of the “corners” of X (0 < z7 < 2), the
value of p* must be such that the cost term for x; in L(x, u*) is
zero! That is, —1 +2u* =0 = p* = 1/2!

A non-coordinability phenomenon—a non-unique subproblem
solution means that the optimal solution is not obtained
automatically

In non-convex cases (e.g., integrality constraints) the optimal
solution may not be among the points in X (u*) (the set of
subproblem solutions at p*)

What do we do then??



Subgradients of convex functions

e Let f:R" — R be a convex function.
A vector p € R” is a subgradient of f at x € R" if

fy) 2 fx)+p'(y—-x), yeR (8)
e The set of such vectors p defines the subdifferential of
f at x, and is denoted 0 f(x)

e 0f(x) is the collection of “slopes” of the function f at x

e For every x € R", 0f(x) is a non-empty, convex, and
compact set
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Figure 1: Four possible slopes of the convex function f at x
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Figure 2: The subdifferential of a convex function f at x.
f is indicated by level curves.

e The convex function f is differentiable at x if there
exists exactly one subgradient of f at x which then
equals the gradient of f at x, V f(x)
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Differentiability of the Lagrangian dual function

e Consider the problem (3):
ff=inf{f(x)|x € X,9;(x) <0,i=1,...,m},

and assume
f, g; (Vi) continuous; X nonempty and compact  (9)
e The set of solutions to the Lagrangian subproblem
X(p) = argmin L(x, p)

is non-empty and compact for every pu € R™

e Next: sub-differentiability properties of the function ¢



Subgradients and gradients of ¢
e Suppose that (9) holds in the problem (3)

e The dual function q is finite, continuous and concave on
R™. If its supremum over R is attained, then the
optimal solution set therefore is closed and convex

o Let p € R™. If x € X(u), then g(x) is a subgradient to
q at p, that is, g(x) € dq(p)
e Proof. Let 1 € R™ be arbitrary. We have that

¢(p) = infimum L(y, i) < f(x) + o' g(x)

= f(x)+ (B — p)'g(x) + p'g(x)
=q(p) + (b — p) 'g(x)
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e Recall the subgradient inequality (8) for a convex
function f: p is a subgradient of f at x it

f¥)2fx)+p(y-x), yeR
e The function f(x) + p*(y — x) is linear w.r.t. y and
underestimates f(y) over R"

e Here, we have a concave function ¢ and the opposite
inequality: g(x) is a subgradient (actually, supgradient)
of g at p if x € X () and

() < q(p)+ (p—p)'g(x), peR”

e The function g(p) + (o — p)''g(x) is linear w.r.t. @ and
overestimates q(pu) over R™
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e h is non-differentiable at x = 1 and x = 4, since its

graph has non-unique supporting hyperplanes there

\Wl(x) (1), l<z<4
{4-2x}, <1, z>4

~1,2], z=1
—4,—-1], z=4

\

e The subdifferential is here either a singleton (at
differentiable points) or an interval (at

non-differentiable points)



The Lagrangian dual problem

o Let p € R™. Then, 0q(p) = conv{g(x) | x e X(u)}

e Let u € R™. The dual function q is differentiable at

if and only if {g(x) | x € X(u) } is a singleton set.
Then,

for every x € X ()

e Holds in particular if the Lagrangian subproblem has a
unique solution < The solution set X (w) is a singleton

True, e.g., when X 1is convex, f strictly convex on X,
and g; convex on X Vi
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How do we write the subdifferential of h?

Theorem: If h(x) = min;—1 .., hi(x), where each function h; is
concave and differentiable on R™, then h is a concave function on R"

e Define the set Z(x) C {1,...,m} by the active segments at x:

i€ I(x) if h(x) = hi(x),

1 1,....,m
i ¢ IT(x) if h(x) < hi(x), <t }

e Then, the subdifferential Oh(x) is the convexr hull of the gradients
{Vh;(x) |i€Z(x)}:

8h(X):< £: Z )\thz(X> Z )\i:1; )\zZO,ZEZ(X)

1€ZL(x) 1€Z(x)

\
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Optimality conditions for the dual problem

e For a differentiable, concave function A it holds that

X" € arg max h(x) <= Vhx")=0"
XEIR"

e Theorem: Assume that h is concave on R™. Then,

x" € arg max h(x) <= 0" € 0h(x")
XEIR"™

e Proof. Suppose that 0™ € Jh(x*) =
h(x) < h(x*) + (0™)1(x — x*) for all x € R™, that is,
h(x) < h(x*) for all x € R”
Suppose that x* € arg maxyere h(zr) =
h(x) < h(x*) = h(x*) + (0")*(x — x*) for all x € R"
that is, 0" € Oh(x*) i
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e The example: 0 € Oh(l) = z* =1

e For optimization with constraints the KKT conditions are
generalized:

X" € arg max h(x) <= Oh(x")N Nx(x")#0,

where Nx (x*) is the normal cone to X at x*, that is, the conical

hull of the active constraints’ normals at x*

Figure 3: An optimal solution x* A non-optimal solution x
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e In the case of the dual problem we have only sign
conditions g > 0™

e Consider the dual problem

¢" = maximize q(p)

e 11* > 0™ is then optimal if and only if there exists a
subgradient g € dq(u*) for which the following holds:

g<0™ ug=01=1....m

e Compare with a one-dimensional max-problem (h

concave):

r* > 0isoptimal < A'(z*)<0; 2" -h'(z") =0



A subgradient method for the dual problem

e Subgradient methods extend gradient projection
methods from C! to general convex (or, concave)
functions, generating a sequence of dual vectors in R’
using a single subgradient in each iteration

e The simplest type of iteration has the form

pttt = Projpy [0 + oxg"]

= 1" + axg"]+ (10)

m

= (maximum {0, (1%); + o (g")i})iLs.

where k is the iteration counter and g* € dq(u*) is
arbitrarily chosen
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e We often write g = g(x*), where
x* € arg minygex L(x, u®)

e Main difference to C! case: an arbitrary subgradient g*
may not be an ascent direction/

= Cannot make line searches; must use predetermined
step lengths ay

e Suppose that p € R is not optimal in max,>om q(p)
Then, for every optimal solution pu* € U*

k+1

[t — pt|| < | = ¥

holds for every step length oy, in the interval

ar, € (0,2[¢" — q(p™)]/|Ig"11%)
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e Why? Let g € dq(t), and let U* be the set of optimal
solutions to maxy,>om q(p) Then,

U C{peR™ g (u—p) >0}

In other words, g defines a half-space that contains the
set of optimal solutions.

e Good news: If the step length a4 is small enough we
get closer to the set of optimal solutions!
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A (sub)gradient defines a halfspace containing the

optimal set

2

Figure 4: g non-differentiable q differentiable

gc€dq(p) = U C{peR"|g'(p—p)>0}
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Figure 5: The half-space defined by a subgradient g € q(u).

Note that this subgradient is not an ascent direction
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Polyak step length rule:
o <ap <2[q" —qu)/Ig"|I* —0, k=12,... (11)

e 0 > (0 = step lengths a don’t converge to 0 or a too large value

e Bad news: Utilizes knowledge of the optimal value ¢*! But: ¢*
can be replaced by ¢ > ¢*

The divergent series step length rule:

o, >0, k=1,2,...; lim o =0; Zasz—l—oo (12)
s=1

k— o0

e Additional condition often added:

Za? < 400 (13)
s=1
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Convergence results

e Suppose that f and g are continuous, X is compact,
dx € X : g(x) < 0, and consider the problem

f*=mf{f(x)|x € X,g(x) <0} (14)

(a) Let {u*} be generated by the method on p. 36, under the Polyak
step length rule (11), where o > 0 is small.
Then, {u*} converges to an optimal solution to (14)

(b) Let {u*} be generated by the method on p. 36, under the
divergent series step length rule (12).

Then, {qg(p*)} = ¢*, and {disty«(p")} — 0

(c) Let {u*} be generated by the method on p. 36, under the
divergent series step length rule (12), (13).
Then, {u*} converges to an optimal solution to (14)
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Application to the Lagrangian dual problem

. Given p* > 0™

Solve the Lagrangian subproblem: minyex L(x, u®)
Let an optimal solution to this problem be x* = x(u")

Calculate g(x*) € dq(u*)

. Take a step aj, > 0 in the direction of g(x*) from u*,

according to a step length rule

. Set any negative components of this vector to 0 = p**1

. Let k := k + 1 and repeat from 2.



Additional algorithms

e We can choose the subgradient more caretully, to
obtain ascent directions.

e Gather several subgradients at nearby points pu* and
solve quadratic programming problems to find the best
convex combination of them (Bundle methods)

e Pre-multiply the subgradient by some positive definite
matrix = methods similar to Newton methods
(Space dilation methods)

e Pre-project the subgradient vector (onto the tangent
cone of R7") = step direction is a feasible direction
(Subgradient-projection methods)
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More to come

e Discrete optimization: The size of the duality gap, and
the relation to the continuous relaxation.

e Convexification
e Primal feasibility heuristics

e Global optimality conditions for discrete optimization
(and general problems)
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