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A standard LP problem and its Lagrangian dual

vLP = minimum cTx,

subject to Ax ≤ b,

Dx ≤ d,

x ∈ R
n
+

�
Let PX := {x1, x2, . . . , xK} be the set of extreme points in the
polyhedron X := { x ∈ R

n
+ | Ax ≤ b }

�
We suppose for now that X is bounded
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Benders decomposition for mixed-integer optimization

problems—Lasdon (1970)

�
Model:

minimize cTx + f (y),

subject to Ax + F(y) ≥ b,

x ≥ 0n, y ∈ S

�
The variables y are “difficult” because:

� the set S may be complicated, like S ⊆ {0, 1}p

�
f and/or F may be nonlinear

� the vector F(y) may cover every row, while the problem in x

for fixed y may separate

�
The problem is linear, possibly separable in x; “easy”
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Example: Block-angular structure in x, binary constraints

on y, linear in x, nonlinear in y

min cT

1 x1 + · · ·+ cT
n xn + f (y),

s.t. A1x1 + F1(y)≥b1,
. . .

...
...

Anxn +Fn(y)≥bn,

x1, x2, · · · , xn ≥ 0,

y ∈ {0, 1}p
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Applications

�
Typical application: Multi-stage stochastic programming
(optimization under uncertainty)

� Some parameters (constants) are uncertain
� Choose y (e.g., investment) such that an expected cost over

time is minimized
� Uncertainty in data is represented by future scenarios (`)
� Variables x` represent future activities
�

y must be chosen before the outcome of the uncertain
parameters is known

� Choose y s.t. the expected value over scenarios ` of the future
optimization over x` (⇒ x`(y)) is the best
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A two-stage stochastic program, I

min
∑

`∈L

p` · cT

` x` + dTy,

s.t. A`x` + T`y = b`, ` ∈ L,

x` ≥ 0, ` ∈ L,

y ∈ Y
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A two-stage stochastic program, I

�
Solution idea: Temporarily fix y, solve the remaining problem
over x parameterized over y ⇒ solution x(y). Utilize the
problem structure to improve the guess of an optimal value of
y. Repeat

�
Similar to minimizing a function η over two vectors, v and w:

inf
v,w

η(v,w) = inf
v

ξ(v), where ξ(v) = inf
w

η(v,w), v ∈ R
m

�
In effect, we substitute the variable w by always minimizing
over it, and work with the remaining problem in v
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Benders decomposition

�
Benders decomposition: construct an approximation of this
problem over v by utilizing LP duality

�
If the problem over y is also linear

⇒ cutting plane methods from above

�
Benders decomposition is more general:
Solves problems with positive duality gaps!

�
Benders decomposition does not rely on the existence of
optimal Lagrange multipliers and strong duality
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The Benders sub- and master problems, I

�
The model revisited:

minimize cTx + f (y),

subject to Ax + F(y) ≥ b,

x ≥ 0n, y ∈ S

�
Which values of y are feasible?
Choose y ∈ S such that the remaining problem in x is feasible

�
Choose y in the set

R := { y ∈ S | ∃x ≥ 0n with Ax ≥ b − F(y) }
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The Benders sub- and master problems, II

�
Apply Farkas’ Lemma to this system, or rather to the
equivalent system (with y fixed):

Ax − s = b − F(y)

x ≥ 0n, s ≥ 0m

�
From Farkas’ Lemma, y ∈ R if and only if

ATu ≤ 0n, u ≥ 0m =⇒ [b − F(y)]Tu ≤ 0

This means that y ∈ R if and only if [b − F(y)]Tur
i ≤ 0 holds

for every extreme direction ur
i , i = 1, . . . , nr of the polyhedral

cone C = {u ∈ R
m
+ | ATu ≤ 0n }

�
We here made good use of the Representation Theorem for a
polyhedral cone
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The Benders sub- and master problems, III

�
Given y ∈ R , the optimal value in Benders’ subproblem is to

minimize
x

cTx,

subject to Ax ≥ b − F(y),

x ≥ 0n

�
By LP duality, this equals the problem to

maximize
u

[b − F(y)]Tu,

subject to ATu ≤ c,

u ≥ 0m,

provided that the first problem has a finite solution
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The Benders sub- and master problems, IV

�
We prefer the dual formulation, since its constraints do not
depend on y

�
Moreover, the extreme directions of its feasible set are given
by the vectors ur

i , i = 1, . . . , nr , discussed above

�
Let u

p
i , i = 1, . . . , np , denote the extreme points of this set

�
This completes the subproblem

�
Let’s now study the restricted master problem (RMP) of
Benders’ algorithm
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The Benders sub- and master problems, V

�
The original model:

minimize cTx + f (y),

subject to Ax + F(y) ≥ b,

x ≥ 0n, y ∈ S

�
This is equivalent to

min
y∈S

{

f (y)+min
x

{ cTx |Ax ≥ b−F(y); x ≥ 0n }
}

= min
y∈R

{

f (y)+max
u

{ [b−F(y)]Tu |ATu ≤ c; u ≥ 0m }
}

= min
y∈R

{

f (y) + max
i=1,...np

{ [b − F(y)]Tu
p
i }

}
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The Benders sub- and master problems, VI

min
y∈R

{

f (y) + max
i=1,...np

{ [b − F(y)]Tu
p
i }

}

= min z

s.t. z ≥ f (y) + [b − F(y)]Tu
p
i , i = 1, . . . , np ,

y ∈ R

= min z

s.t. z ≥ f (y) + [b − F(y)]Tu
p
i , i = 1, . . . , np ,

0 ≥ [b − F(y)]Tur
i , i = 1, . . . , nr ,

y ∈ S
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The Benders sub- and master problems, VII

�
Suppose that not the whole sets of constraints in the latter
problem is known

�
This means that not all extreme points and directions for the
dual problem are known

�
Replace “i = 1, . . . , np” with “i ∈ I1” and “i = 1, . . . , nr”
with “i ∈ I2” where I1 ⊂ {1, . . . , np} and I2 ⊂ {1, . . . , nr}

�
Since not all constraints are included, we get a lower bound
on the optimal value of the original problem
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The Benders sub- and master problems, VIII

�
Suppose that (z0, y0) is a finite optimal solution to this
problem

�
To check if this is indeed an optimal solution to the original
problem: check for the most violated constraint, which we

� either satisfy ⇒ y0 is optimal
� or not ⇒ include this new constraint, extending either the set

I1 or I2, and possibly improving the lower bound
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The Benders sub- and master problems, IX

�
The search for a new constraint is performed by solving the
dual of Benders’ subproblem with y = y0:

maximum
u

[b − F(y0)]Tu,

subject to ATu ≤ c,

u ≥ 0m

⇒ a new extreme point or direction due to a new objective
�

The solution u(y0) to this (dual) problem corresponds to a
feasible (primal) solution (x(y0), y0) to the original problem,
and therefore also an upper bound on the optimal value,
provided that it is finite
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The Benders sub- and master problems, X

�
If this problem has an unbounded solution, then it is
unbounded along an extreme direction: [b − F(y0)]Tur

i > 0

⇒ Add the constr. 0 ≥ [b − F(y)]Tur
i to RMP (enlarge I2)

�
Suppose instead that the optimal solution is finite:

⇒ Let u
p
i be an optimal extreme point

If z0 < f (y0) + [b − F(y0)]Tu
p
i , add the constraint

z ≥ f (y) + [b − F(y)]Tu
p
i to RMP (enlarge I1)

�
If z0 ≥ f (y0) + [b − F(y0)]Tu

p
i then equality must hold (>

cannot happen—why?)

⇒ We then have an optimal solution to the original problem and
terminate
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Convergence, I

�
Suppose that S is closed and bounded and that f and F are
both continuous on S . Then, provided that the computations
are exact, we terminate in a finite number of iterations with
an optimal solution

�
Proof is due to the finite number of constraints in the
complete master problem, that is, the number of extreme
points and directions in any polyhedron

�
A numerical example of the use of Benders decomposition is
found in Lasdon (1970, Sections 7.3.3–7.3.5)
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Convergence, II

�
Note the resemblance to the Dantzig–Wolfe algorithm! In
fact, if f and F both are linear, then the methods coincide, in
the sense that (the duals of) their subproblems and restricted
master problems are identical!

�
Modern implementations of the Dantzig–Wolfe and Benders
algorithms are inexact, that is, at least their RMP:s are not
solved exactly

�
Moreover, their RMP:s are often restricted such that there is
an additional “box constraint” added. This constraint forces
the solution to the next RMP to be relatively close to the
previous one
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Convergence, III

�
The effect is that of a stabilization; otherwise, there is a risk
that the sequence of solutions to the RMP:s “jump about,”
and convergence becomes slow as the optimal solution is
approached

�
This was observed quite early on with the Dantzig–Wolfe
algorithm, which even can be enriched with non-linear
“penalty” terms in the RMP to further stabilize convergence

�
In any case, convergence holds also under these modifications,
except perhaps for the finiteness
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