Global optimality conditions for discrete and nonconvex optimization, with applications to Lagrangian heuristics, core problems, and column generation
 Michael Patriksson
 (with Torbjörn Larsson, Linköping University)

© Illustration: new radical set covering heuristic
© Global optimality conditions for general problems, including integer ones
$\Delta \sim$ convex saddle-point conditions
Δ Lagrangian perturbations: near-optimality, near-complementarity
Δ Analysis of and guidelines for Lagrangian heuristics
© Applications
\triangle Core problems; column generation
Δ In both cases: additional near-complementarity constraints

$$
\begin{align*}
f^{*}:=\text { minimum } & f(\boldsymbol{x}), \tag{1a}\\
\text { subject to } & \boldsymbol{g}(\boldsymbol{x}) \leq \mathbf{0}^{m}, \tag{1b}\\
& \boldsymbol{x} \in X \tag{1c}
\end{align*}
$$

$f: \mathbb{R}^{n} \mapsto \mathbb{R}, \boldsymbol{g}: \mathbb{R}^{n} \mapsto \mathbb{R}^{m}$ cont., $X \subset \mathbb{R}^{n}$ compact

$$
\begin{equation*}
\theta(\boldsymbol{u}):=\underset{\boldsymbol{x} \in X}{\operatorname{minimum}}\left\{f(\boldsymbol{x})+\boldsymbol{u}^{\mathrm{T}} \boldsymbol{g}(\boldsymbol{x})\right\}, \boldsymbol{u} \in \mathbb{R}^{m} \tag{2}
\end{equation*}
$$

$$
\begin{equation*}
\theta^{*}:=\underset{\boldsymbol{u} \in \mathbb{R}_{+}^{m}}{\operatorname{maximum}} \theta(\boldsymbol{u}) \tag{3}
\end{equation*}
$$

Duality gap: $\Gamma:=f^{*}-\theta^{*}$.

Started at some vector $\overline{\boldsymbol{x}}(\boldsymbol{u}) \in X$, adjust it through a finite number of steps with properties

1. sequence utilize information from the Lagrangian dual problem,
2. sequence remains within X, and
3. terminal vector, if possible, primal feasible, hopefully also near-optimal in (2)
Conservative: initial vector near $\boldsymbol{x}(\boldsymbol{u})$; local moves
Radical: allows the resulting vector to be far from $\boldsymbol{x}(\boldsymbol{u})$; includes starting far away; solving restrictions (e.g., Benders' subproblem)

Figure 1: A Lagrangian heuristic

$$
\begin{align*}
f^{*}:=\operatorname{minimum} & \sum_{j=1}^{n} c_{j} x_{j}, \tag{4a}\\
\text { subject to } & \sum_{j=1}^{n} \boldsymbol{a}_{j} x_{j} \geq \mathbf{1}^{m}, \tag{4b}\\
& \boldsymbol{x} \in\{0,1\}^{n}, \tag{4c}
\end{align*}
$$

Lagrangian: $L(\boldsymbol{x}, \boldsymbol{u}):=\left(\mathbf{1}^{m}\right)^{\mathrm{T}} \boldsymbol{u}+\overline{\boldsymbol{c}}^{\mathrm{T}} \boldsymbol{x}, \boldsymbol{u} \in \mathbb{R}^{m}$ Reduced cost vector $\overline{\boldsymbol{c}}:=\boldsymbol{c}-\boldsymbol{A}^{\mathrm{T}} \boldsymbol{u}$.

$$
\begin{gathered}
\theta^{*}:=\operatorname{maximum~} \theta(\boldsymbol{u}) \\
\\
\text { subject to } \boldsymbol{u} \geq \mathbf{0}^{m} \\
\theta(\boldsymbol{u}):=\left(\mathbf{1}^{m}\right)^{\mathrm{T}} \boldsymbol{u}+\sum_{j=1}^{n} \operatorname{minimum}_{x_{j} \in\{0,1\}} \bar{c}_{j} x_{j}, \quad \boldsymbol{u} \geq \mathbf{0}^{m} \\
x_{j}(\boldsymbol{u}) \begin{cases}=1, & \text { if } \bar{c}_{j}<0 \\
\in\{0,1\}, & \text { if } \bar{c}_{j}=0 \\
=0, & \text { if } \bar{c}_{j}>0\end{cases}
\end{gathered}
$$

We consider a classic type of polynomial heuristic.
(Input) $\overline{\boldsymbol{x}} \in\{0,1\}^{n}$, cost vector $\boldsymbol{p} \in \mathbb{R}^{n}$
(Output) $\hat{\boldsymbol{x}} \in\{0,1\}^{n}$, feasible in (1)
(Starting phase) Given $\overline{\boldsymbol{x}}$, delete covered rows, delete variables x_{j} with $\bar{x}_{j}=1$
(Greedy insertion) Identify variable x_{τ} with minimum p_{j} relative to number of uncovered rows covered. Set $x_{\tau}:=1$. Delete covered rows, delete x_{τ}. Unless uncovered rows remain, stop;
$\tilde{\boldsymbol{x}} \in\{0,1\}^{n}$ feasible solution.
(Greedy deletion) Identify variable x_{τ} with $\tilde{x}_{\tau}=1$ present only in over-covered rows and maximum p_{j} relative to k_{j}. Set $\tilde{x}_{\tau}:=0$. Repeat.

Classic heuristics:
(I) Let $\overline{\boldsymbol{x}}:=\mathbf{0}^{n}$ and $\boldsymbol{p}:=\boldsymbol{c}$

Chvátal (1979)
(II) Let $\overline{\boldsymbol{x}}:=\mathbf{0}^{n}$ and $\boldsymbol{p}:=\overline{\boldsymbol{c}}$, at dual vector \boldsymbol{u} \sim Balas and Ho (1980)
(III) Let $\overline{\boldsymbol{x}}:=\boldsymbol{x}(\boldsymbol{u})$ and $\boldsymbol{p}:=\boldsymbol{c}$ Beasley $(1987,1993)$ and Wolsey (1998)
(IV) Let $\overline{\boldsymbol{x}}:=\boldsymbol{x}(\boldsymbol{u})$ and $\boldsymbol{p}:=\overline{\boldsymbol{c}}$ \sim Balas and Carrera (1996)

To be motivated later:
Combination of \boldsymbol{c} and $\overline{\boldsymbol{c}}$ (or Lagrangian and complementarity) $\{$ here, $\lambda \in[1 / 2,1]\}$

$$
\boldsymbol{p}(\lambda):=\lambda \overline{\boldsymbol{c}}+(1-\lambda) \boldsymbol{A}^{\mathrm{T}} \boldsymbol{u}=\lambda\left[\boldsymbol{c}-\boldsymbol{A}^{\mathrm{T}} \boldsymbol{u}\right]+(1-\lambda) \boldsymbol{A}^{\mathrm{T}} \boldsymbol{u}
$$

(I) $\&($ III $): \lambda=1 / 2$ (original cost)
(II) \& (IV): $\lambda=1$ (Lagrangian cost)

Test both $\overline{\boldsymbol{x}}:=\mathbf{0}^{n}$ ("radical") and $\overline{\boldsymbol{x}}:=\boldsymbol{x}(\boldsymbol{u})$
("conservative")
Test case: rail507, with bounds [172.1456, 174]
($n=63,009 ; m=507$)
\boldsymbol{u} generated by a subgradient algorithm

Figure 2: Objective value vs. value of λ

$\lambda=0.9$
Ran three heuristics from iterations $t=200$ to $t=500$ of the subgradient algorithm.

1. (III): $\overline{\boldsymbol{x}}:=\boldsymbol{x}(\boldsymbol{u})$ and $\boldsymbol{p}(1 / 2)=\boldsymbol{c}$. Conservative.
2. $\overline{\boldsymbol{x}}:=\boldsymbol{x}(\boldsymbol{u})$ and $\boldsymbol{p}(0.9)$. Conservative.
3. $\overline{\boldsymbol{x}}:=\mathbf{0}^{n}$ and $\boldsymbol{p}(0.9)$. Radical.

Histograms of objective values

Figure 3: Quality obtained by three greedy heuristics
© Remarkable difference between the heuristics
© Simple modification of (III) improves it
© Radical one consistently provides good solutions

$$
[(\mathrm{III})] \quad[\mathrm{p}(0.9) / \text { cons. }] \quad[\mathrm{p}(0.9) / \mathrm{rad} .]
$$

maximum : 221212
mean: $\quad 203.99194 .45$
186.55
minimum : 192182182
Why is it good to (i) use radical Lagrangian heuristics with (ii) an objective function which is neither the original nor the Lagrangian, but a combination?

$$
\begin{align*}
& (\boldsymbol{x}, \boldsymbol{u}) \in X \times \mathbb{R}_{+}^{m} \\
& \qquad \begin{aligned}
f(\boldsymbol{x})+\boldsymbol{u}^{\mathrm{T}} \boldsymbol{g}(\boldsymbol{x}) & \leq \theta(\boldsymbol{u}), \\
\boldsymbol{g}(\boldsymbol{x}) & \leq \mathbf{0}^{m}, \\
\boldsymbol{u}^{\mathrm{T}} \boldsymbol{g}(\boldsymbol{x}) & =0
\end{aligned} \tag{5a}
\end{align*}
$$

Equivalent statements for pair $\left(\boldsymbol{x}^{*}, \boldsymbol{u}^{*}\right) \in X \times \mathbb{R}_{+}^{m}$:
© satisfies (5)
© saddle point of $L(\boldsymbol{x}, \boldsymbol{u}):=f(\boldsymbol{x})+\boldsymbol{u}^{\mathrm{T}} \boldsymbol{g}(\boldsymbol{x})$:

$$
L\left(\boldsymbol{x}^{*}, \boldsymbol{v}\right) \leq L\left(\boldsymbol{x}^{*}, \boldsymbol{u}^{*}\right) \leq L\left(\boldsymbol{y}, \boldsymbol{u}^{*}\right),(\boldsymbol{y}, \boldsymbol{v}) \in X \times \mathbb{R}_{+}^{m}
$$

© primal-dual optimal and $f^{*}=\theta^{*}$

Further, given any $\boldsymbol{u} \in \mathbb{R}_{+}^{m}$,
$\{\boldsymbol{x} \in X \mid(5)$ is satisfied $\}= \begin{cases}X^{*}, & \text { if } \theta(\boldsymbol{u})=f^{*}, \\ \emptyset, & \text { if } \theta(\boldsymbol{u})<f^{*}\end{cases}$
© Inconsistency if either \boldsymbol{u} is non-optimal or there is a positive duality gap!
© Then (5) is inconsistent; no optimal solution is found by applying it from an optimal dual sol.
© Equality constraints: not even a feasible solution is found!
© Why (and when) then are Lagrangian heuristics successful for integer programs?
$(\boldsymbol{x}, \boldsymbol{u}) \in X \times \mathbb{R}_{+}^{m}$

$$
\begin{align*}
f(\boldsymbol{x})+\boldsymbol{u}^{\mathrm{T}} \boldsymbol{g}(\boldsymbol{x}) & \leq \theta(\boldsymbol{u})+\varepsilon, \tag{6a}\\
\boldsymbol{g}(\boldsymbol{x}) & \leq \mathbf{0}^{m}, \tag{6b}\\
\boldsymbol{u}^{\mathrm{T}} \boldsymbol{g}(\boldsymbol{x}) & \geq-\delta, \tag{6c}\\
\varepsilon+\delta & \leq \Gamma, \text { (duality gap) } \\
\varepsilon, \delta & \geq 0
\end{align*}
$$

© (6a): ε-optimality
(6) (6c): δ-complementarity
© System equivalent to previous one when duality gap is zero

Equivalent statements for pair $\left(\boldsymbol{x}^{*}, \boldsymbol{u}^{*}\right) \in X \times \mathbb{R}_{+}^{m}$:
© satisfies (6)
© $\varepsilon+\delta=\Gamma$; further,
$L\left(\boldsymbol{x}^{*}, \boldsymbol{v}\right)-\delta \leq L\left(\boldsymbol{x}^{*}, \boldsymbol{u}^{*}\right) \leq L\left(\boldsymbol{y}, \boldsymbol{u}^{*}\right)+\varepsilon,(\boldsymbol{y}, \boldsymbol{v}) \in X \times \mathbb{R}_{+}^{m}$
© primal-dual optimal
Given any $\boldsymbol{u} \in \mathbb{R}_{+}^{m}$,
$\{\boldsymbol{x} \in X \mid(6)$ is satisfied $\}= \begin{cases}X^{*}, & \text { if } \theta(\boldsymbol{u})=f^{*}-\Gamma, \\ \emptyset, & \text { if } \theta(\boldsymbol{u})<f^{*}-\Gamma\end{cases}$
Next up: characterize near-optimal solutions

$$
\begin{align*}
f(\boldsymbol{x})+\boldsymbol{u}^{\mathrm{T}} \boldsymbol{g}(\boldsymbol{x}) & \leq \theta(\boldsymbol{u})+\varepsilon, \tag{7a}\\
\boldsymbol{g}(\boldsymbol{x}) & \leq \mathbf{0}^{m}, \tag{7b}\\
\boldsymbol{u}^{\mathrm{T}} \boldsymbol{g}(\boldsymbol{x}) & \geq-\delta, \tag{7c}\\
\varepsilon+\delta & \leq \Gamma+\kappa, \tag{7d}\\
\varepsilon, \delta, \kappa & \geq 0 \tag{7e}
\end{align*}
$$

$\kappa \sim$ sum of non-optimality in primal and dual
If consistent, $\Gamma \leq \varepsilon+\delta \leq \Gamma+\kappa$
© (Near-optimality) $f(\boldsymbol{x}) \leq \theta(\boldsymbol{u})+\Gamma+\kappa$ [\boldsymbol{u} optimal: $f(\boldsymbol{x}) \leq f^{*}+\kappa$]
© (Lagrangian near-optimality) ($\boldsymbol{x}, \boldsymbol{u}$) optimal: $\theta^{*} \leq f(\boldsymbol{x})+\boldsymbol{u}^{\mathrm{T}} \boldsymbol{g}(\boldsymbol{x}) \leq f^{*}$
$\boldsymbol{u} \in \mathbb{R}_{+}^{m} \alpha$-optimal
$\{\boldsymbol{x} \in X \mid(7)$ is satisfied $\}= \begin{cases}X^{\kappa-\alpha}, & \text { if } \kappa \geq \alpha, \\ \emptyset, & \text { if } \kappa<\alpha\end{cases}$
© Characterize optimal solutions when $\kappa=\alpha$!
© Valid for all duality gaps, also convex problems
© Goal: construct Lagrangian heuristics so that (7) is satisfied for small values of κ
© Previous Lagrangian heuristics ignore near-complementarity
$f^{*}:=$ minimum $\quad f(\boldsymbol{x}):=-x_{2}$,
(9a)
subject to $g(\boldsymbol{x}):=x_{1}+4 x_{2}-6 \leq 0$,
(9b)

$$
\boldsymbol{x} \in X:=\left\{\boldsymbol{x} \in \mathcal{Z}^{2} \mid 0 \leq x_{1} \leq 4 ; \underset{\text { (9c) }}{\leq x_{2}} \leq\right.
$$

$$
\begin{aligned}
L(\boldsymbol{x}, u)=u x_{1} & +(4 u-1) x_{2}-6 u \\
\theta(u): & : \begin{cases}2 u-2, & 0 \leq u \leq 1 / 4, \\
-6 u, & 1 / 4 \leq u,\end{cases}
\end{aligned}
$$

$u^{*}=1 / 4, \theta^{*}=-3 / 2$
Three optimal solutions, $\boldsymbol{x}^{1}=(0,1)^{\mathrm{T}}, \boldsymbol{x}^{2}=(1,1)^{\mathrm{T}}$, and $\boldsymbol{x}^{3}=(2,1)^{\mathrm{T}} ; f^{*}=-1 ; \Gamma=f^{*}-\theta^{*}=1 / 2$

© For $\boldsymbol{x}^{2}, \varepsilon\left(\boldsymbol{x}^{2}, \boldsymbol{u}^{*}\right)$ is the vertical distance between the two functions θ and $L\left(\boldsymbol{x}^{2}, \cdot\right)$ at \boldsymbol{u}^{*}
๑ Remaining vertical distance to f^{*} is minus the slope of $L\left(\boldsymbol{x}^{2}, \cdot\right)$ at $\boldsymbol{u}^{*}\left[\right.$ which is $\left.\boldsymbol{g}\left(\boldsymbol{x}^{2}\right)=-1\right]$ times \boldsymbol{u}^{*}, that is, $\delta\left(\boldsymbol{x}^{2}, \boldsymbol{u}^{*}\right)=1 / 4$
© $\boldsymbol{x}^{1}: \varepsilon=0, \delta=1 / 2 ; \boldsymbol{x}^{2}: \varepsilon=1 / 4, \delta=1 / 4 ; \boldsymbol{x}^{3}:$ $\varepsilon=1 / 4, \delta=0$. Unpredictable, except that $\varepsilon+\delta=\Gamma$ must hold at an optimal solution
© Candidate vector $\overline{\boldsymbol{x}}:=(2,0)^{\mathrm{T}}: \varepsilon=1 / 2, \delta=1$ [the slope of $L(\overline{\boldsymbol{x}}, \cdot)$ at \boldsymbol{u}^{*} is -4$]$; here, $\theta^{*}+\varepsilon+\delta=f(\overline{\boldsymbol{x}})=0>f^{*}$, so $\overline{\boldsymbol{x}}$ cannot be optimal

Figure 4: The optimal solution \boldsymbol{x}^{1} (marked with large circle) is specified by the global optimality conditions (6) for $(\varepsilon, \delta):=(0,1 / 2)$. The shaded regions and arrows illustrate the conditions (6a) and (6c) corresponding to $u=u^{*}$.

Figure 5: The optimal solution \boldsymbol{x}^{2} (marked with large circle) is specified by the global optimality conditions (6) for $(\varepsilon, \delta):=(1 / 4,1 / 4)$. The shaded regions and arrows illustrate the conditions (6a) and (6c) corresponding to $u=u^{*}$.

Figure 6: The optimal solution \boldsymbol{x}^{3} (marked with large circle) is specified by the global optimality conditions (6) for $(\varepsilon, \delta):=(1 / 2,0)$. The shaded regions and arrows illustrate the conditions (6a) and (6c) corresponding to $u=u^{*}$.
© (Small duality gap) $\overline{\boldsymbol{x}}(\boldsymbol{u})$ Lagrangian near-optimal, small complementarity violations \Rightarrow conservative Lagrangian heuristics sufficient (if they can reduce large complementarity violations)
© (Large duality gap) Dual solution far from optimal/large duality gap \Rightarrow radical Lagrangian heuristics necessary

๑ The cost used was $h(\boldsymbol{x}):=\lambda\left[f(\boldsymbol{x})+\boldsymbol{u}^{\mathrm{T}} \boldsymbol{g}(\boldsymbol{x})\right]+$ $(1-\lambda)\left[-\boldsymbol{u}^{\mathrm{T}} \boldsymbol{g}(\boldsymbol{x})\right], \quad \lambda \in[1 / 2,1]$
© Rail problems often have over-covered optimal solutions, hence complementarity is violated substantially; δ large, ε rather small, hence $\lambda \lesssim 1$ a good choice (cf. Figure 1)
© ε still not very close to zero, so radical heuristics better than conservative

$$
\boldsymbol{h}(\boldsymbol{x})=\mathbf{0}^{\ell}
$$

$$
\begin{aligned}
f(\boldsymbol{x})+\boldsymbol{v}^{\mathrm{T}} \boldsymbol{h}(\boldsymbol{x}) & \leq \theta(\boldsymbol{v})+\varepsilon, \\
\boldsymbol{h}(\boldsymbol{x}) & =\mathbf{0}^{\ell}, \\
0 \leq \varepsilon & \leq \Gamma
\end{aligned}
$$

© Global optimum $\Longleftrightarrow \varepsilon=\Gamma$
© Saddle-type condition for
$L(\boldsymbol{x}, \boldsymbol{v}):=f(\boldsymbol{x})+\boldsymbol{v}^{\mathrm{T}} \boldsymbol{h}(\boldsymbol{x})$ over $X \times \mathbb{R}^{\ell}:$
$L(\boldsymbol{x}, \boldsymbol{w}) \leq L(\boldsymbol{x}, \boldsymbol{v}) \leq L(\boldsymbol{y}, \boldsymbol{v})+\varepsilon, \quad(\boldsymbol{y}, \boldsymbol{w}) \in X \times \mathbb{R}^{\ell}$
© Core problems used to solve large-scale set-covering and binary knapsack problems.
© Guess which $x_{j}^{*}=1$ or $x_{j}^{*}=0$.
© Often based on the LP reduced costs: $\bar{c}_{j} \ll 0 \Longrightarrow x_{j}^{*}=1 ; \bar{c}_{j} \gg 0 \Longrightarrow x_{j}^{*}=0$. Fix according to a threshold value for \bar{c}_{j}.
© The remaining part of \boldsymbol{x} is the "difficult" part of the problem.
© Standard method ignores complementarity.

$$
\begin{align*}
f^{*}:= & \operatorname{minimum} \tag{11a}\\
& \sum_{j=1}^{n} \boldsymbol{c}_{j}^{\mathrm{T}} \boldsymbol{x}_{j}, \tag{11b}\\
& \text { subject to } \sum_{j=1}^{n} \boldsymbol{A}_{j} \boldsymbol{x}_{j} \geq \boldsymbol{b}, \tag{11c}\\
& \boldsymbol{x}_{j} \in X_{j}, \quad j=1, \ldots, n
\end{align*}
$$

$X_{j} \subset \mathbb{R}^{n_{j}}, j=1, \ldots, n$, are finite
$\boldsymbol{c}_{j} \in \mathbb{R}^{n_{j}}, \boldsymbol{A}_{j} \in \mathbb{R}^{m \times n_{j}}, j=1, \ldots, n$, and $\boldsymbol{b} \in \mathbb{R}^{m}$
$\boldsymbol{u} \in \mathbb{R}_{+}^{m}$ multipliers for the side constraints (10b)

$$
\begin{aligned}
f^{*}=\operatorname{minimum} & \sum_{j=1}^{n} \sum_{i=1}^{P_{j}}\left(\boldsymbol{c}_{j}^{\mathrm{T}} x_{j}^{i}\right) \lambda_{j}^{i}, \\
\text { subject to } & \sum_{j=1}^{n} \sum_{i=1}^{P_{j}}\left(\boldsymbol{A}_{j} x_{j}^{i}\right) \lambda_{j}^{i} \geq \boldsymbol{b}, \\
& \sum_{i=1}^{P_{j}} \lambda_{j}^{i}=1, \quad j=1, \ldots, n, \\
& \lambda_{j}^{i} \in\{0,1\}, \quad i=1, \ldots, P_{j}, \quad j=1, \ldots, n
\end{aligned}
$$

P_{j} : number of points in the set X_{j}, denoted by x_{j}^{i} Let $p_{j}<P_{j}, \overline{\boldsymbol{u}}$ near-optimal to Lagrangian dual

$$
\begin{aligned}
f_{r}^{*}:=\operatorname{minimum} & \sum_{j=1}^{n} \sum_{i=1}^{p_{j}}\left(\boldsymbol{c}_{j}^{\mathrm{T}} x_{j}^{i}\right) \lambda_{j}^{i}, \\
\text { subject to } & \sum_{j=1}^{n} \sum_{i=1}^{p_{j}}\left(\boldsymbol{A}_{j} x_{j}^{i}\right) \lambda_{j}^{i} \geq \boldsymbol{b}, \\
& \sum_{j=1}^{n} \sum_{i=1}^{p_{j}}\left(\overline{\boldsymbol{u}}^{\mathrm{T}} \boldsymbol{A}_{j} x_{j}^{i}\right) \lambda_{j}^{i} \leq \overline{\boldsymbol{u}}^{\mathrm{T}} \boldsymbol{b}+\delta, \\
& \sum_{i=1}^{p_{j}} \lambda_{j}^{i}=1, \quad j=1, \ldots, n, \\
& \lambda_{j}^{i} \in\{0,1\}, \quad i=1, \ldots, p_{j}, \quad j=1, \ldots, n
\end{aligned}
$$

Complementarity near-fulfillment side constraint

