A standard LP problem and its Lagrangian dual

- Let $X := \{ \boldsymbol{x} \in \mathbb{R}^n_+ \mid \boldsymbol{A}\boldsymbol{x} \leq \boldsymbol{b} \}.$
- \bullet We suppose for now that X is bounded.
- Further, let $P_X := \{ \boldsymbol{x}^1, \boldsymbol{x}^2, \dots, \boldsymbol{x}^K \}$ be the set of extreme points in the polyhedron X.

Cutting Plane, Column generation and Dantzig-Wolfe decomposition

23 September 2008

0 - 0

 \bullet So,

 $v_L := ext{maximum } z,$ subject to $z \leq \boldsymbol{c}^{\mathrm{T}} \boldsymbol{x}^i + \boldsymbol{\mu}^{\mathrm{T}} (\boldsymbol{D} \boldsymbol{x}^i - \boldsymbol{d}), \qquad i \in P_X,$ $\boldsymbol{\mu} \geq \mathbf{0}.$

• We know that if at an optimal dual solution μ^* , the set $X(\mu^*)$ is a singleton, then thanks to strong duality this solution is optimal (and it is unique!). This typically does not happen, unless an optimal solution x^* happens to be an extreme point of X. We know, however, that x^* always can be written as a convex combination of such points. Let's see how it can be generated.

• Its Lagrangian dual with respect to Lagrangian relaxing the constraints $Dx \leq d$ is to find

$$v_{LP} = v_L := \text{maximum } q(\boldsymbol{\mu}),$$

subject to $\boldsymbol{\mu} > \mathbf{0},$

where

$$egin{aligned} q(oldsymbol{\mu}) &:= \min_{oldsymbol{x} \in X} \quad \left\{ oldsymbol{c}^{\mathrm{T}} oldsymbol{x} + oldsymbol{\mu}^{\mathrm{T}} (oldsymbol{D} oldsymbol{x} - oldsymbol{d})
ight\} \ &= \min_{i \in P_X} \quad \left\{ oldsymbol{c}^{\mathrm{T}} oldsymbol{x}^i + oldsymbol{\mu}^{\mathrm{T}} (oldsymbol{D} oldsymbol{x}^i - oldsymbol{d})
ight\}. \end{aligned}$$

• Equivalent statement:

$$q(\boldsymbol{\mu}) \leq \boldsymbol{c}^{\mathrm{T}} \boldsymbol{x}^i + \boldsymbol{\mu}^{\mathrm{T}} (\boldsymbol{D} \boldsymbol{x}^i - \boldsymbol{d}), \qquad i \in P_X, \quad \boldsymbol{\mu} > 0.$$

2

- Let $(\boldsymbol{\mu}^{k+1}, z^{k+1})$ be the solution to the above problem. If $z^{k+1} \leq \boldsymbol{c}^{\mathrm{T}} \boldsymbol{x}^i + (\boldsymbol{\mu}^{k+1})^{\mathrm{T}} (\boldsymbol{D} \boldsymbol{x}^i - \boldsymbol{d})$ holds for all $i \in P_X$, then $\boldsymbol{\mu}^{k+1}$ is optimal in the dual! Why?
- How to check optimality: find the most violated dual constraint! That is, solve the subproblem to find

$$q(\boldsymbol{\mu}^{k+1}) := \underset{\boldsymbol{x} \in X}{\text{minimum}} \left\{ \boldsymbol{c}^{T} \boldsymbol{x} + (\boldsymbol{\mu}^{k+1})^{T} (\boldsymbol{D} \boldsymbol{x} - \boldsymbol{d}) \right\}$$
(2)
$$= \underset{i \in P_{X}}{\text{minimum}} \left\{ \boldsymbol{c}^{T} \boldsymbol{x}^{i} + (\boldsymbol{\mu}^{k+1})^{T} (\boldsymbol{D} \boldsymbol{x}^{i} - \boldsymbol{d}) \right\}.$$

A cutting plane method for the Lagrangian dual problem

• Suppose only a subset of P_X is known, and consider the following restriction of the Lagrangian dual problem:

$$z^{k+1} := \max z,$$
 (1a)
s.t. $z \le c^{\mathrm{T}} x^i + \mu^{\mathrm{T}} (D x^i - d), \quad i = 1, \dots, k,$ (1b)

• How do we determine if we have found the optimal solution? And what IS the optimal solution when we find it?

 $\mu \geq 0$.

• If $z^{k+1} \leq q(\boldsymbol{\mu}^{k+1})$ then $\boldsymbol{\mu}^{k+1}$ is optimal in the dual; otherwise, we have identified a constraint of the form $z \leq \boldsymbol{c}^{\mathrm{T}}\boldsymbol{x}^{i} + \boldsymbol{\mu}^{\mathrm{T}}(\boldsymbol{D}\boldsymbol{x}^{i} - \boldsymbol{d})$, where $i \in P_{X}$, which is violated at $(\boldsymbol{\mu}^{k+1}, z^{k+1})$. Add this inequality and re-solve the LP problem!

• We refer to this algorithm as a *cutting plane* algorithm, for the reason that it is based on adding constraints to the dual problem in order to improve the solution, in the process cutting off the previous point.

• Consider the figure on the next slide. The thick lines correspond to the subset of k inequalities known at iteration k.

c

(1c)

Duality relationships and the Dantzig-Wolfe algorithm

• We rewrite the problem (1) as follows:

$$\begin{aligned} & \underset{(z, \boldsymbol{\mu})}{\text{maximize}} & z, \\ & \text{subject to} & z - \boldsymbol{\mu}^{\text{T}}(\boldsymbol{D}\boldsymbol{x}^i - \boldsymbol{d}) \leq \boldsymbol{c}^{\text{T}}\boldsymbol{x}^i, & i = 1, \dots, k, \\ & \boldsymbol{\mu} \geq \boldsymbol{0}. \end{aligned}$$

- Obviously, $z^{k+1} \ge q(\mu^{k+1})$ must hold, because of the possible lack of constraints. In this case, $z^{k+1} > q(\mu^{k+1})$ holds, so in the next step when we evaluate $q(\mu^{k+1})$ we can identify and add the last lacking inequality; the resulting maximization will then yield the optimal solution μ^* shown in the picture.
- How do we generate a primal optimal solution from this scheme? Let us look at the dual of the problem (1) in this cutting plane algorithm.

11

$$v^{k+1} = \text{minimum } \boldsymbol{c}^{\mathrm{T}} \left(\sum_{i=1}^{k} \lambda_{i} \boldsymbol{x}^{i} \right),$$
 (3)
subject to
$$\sum_{i=1}^{k} \lambda_{i} = 1,$$

$$\lambda_{i} \geq 0, \qquad i = 1, \dots, k,$$

$$\boldsymbol{D} \left(\sum_{i=1}^{k} \lambda_{i} \boldsymbol{x}^{i} \right) \leq \boldsymbol{d}.$$

• We maximize $c^T x$ subject to x lying in the convex hull of the extreme points x^i found so far and fulfilling the constraints that are Lagrangian relaxed.

• With LP dual variables $\lambda_i \geq 0$ for the linear constraints, we obtain the LP dual to find

$$v^{k+1} = \text{minimum} \quad \sum_{i=1}^k (\boldsymbol{c}^{\mathrm{T}} \boldsymbol{x}^i) \lambda_i,$$
 subject to
$$\sum_{i=1}^k \lambda_i = 1,$$

$$-\sum_{i=1}^k (\boldsymbol{D} \boldsymbol{x}^i - \boldsymbol{d}) \lambda_i \geq \mathbf{0},$$

$$\lambda_i \geq 0, \qquad i = 1, \dots, k,$$

that is,

• Three algorithms which are "dual" to each other:

Cutting plane applied to the Lagrangian dual

Dantzig–Wolfe applied to the original LP

Benders decomposition applied to the dual LP.

- The problem (3) is known as the restricted master problem (RMP) in the Dantzig-Wolfe algorithm.
- In this algorithm, we have at hand a subset $\{1, \ldots, k\}$ of extreme points of X (and a dual vector $\boldsymbol{\mu}^k$), and find a feasible solution to the original LP problem by solving the restricted master problem (3). We then generate an optimal dual solution $\boldsymbol{\mu}^{k+1}$ to this restricted problem problem, corresponding to the constraints $\boldsymbol{D}\boldsymbol{x} \leq \boldsymbol{d}$. If and only if the vector \boldsymbol{x}^i generated in the next subproblem (2) was already included, we have found the optimal solution to the problem.

Basic feasible solutions

 $B = \{m \text{ elements from the set } \{1, \dots, n\}\}\$ is a basis if the corresponding matrix $\mathbf{B} = (\mathbf{a}_i)_{i \in B}$ has an inverse, \mathbf{B}^{-1}

A basic solution is given by $\mathbf{x}_B = \mathbf{B}^{-1}\mathbf{b}$ and $x_j = 0, j \notin B$. It is feasible if $\mathbf{x}_B \geq \mathbf{0}^m$

A better basic feasible solution can be found by computing reduced costs: $\bar{c}_j = c_j - \boldsymbol{c}_B^{\mathrm{T}} \boldsymbol{B}^{-1} \boldsymbol{a}_j$ for $j \notin B$

Let $\bar{c}_s = \underset{j \notin B}{\text{minimum }} \bar{c}_j$

If $\bar{c}_s < 0 \Longrightarrow$ a better solution is received if x_s enters the basis

If $\bar{c}_s \geq 0 \Longrightarrow x_B$ is an optimal basic solution

Column generation

An LP with very many variables $c_j, x_j \in \mathbb{R}, \mathbf{a}_j, \mathbf{b} \in \mathbb{R}^m, m \ll n$

minimize
$$z = \sum_{j=1}^n c_j x_j$$
 subject to $\sum_{j=1}^n \boldsymbol{a}_j x_j = \boldsymbol{b}$ $x_j \geq 0, \qquad j = 1, \dots, n$

The matrix (a_1, \ldots, a_n) is too large to handle. Assume that m is relatively small \Longrightarrow the basic matrix is not too large $(m \times m)$

14

18

Example: The Cutting Stock Problem

Supply: rolls of e.g. paper of length L

Demand: b_i pieces of length $\ell_i < L, i = 1, ..., m$

 ${\bf Objective:}$ minimize the number of rolls needed to satisfy

the demanded of the pieces

First formulation:

Let

$$x_k = \begin{cases} 1 & \text{roll } k \text{ is used} \\ 0 & \text{otherwise} \end{cases} y_{ik} = \begin{cases} 1 & \text{piece } i \text{ is cut from roll } k \\ 0 & \text{otherwise} \end{cases}$$

Suppose the columns a_j are defined by a set $S = \{a_j \mid j = 1, ..., n\}$ being, e.g., solutions to a system of equations (extreme points, integer points, ...)

The incoming column is then chosen by solving a "subproblem":

$$\bar{c}(\boldsymbol{a}') = \min_{\boldsymbol{a} \in S} \left\{ c - \boldsymbol{c}_B^{\mathrm{T}} \boldsymbol{B}^{-1} \boldsymbol{a} \right\}$$

a' is a column having the least reduced cost wrt basis B

If $\bar{c}(\mathbf{a}') < 0$ let the column $\begin{pmatrix} c(\mathbf{a}') \\ \mathbf{a}' \end{pmatrix}$ enter problem

Second formulation:

Cut pattern j contains a_{ij} pieces of length ℓ_i

Feasible pattern if $\sum_{i=1}^{m} \ell_i a_{ij} \leq L$, where $a_{ij} \geq 0$, integer

Integer variables: $x_i = \text{number of times pattern } j$ is used

Bad news: n = total number of feasible cut pattern very large integer

minimize
$$\sum_{k=1}^{M} x_k$$
 s.t.
$$\sum_{i=1}^{m} \ell_i y_{ik} \leq Lx_k, \qquad k = 1, \dots, M$$

$$\sum_{k=1}^{M} y_{ij} = b_i, \qquad i = 1, \dots, m$$

$$x_k, y_{ik} \geq 0, \text{ binary,}$$

The value of the LP-relaxation is $\frac{\sum \ell_i b_i}{L}$ which can be very bad if $\ell_i = \lfloor L/2 + 1 \rfloor$ for large L (large duality gap, potentially bad performance of ILP-solvers).

22

Start solution

Trivial: m unit columns (gives lots of waste):

minimize
$$\sum_{j=1}^{m} x_{j}$$

subject to $x_{j} = b_{j}, \quad j = 1, \dots, m$
 $x_{i} > 0, \quad j = 1, \dots, m$

minimize
$$\sum_{j=1}^n x_j$$

subject to $\sum_{j=1}^n a_{ij}x_j = b_i$, $i=1,\ldots,m$
 $x_j \geq 0$, integer, $j=1,\ldots,n$

Good news: the value of the LP-relaxation is often very close to the value of the optimal solution^a. We may relax the integrality constaints and solve an LP instead of an ILP!

^aMarcotte 1985: The cutting stock problem and integer rounding, Mathematical Programming 33

23

Formulation of LP on column generation form—Dantzig-Wolfe decomposition

Let $X = \{x \in \mathbb{R}^n_+ \mid Ax = b\}$ (or $Ax \leq b$) be a polyhedron with the extreme points \bar{x}^p , $p \in \mathcal{P}$ and the extreme recession directions \tilde{x}^r , $r \in \mathcal{R}$

New columns

Generate better patterns using the dual variables π :

$$1 - \underset{a_{ij}}{\text{maximum}} \sum_{i=1}^{m} \pi_i a_{ij} \qquad \left[\underset{\text{minimize}}{\text{minimize}} \left(c_j - \underbrace{\boldsymbol{c}_B^T \boldsymbol{B}^{-1}}_{\pi} \boldsymbol{a}_j \right) \right]$$
subject to
$$\sum_{i=1}^{m} \ell_i a_{ij} \leq L,$$
$$a_{ij} \geq 0, \text{ integer}, \qquad i = 1, \dots, m$$

Solution to this knapsack problem: New column a_i

24

An LP and its complete master problem

[LP1]
$$z^* = \text{minimum } \boldsymbol{c}^{\mathrm{T}} \boldsymbol{x}$$

subject to $\boldsymbol{A} \boldsymbol{x} = \boldsymbol{b}$ ("simple" constraints)
 $\boldsymbol{D} \boldsymbol{x} = \boldsymbol{d}$ (complicating constraints)
 $\boldsymbol{x} \geq \boldsymbol{0}$

Let $X = \{ \boldsymbol{x} \geq 0 \mid \boldsymbol{A}\boldsymbol{x} = \boldsymbol{b} \}$ with the extreme points $\bar{\boldsymbol{x}}^p$, $p \in \mathcal{P}$ and the extreme directions $\tilde{\boldsymbol{x}}^r$, $r \in \mathcal{R} \Longrightarrow$

$$egin{array}{lcl} oldsymbol{x} & = & \displaystyle\sum_{p \in \mathcal{P}} \lambda_p ar{oldsymbol{x}}^p + \displaystyle\sum_{r \in \mathcal{R}} \mu_r ar{oldsymbol{x}}^r \\ & \displaystyle\sum_{p \in \mathcal{P}} \lambda_p = 1 \\ & \lambda_p \geq 0, \quad p \in \mathcal{P} \\ & \mu_r \geq 0, \quad r \in \mathcal{R} \end{array}
ight)$$

 $x \in X$ is a convex combination of the extreme points plus a conical combination of the extreme directions

This inner representation of the set X can be used to reformulate a linear optimization problem according to the Dantzig-Wolfe decomposition principle, which is then solved by column generation.

The dual of [LP2] is given by (not all extreme pts./dirs. found yet: $\bar{\mathcal{P}} \subset \mathcal{P}$; $\bar{\mathcal{R}} \subset \mathcal{R}$)

[DLP2]
$$z^* \leq \max_{(\boldsymbol{\pi},q)} \boldsymbol{d}^{\mathrm{T}} \boldsymbol{\pi} + q$$

s.t. $(\boldsymbol{D}\bar{\boldsymbol{x}}^p)^{\mathrm{T}} \boldsymbol{\pi} + q \leq (\boldsymbol{c}^{\mathrm{T}}\bar{\boldsymbol{x}}^p), \quad p \in \bar{\mathcal{P}} \quad | \lambda_p$
 $(\boldsymbol{D}\tilde{\boldsymbol{x}}^r)^{\mathrm{T}} \boldsymbol{\pi} \quad \leq (\boldsymbol{c}^{\mathrm{T}}\tilde{\boldsymbol{x}}^r), \quad r \in \bar{\mathcal{R}} \quad | \mu_r$

with solutions $(\bar{\boldsymbol{\pi}}, \bar{q})$

Reduced cost for the variable $\lambda_p, p \in \mathcal{P} \setminus \bar{\mathcal{P}}$ is given by $(\boldsymbol{c}^{\mathrm{T}}\bar{\boldsymbol{x}}^p) - (\boldsymbol{D}\bar{\boldsymbol{x}}^p)^{\mathrm{T}}\bar{\boldsymbol{\pi}} - \bar{q} = (\boldsymbol{c} - \boldsymbol{D}^{\mathrm{T}}\bar{\boldsymbol{\pi}})^{\mathrm{T}}\bar{\boldsymbol{x}}^p - \bar{q}$ Reduced cost for the variable $\mu_r, r \in \mathcal{R} \setminus \bar{\mathcal{R}}$ is given by

ost for the variable $\mu_r,\,r\in\mathcal{R}\setminus\mathcal{R}$ is given by $(m{c}^{\mathrm{T}} ilde{m{x}}^r)-(m{D} ilde{m{x}}^r)^{\mathrm{T}}ar{m{\pi}}=(m{c}-m{D}^{\mathrm{T}}ar{m{\pi}})^{\mathrm{T}} ilde{m{x}}^r$

[LP2]
$$z^* = \min \sum_{p \in \mathcal{P}} \lambda_p(\boldsymbol{c}^{\mathrm{T}} \bar{\boldsymbol{x}}^p) + \sum_{r \in \mathcal{R}} \mu_r(\boldsymbol{c}^{\mathrm{T}} \tilde{\boldsymbol{x}}^r)$$

s.t. $\sum_{p \in \mathcal{P}} \lambda_p(\boldsymbol{D} \bar{\boldsymbol{x}}^p) + \sum_{r \in \mathcal{R}} \mu_r(\boldsymbol{D} \tilde{\boldsymbol{x}}^r) = \boldsymbol{d} \quad | \boldsymbol{\pi}$

$$\sum_{p \in \mathcal{P}} \lambda_p = 1 \quad | \boldsymbol{q}$$

Number of constraints in [LP2] equals to "the number of constraints in $\mathbf{D}\mathbf{x} = \mathbf{d}$ " + 1

Number of columns very large (# extreme pts./dirs. to X)

26

Column generation

The least reduced cost is found by solving the subproblem

$$\min_{\boldsymbol{x} \in X} (\boldsymbol{c} - \boldsymbol{D}^{\mathrm{T}} \boldsymbol{\pi})^{\mathrm{T}} \boldsymbol{x} \quad \left(\text{alt:} \quad \min_{\boldsymbol{x} \in X} (\boldsymbol{c} - \boldsymbol{D}^{\mathrm{T}} \bar{\boldsymbol{\pi}})^{\mathrm{T}} \boldsymbol{x} - \bar{q} \right)$$

Gives as solution an extreme point, $\bar{\boldsymbol{x}}^p$, or an extreme direction $\tilde{\boldsymbol{x}}^r$

 \implies a new column in [LP2]: (if < 0)

Either
$$\begin{pmatrix} \boldsymbol{c}^{\mathrm{T}} \bar{\boldsymbol{x}}^p \\ \boldsymbol{D} \bar{\boldsymbol{x}}^p \\ 1 \end{pmatrix}$$
 or $\begin{pmatrix} \boldsymbol{c}^{\mathrm{T}} \tilde{\boldsymbol{x}}^r \\ \boldsymbol{D} \tilde{\boldsymbol{x}}^r \\ 0 \end{pmatrix}$ enters the problem and

improves the solution