/ A standard LP problem and its Lagrangian dual\

vyp — minimum Tz, Cutting Plane, Column generation and
subject to Az < b, Dantzig—Wolfe decomposition
Dzx <d,
z e R},
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o Let X:={zecR} |Azx <b}.

o We suppose for now that X is bounded.

e Further, let Px := {x!, x? ..., X} be the set of
extreme points in the polyhedron X.
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/ e So \ / e [ts Lagrangian dual with respect to Lagrangian \
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. relaxing the constraints Dz < d is to find
vy, = maximum z,

subject to z < c'x' + T (Dx' — d), i € Py, vLp = g, i= maximum g(p),
p>0. subject to p > 0,
e We know that if at an optimal dual solution p*, the set where
X (p*) is a singleton, then thanks to strong duality this ¢(p) := minimum {c'z + p"(Dz — d)}
solution is optimal (and it is unique!). This typically _ feX y - .
does not happen, unless an optimal solution &* happens - ml?g};?(“m {c ' +p (D' — d)} '

to be an extreme point of X. We know, however, that e Equivalent statement:

x* always can be written as a convex combination of
T, i T i .
such points. Let’s see how it can be generated. q(p) <cz'+p (Dz' —d), i€Px, p>0.

. / . /




/o Let (uF*!, 2%*1) be the solution to the above problem.\
If 2k < eTal + (uF1)T(Dx? — d) holds for all i € Py,
then p**! is optimal in the dual! Why?

e How to check optimality: find the most violated dual
constraint! That is, solve the subproblem to find

q(p*) = miriier?(um {"z+ (p"")(Dz - d)} (2)

= minimum {c"z’ + (""" (D2’ — d)}.

1€ Px

/A cutting plane method for the Lagrangian dual\
problem

e Suppose only a subset of Py is known, and consider the
following restriction of the Lagrangian dual problem:

2P = max 2, (1a)
st. z<c'z'+p'(Dx' —d), i=1,...,k (1b)
p > 0. (1c)

e How do we determine if we have found the optimal
solution? And what IS the optimal solution when we
find it?
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/o If 2k+1 < g(puk*1) then p*+! is optimal in the dual; \
otherwise, we have identified a constraint of the form

z < etz + ut(Dx' — d), where i € Px, which is
violated at (u**!, zF+1). Add this inequality and

re-solve the LP problem!

e We refer to this algorithm as a cutting plane algorithm,
for the reason that it is based on adding constraints to
the dual problem in order to improve the solution, in
the process cutting off the previous point.

e Consider the figure on the next slide. The thick lines
correspond to the subset of k inequalities known at

K iteration k. J




/ Duality relationships and the Dantzig—Wolfe \
algorithm

e We rewrite the problem (1) as follows:

maximize z,
(2.1)
subject to z — ut(Dz' —d) < c*x', i=1,...,k,

=0

/o Obviously, ¥ > ¢(pF*1) must hold, because of the \

possible lack of constraints. In this case, zF*1 > g(uf+1)

holds, so in the next step when we evaluate g(u**!)

we
can identify and add the last lacking inequality; the
resulting maximization will then yield the optimal

solution p* shown in the picture.

e How do we generate a primal optimal solution from
this scheme? Let us look at the dual of the problem (1)
in this cutting plane algorithm.

\ /

k
v**! = minimum ¢* (Z )\ia:z) : (3)
i=1

A >0,  i=1,...k

k
D (Z Aa:) <d.
=1

e We maximize ¢z subject to & lying in the convex hull
of the extreme points ! found so far and fulfilling the

constraints that are Lagrangian relaxed.

/
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/ e With LP dual variables A\; > 0 for the linear \
constraints, we obtain the LP dual to find

k
v**1 = minimum g (cTxh)\;,
i=1

k
subject to Z =1,
i=1
k
—> (Da' —d)); >0,
i=1
A >0, 1=1,...,k,
that is,
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/ e Three algorithms which are “dual” to each other:

Cutting plane applied to the Lagrangian dual
<
Dantzig—Wolfe applied to the original LP
<
Benders decomposition applied to the dual LP.

\
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/ e The problem (3) is known as the restricted master \
problem (RMP) in the Dantzig-Wolfe algorithm.

e In this algorithm, we have at hand a subset {1,...,k}
of extreme points of X (and a dual vector p*), and find
a feasible solution to the original LP problem by solving
the restricted master problem (3). We then generate an

k+1 to this restricted problem

optimal dual solution p
problem, corresponding to the constraints Dx < d. If
and only if the vector x¢ generated in the next
subproblem (2) was already included, we have found

the optimal solution to the problem.

\ /
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/ Basic feasible solutions

~

B = {m elements from the set {1,...,n}} is a basis if the

corresponding matrix B = (a;)jcp has an inverse, B!

A basic solution is given by €z = B™'band z; =0, j ¢ B.

It is feasible if &g > 0™

A better basic feasible solution can be found by computing

reduced costs: ¢; = ¢; — c5B 'a; for j ¢ B
Let ¢, = minimum ¢;
Jj¢B
If ¢, < 0 = a better solution is received if x, enters the
basis

\If ¢s > 0 = xp is an optimal basic solution

/
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/ Column generation \

An LP with very many variables ¢;,r; €R, a;,b € R™,
mLn

n
minimize z = E CjTj
=1
n
subject to g a;z; =b
=1

Z’jZO, jil,...,n

The matrix (@, ...,a,) is too large to handle. Assume
that m is relatively small = the basic matrix is not too

large (m x m
Kg(X) Y.
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/ Example: The Cutting Stock Problem \
Supply: rolls of e.g. paper of length L
Demand: b; pieces of length /; < L,i=1,...,m

Objective: minimize the number of rolls needed to satisfy
the demanded of the pieces

First formulation:
Let
1 roll k is used 1 piece i is cut from roll k&
Tk = Yik =

0 otherwise 0 otherwise

N /
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/Suppose the columns a; are defined by a set \
S={a;|j=1,...,n} being, e.g., solutions to a system of
equations (extreme points, integer points, .. .)

The incoming column is then chosen by solving a
“subproblem”:

—/ .o T -1
= —cgB
c(a') minimum {¢c—cyB'a}

a’ is a column having the least reduced cost wrt basis B

/

a
) ) enter problem

c
If ¢(a’) < 0 let the column (
a

\ /
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/Second formulation: \

Cut pattern j contains a;; pieces of length /;
Feasible pattern if Zgl l;a;; < L, where a;; > 0, integer

Integer variables: z; = number of times pattern j is used

Bad news: n = total number of feasible cut pattern —
very large integer

. /
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M
minimize E Ty
k=1

s.t. Z&yikSka, k=1,...,M

=1

M
Zyij:biv izl,...,m
k=1

Tk, Yik Z 07 bina‘rY7

The value of the LP-relaxation is Zi“'b" which can be very bad if

£; =|L/2+1] for large L (large duality gap, potentially bad

performance of ILP-solvers).

/
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/ Start solution \

Trivial: m unit columns (gives lots of waste):

m
minimize E z;
=1
subject to z; =0b;, j=1,...,m

.’EJ'ZO, j=1,...,m

N /
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a N

n

minimize E x;
=1

n
subject to Zaijxj =b;, i=1,....m
j=1
z; > 0, integer, j=1...,n

Good news: the value of the LP-relaxation is often very
close to the value of the optimal solution®. We may relax
the integrality constaints and solve an LP instead of an

ILP!
aMarcotte 1985: The cutting stock problem and integer rounding, Math-

Kematical Programming 33 /
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/ Formulation of LP on column generation \
form—Dantzig—Wolfe decomposition

Let X = {x € R} | Az = b} (or Az < b) be a polyhedron
with the extreme points &P, p € P and the extreme
recession directions &, r € 7@2

P={1,2,...,7}
R ={1,2}
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/ New columns \

Generate better patterns using the dual variables m:

m
1 — maximum E Qg5 minimize (¢; — cg B a;)
9 i=1 T

m
subject to Z&aij <L,
i=1
a;; > 0, integer, 1=1,....,m

Solution to this knapsack problem: New column a;

. /
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/ An LP and its complete master problem \

[LP1] z* = minimum c'x
subject to Az = b (“simple” constraints)
Dz = d (complicating constraints)
x>0

Let X = {ax > 0| Az = b} with the extreme points x?,
p € P and the extreme directions ", r € R =

N /
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peEP TER
D A=

x e X< vt
Ap >0, peP

x € X is a convex combination of the extreme points plus
a conical combination of the extreme directions

This inner representation of the set X can be used to
reformulate a linear optimization problem according to the
Dantzig-Wolfe decomposition principle, which is then

Qolved by column generation. /
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/The dual of [LP2] is given by (not all extreme pts./dirs. \
found yet: P C P; R C R)

[DLP2] 2* < max d'm+q
™9

st. (Dz°)'m+q<(c'z?), peP |\
(Dz")"m <(c'&"), reR |
with solutions (7, q)
Reduced cost for the variable \,, p € P\ P is given by
(cTzP) — (DzP)"7" — = (c — DT®)"2" — ¢
Reduced cost for the variable y,, r € R \ R is given by
(c'x") — (Dz")"w = (c — D x)T&"

. /
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pEP reR
s.t ZAP(DCUP) + ZMT(D:ET) =d |«
peEP reER

Number of constraints in [LP2] equals to “the number of
constraints in Dz =d” + 1

Number of columns very large (# extreme pts./dirs. to X)

. /
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/ Column generation \

The least reduced cost is found by solving the subproblem

min (¢ — DTm)Tx (alt: min (¢ — D'm)Tx — (j)
zeX zeX

Gives as solution an extreme point, P, or an extreme
direction "
= a new column in [LP2]: (if < 0)
cTxP ctz’
Either | DzP | or | Dz" | enters the problem and

1 0

Kimproves the solution /




