Project course: Optimization The solution of a difficult problem (facility location)

Michael Patriksson

4 September 2009

Location of facilities which serve customers

- Potential sites: $\mathcal{J} = \{1, \dots, n\}$ (geographical locations)
- Existing customers: $\mathcal{I} = \{1, \dots, m\}$ (geographical locations)

 $f_j =$ fixed cost of using depot j

 c_{ij} = transportation cost when customer i's demand is fulfilled entirely from depot j

Decision problem:

- Which depots to open?
- Which depots to serve which customers, and how much?
- Goal: minimize cost
- Assumption: depots have unlimited capacity (to be removed)

Variables:

$$y_j = \begin{cases} 1, & \text{if depot } j \text{ is set up} \\ 0, & \text{otherwise} \end{cases}$$

 x_{ij} = portion of customer i's demand to be delivered from depot j Uncapacitated facility location (UFL)

s.t.
$$\sum_{i \in \mathcal{J}} x_{ij} = 1, \quad i \in \mathcal{I}$$
 (1)

$$x_{ij}$$
 - $y_j \leq 0, \quad i \in \mathcal{I}, j \in \mathcal{J}$ (2)

$$x_{ij} \in [0,1], \quad i \in \mathcal{I}, j \in \mathcal{J} \quad (3)$$

$$y_j \in \{0,1\}, \quad j \in \mathcal{J} \tag{4}$$

- (0) Minimize cost
- (1) Deliver precisely the demand
- (2) Deliver only from open depots
- (3) \boldsymbol{x} is the portion of the demand
- (4) Do not partially open a depot

Suppose depots have limited capacity

 $d_i = \text{demand of customer } i \ (D = \sum_{i \in \mathcal{I}} d_i)$

 $b_j = \text{capacity of depot } j$ —if it is opened

Constraints:

$$\sum_{i \in \mathcal{I}} d_i x_{ij} \le b_j y_j, \quad j \in \mathcal{J} \quad (5) \qquad (\Longrightarrow x_{ij} \le y_j, \ \forall i, j)$$

 \implies replace (2) with (5)

Capacitated facility location (CFL)

$$z^* = \min \sum_{i \in \mathcal{I}} \sum_{j \in \mathcal{J}} c_{ij} x_{ij} + \sum_{j \in \mathcal{J}} f_j y_j$$
s.t.
$$\sum_{i \in \mathcal{I}} x_{ij} = 1, \quad i \in \mathcal{I}$$
(0)

s.t.
$$\sum_{i \in \mathcal{I}} x_{ij} = 1, \quad i \in \mathcal{I}$$
 (1)

$$\sum_{i \in \mathcal{I}} d_i x_{ij} - b_j y_j \le 0, \qquad j \in \mathcal{J}$$
 (5)

$$x_{ij} \in [0,1], \quad i \in \mathcal{I}, \ j \in \mathcal{J} \quad (3)$$

$$y_j \in \{0,1\}, \quad j \in \mathcal{J} \tag{4}$$

Observation: Total capacity of open depots must cover the entire $demand \Longrightarrow an additional (redundant) constraint:$

$$(1), (5) \Longrightarrow \underbrace{\sum_{j \in \mathcal{J}} b_j y_j}_{\text{capacity}} \ge \sum_{j \in \mathcal{J}} \sum_{i \in \mathcal{I}} d_i x_{ij} = \sum_{i \in \mathcal{I}} d_i \sum_{j \in \mathcal{J}} x_{ij} = \sum_{i \in \mathcal{I}} d_i \cdot 1 = \underbrace{D}_{\text{capacity}}$$

Trick: Exchange x_{ij} for w_{ij} in constraint (1) and in "half" the objective, add the constraints $x_{ij} = w_{ij}$, and let $0 \le \alpha \le 1$.

$$z^* = \min \quad \alpha \sum_{i \in \mathcal{I}} \sum_{j \in \mathcal{J}} c_{ij} x_{ij} + (1 - \alpha) \sum_{i \in \mathcal{I}} \sum_{j \in \mathcal{J}} c_{ij} w_{ij} + \sum_{j \in \mathcal{J}} f_j y_j$$

s.t. $i\in\mathcal{I}\ j\in\mathcal{J} \qquad i\in\bar{\mathcal{I}}\ j\in\bar{\mathcal{J}} \qquad j\in\bar{\mathcal{J}} \\
\sum_{j\in\mathcal{J}} w_{ij} = 1, \qquad i\in\mathcal{I} \qquad (1)$

$$\sum_{i=\sigma} d_i x_{ij} - b_j y_j \leq 0, \qquad j \in \mathcal{J}$$
 (5)

$$\sum_{j \in \mathcal{J}} b_j y_j \geq D, \tag{6}$$

$$w_{ij} - x_{ij} = 0, i \in \mathcal{I}, j \in \mathcal{J} (7)$$

$$x_{ij} \in [0,1], \quad i \in \mathcal{I}, \ j \in \mathcal{J}$$
 (3)

$$w_{ij} \geq 0, \qquad i \in \mathcal{I}, \ j \in \mathcal{J}$$
 (8)

$$y_j \in \{0,1\}, \quad j \in \mathcal{J} \tag{4}$$

- Constraints (7) tie together (x, y) with w.
- Lagrangian relax these with multipliers λ_{ij}
- \implies Lagrange function

$$L(\boldsymbol{x}, \boldsymbol{w}, \boldsymbol{y}, \boldsymbol{\lambda}) =$$

$$= \sum_{i \in \mathcal{I}} \sum_{j \in \mathcal{J}} \left[\alpha c_{ij} x_{ij} + (1 - \alpha) c_{ij} w_{ij} + \lambda_{ij} (w_{ij} - x_{ij}) \right] + \sum_{j \in \mathcal{J}} f_j y_j$$

$$= \sum_{i \in \mathcal{I}} \sum_{j \in \mathcal{J}} (\alpha c_{ij} - \lambda_{ij}) x_{ij} + \sum_{j \in \mathcal{J}} f_j y_j + \sum_{i \in \mathcal{I}} \sum_{j \in \mathcal{J}} \left[(1 - \alpha) c_{ij} + \lambda_{ij} \right] w_{ij}$$

Subproblem (for fixed value of λ):
Minimize the Lagrange function under constraints (1), (5), (6), (3), (8) & (4).

Separates into one in (x, y) and $|\mathcal{I}|$ in w.

Subproblem in x and y:

$$q_{xy}(\lambda) = \min_{x,y} \quad \sum_{i \in \mathcal{I}} \sum_{j \in \mathcal{J}} \left[\alpha c_{ij} - \lambda_{ij} \right] x_{ij} + \sum_{j \in \mathcal{J}} f_j y_j$$
s.t.
$$\sum_{j \in \mathcal{J}} b_j y_j \geq D, \qquad (6)$$

$$\sum_{i \in \mathcal{I}} d_i x_{ij} \leq b_j y_j, \qquad j \in \mathcal{J} \qquad (5)$$

$$x_{ij} \in [0,1], \qquad i \in \mathcal{I}, j \in \mathcal{J} \qquad (3)$$

$$y_j \in \{0,1\}, \quad j \in \mathcal{J} \qquad (4)$$

$$\sum_{i \in \mathcal{I}} d_i x_{ij} \leq b_j y_j, \qquad j \in \mathcal{J} \tag{5}$$

$$x_{ij} \in [0,1], \quad i \in \mathcal{I}, j \in \mathcal{J}$$
 (3)

$$y_j \in \{0,1\}, \quad j \in \mathcal{J} \tag{4}$$

For every **y**-solution (such that $\sum_{j\in\mathcal{J}} b_j y_j \geq D$) we have:

- If $y_i = 0$ then $x_{ij} = 0$, $i \in \mathcal{I}$
- If $y_j = 1$ then $\sum_{i \in \mathcal{I}} d_i x_{ij} \leq b_j$

Value [in (x, y)-subproblem] of opening depot j

That is: letting $y_j = 1$ ($|\mathcal{J}|$ continuous knapsack problems)

[CKSP_j]
$$v_j(\lambda) = f_j + \min_{\boldsymbol{x}} \qquad \sum_{i \in \mathcal{I}} \left[\alpha c_{ij} - \lambda_{ij} \right] x_{ij}$$
s.t.
$$\sum_{i \in \mathcal{I}} d_i x_{ij} \le b_j$$

$$x_{ij} \in [0, 1], \qquad i \in \mathcal{I}$$

 \Longrightarrow Projection onto y-space (a 0/1 knapsack problem)

$$[0/1\text{-KSP}] \qquad q_{xy}(\lambda) = \min_{y} \quad \sum_{j \in \mathcal{J}} v_{j}(\lambda) \cdot y_{j}$$

s.t.
$$\sum_{j \in \mathcal{J}} b_{j}y_{j} \quad \geq \quad D,$$

$$y_{j} \quad \in \quad \{0, 1\}, \quad j \in \mathcal{J}$$

Solving the continuous knapsack problems $[CKSP_j]$

Greedy algorithm:

- Sort $\frac{\alpha c_{ij} \lambda_{ij}}{d_i} < 0, i \in \mathcal{I}$, in increasing order
- \implies indices $\{i_1, i_2, \dots, i_m\}, m \leq |\mathcal{I}|.$
 - If m = 0 then $x_{ij} = 0, i \in \mathcal{I}$. Else, let k = 1 and:
 - Let $x_{i_k j} = \min\{1; b_j \sum_{s=1}^{k-1} d_i x_{i_s j}\}$ and let k := k+1 until $\sum_{s=1}^k d_i x_{i_s j} = b_j$ or k = m.
 - Solution fulfills $\sum_{i \in \mathcal{I}} d_i x_{ij} = b_j$ and $x_{ij} \in [0, 1], i \in \mathcal{I}$.
 - $v_j(\lambda) = f_j + \min \sum_{k=1}^{|\mathcal{I}|} \sum_{j \in \mathcal{J}} \left[\alpha c_{i_k j} \lambda_{i_k j} \right] x_{i_k j}.$

Solving 0/1 knapsack problems

Not polynomial. Solve with Dynamic Programming or Branch & Bound (CPLEX).

Solution:

$$y_j(\lambda) \in \{0,1\}, j \in \mathcal{J}$$

$$x_{ij}(\lambda) = 0, i \in \mathcal{I}, \text{ if } y_j(\lambda) = 0$$

$$x_{ij}(\lambda) = x_{ij}$$
 by the above, $i \in \mathcal{I}$, if $y_j(\lambda) = 1$

Subproblem in w ($|\mathcal{I}|$ semi-assignment problems):

[SAP]
$$q_{\boldsymbol{w}}(\boldsymbol{\lambda}) = \sum_{i \in \mathcal{I}} \begin{bmatrix} \min_{\boldsymbol{w}} & \sum_{j \in \mathcal{J}} [(1 - \alpha)c_{ij} + \lambda_{ij}] w_{ij} \\ \text{s.t.} & \sum_{j \in \mathcal{J}} w_{ij} = 1, \quad w_{ij} \ge 0, \quad j \in \mathcal{J} \end{bmatrix}$$

Solving semi-assignment problem i

- Find ℓ_i such that $(1-\alpha)c_{i\ell_i} + \lambda_{i\ell_i} = \min_{j \in \mathcal{J}} \{(1-\alpha)c_{ij} + \lambda_{ij}\}.$
- Let $w_{i\ell_i}(\lambda) = 1$, $w_{ij}(\lambda) = 0$, $j \neq \ell_i$.

Value of relaxed problem for fixed value of λ

$$q(\lambda) = \underbrace{q_{xy}(\lambda)}_{\text{difficult simple}} + \underbrace{q_{w}(\lambda)}_{\text{simple}}$$

- Can show that $q(\lambda) \le q^*$ for all $\lambda \in \mathbb{R}^{|\mathcal{I}| \times |\mathcal{I}|}$ (weak duality)
- λ_{ij} is the penalty for violating $w_{ij} = x_{ij}$
- Find best underestimate of $q^* \iff$ find "optimal" values of penalties λ_{ij}
- That is: $\max_{\boldsymbol{\lambda} \in \mathbb{R}^{|\mathcal{I}| \times |\mathcal{I}|}} q(\boldsymbol{\lambda}) \leq q^*$ (most often $\max_{\boldsymbol{\lambda} \in \mathbb{R}^{|\mathcal{I}| \times |\mathcal{I}|}} q(\boldsymbol{\lambda}) < z^*$, not strong duality)

How to find better value of λ_{ij} ?

Penalty: $\min ... \sum_{i \in \mathcal{I}} \sum_{j \in \mathcal{J}} \lambda_{ij} (w_{ij} - x_{ij})$

- If $w_{ij}(\lambda) > x_{ij}(\lambda) \Longrightarrow$ Increase value of λ_{ij} (more expensive to violate constraint)
- If $w_{ij}(\lambda) < x_{ij}(\lambda) \Longrightarrow$ Decrease value of λ_{ij} (more expensive to violate constraint)
- Iterative method (subgradient algorithm) to find optimal penalties λ^* :

$$\lambda_{ij}^{t+1} = \lambda_{ij}^t + \rho_t \left[w_{ij}(\boldsymbol{\lambda}^t) - x_{ij}(\boldsymbol{\lambda}^t) \right], \qquad t = 0, 1, \dots$$

where $\rho_t > 0$ is a step length, decreasing with t

• Use feasibility heuristic from every $[\boldsymbol{x}(\boldsymbol{\lambda}^t), \boldsymbol{w}(\boldsymbol{\lambda}^t), \boldsymbol{y}(\boldsymbol{\lambda}^t)]$ to yield a feasible solution to CFL (open more depots, send only from open depots, $\boldsymbol{x} = \boldsymbol{w}, \ldots$). Example: Benders' subproblem!

Example:
$$|\mathcal{I}| = 4$$
, $|\mathcal{J}| = 3$, $\alpha = \frac{1}{2}$

$$\begin{bmatrix} (c_{ij}) = \begin{bmatrix} 6 & 2 & 4 \\ 2 & 8 & 4 \\ 16 & 2 & 6 \\ 10 & 12 & 4 \end{bmatrix}, (f_j) = \begin{bmatrix} 11 \\ 16 \\ 21 \end{bmatrix}, (d_i) = \begin{bmatrix} 6 \\ 4 \\ 8 \\ 5 \end{bmatrix}, (b_j) = \begin{bmatrix} 12 \\ 10 \\ 13 \end{bmatrix}$$

$$q_{xy}(\lambda) = \min \sum_{j=1}^{3} v_j(\lambda) \cdot y_j$$
s.t. $12y_1 + 10y_2 + 13y_3 \ge 23$

$$y \in \{0, 1\}^3$$

$$\text{Let } (\lambda_{ij}^t) = \begin{bmatrix} 7 & 0 & 0 \\ 3 & 10 & 2 \\ 5 & 2 & 0 \\ 0 & 7 & 5 \end{bmatrix}$$

Observe: implies that $y_3 = 1$ must hold.

$$\underbrace{\dots \Longrightarrow \dots}_{q_{\boldsymbol{x}\boldsymbol{y}}} (\boldsymbol{\lambda}) = \min \quad 5y_1 + 8.875y_2 + 18y_3$$
(next page) s.t. $12y_1 + 10y_2 + 13y_3 \ge 23, \quad \boldsymbol{y} \in \{0, 1\}^3$

$$v_1(\lambda^t) = 11 + \min \quad -4x_{11} - 2x_{21} + 3x_{31} + 5x_{41}$$

s.t. $6x_{11} + 4x_{21} + 8x_{31} + 5x_{41} \le 12, \quad \boldsymbol{x}_{\cdot 1} \in [0, 1]^4$
 $\Rightarrow \quad x_{11} = x_{21} = 1, \quad x_{31} = x_{41} = 0, \quad v_1(\lambda^t) = 5$

$$v_2(\lambda^t) = 16 + \min \quad x_{12} - 6x_{22} - x_{32} - x_{42}$$
s.t. $6x_{12} + 4x_{22} + 8x_{32} + 5x_{42} \le 10, \quad \boldsymbol{x}_{\cdot 2} \in [0, 1]^4$

$$\Rightarrow \quad x_{22} = x_{42} = 1, \quad x_{32} = \frac{1}{8}, \quad x_{12} = 0, \quad v_2(\lambda^t) = 8.875$$

$$v_3(\lambda^t) = 21 + \min \quad 2x_{13} + 0x_{23} + 3x_{33} - 3x_{43}$$

s.t. $6x_{13} + 4x_{23} + 8x_{33} + 5x_{43} \le 13, \quad \boldsymbol{x}_{.3} \in [0, 1]^4$
 $\Rightarrow \quad x_{23} = x_{43} = 1, \quad x_{13} = x_{33} = 0, \quad v_3(\lambda^t) = 18$

Solution to $(\boldsymbol{x},\boldsymbol{y})$ problem for $\boldsymbol{\lambda}=\boldsymbol{\lambda}^t$

$$m{y}(m{\lambda}^t) = (1,0,1)^{\mathrm{T}}, \, m{x}(m{\lambda}^t) = egin{bmatrix} 1 & 0 & 0 \ 1 & 0 & 1 \ 0 & 0 & 0 \ 0 & 0 & 1 \end{bmatrix}, \, q_{m{x}m{y}}(m{\lambda}^t) = 5 + 0 + 18 = 23$$

w-problem separates into one for each customer i

$$q_{\boldsymbol{w}}(\boldsymbol{\lambda}^t) = \sum_{i=1}^4 q_{\boldsymbol{w}}^i(\boldsymbol{\lambda}^t), \quad \text{where} \qquad (1 - \alpha = \frac{1}{2})$$

$$q_{\boldsymbol{w}}^{i}(\boldsymbol{\lambda}^{t}) = \min \qquad \sum_{j=1}^{3} \left[(1 - \alpha)c_{ij} + \lambda_{ij}^{t} \right] w_{ij}$$

s.t.
$$\sum_{i=1}^{3} w_{ij} = 1, \quad w_{ij} \ge 0, \ j = 1, 2, 3$$

$$q_{w}^{1}(\lambda^{t}) = \min \quad 10w_{11} + w_{12} + 2w_{13}$$
s.t. $w_{11} + w_{12} + w_{13} = 1, \quad w_{1j} \ge 0, \quad j = 1, 2, 3$

$$\Rightarrow \quad w_{12}(\lambda^{t}) = 1, \quad w_{11}(\lambda^{t}) = w_{13}(\lambda^{t}) = 0, \quad q_{w}^{1}(\lambda^{t}) = 1$$

$$q_{w}^{2}(\lambda^{t}) = \min \quad 4w_{21} + 14w_{22} + 4w_{23}$$
s.t. $w_{21} + w_{22} + w_{23} = 1, \quad w_{2j} \ge 0, \quad j = 1, 2, 3$

$$\Rightarrow \quad w_{21}(\lambda^{t}) = 1, \quad w_{22}(\lambda^{t}) = w_{23}(\lambda^{t}) = 0, \quad q_{w}^{2}(\lambda^{t}) = 4$$

$$q_{w}^{3}(\lambda^{t}) = \min \quad 13w_{31} + 3w_{32} + 3w_{33}$$
s.t. $w_{31} + w_{32} + w_{33} = 1, \quad w_{3j} \ge 0, \quad j = 1, 2, 3$

$$\Rightarrow \quad w_{32}(\lambda^{t}) = w_{33}(\lambda^{t}) = \frac{1}{2}, \quad w_{31}(\lambda^{t}) = 0, \quad q_{w}^{3}(\lambda^{t}) = 3$$

$$q_{w}^{4}(\lambda^{t}) = \min \quad 5w_{41} + 13w_{42} + 7w_{43}$$
s.t. $w_{41} + w_{42} + w_{43} = 1, \quad w_{4j} \ge 0, \quad j = 1, 2, 3$

$$\Rightarrow \quad w_{41}(\lambda^{t}) = 1, \quad w_{42}(\lambda^{t}) = w_{43}(\lambda^{t}) = 0, \quad q_{w}^{4}(\lambda^{t}) = 5$$

Solution to w problem

$$egin{aligned} m{w}(m{\lambda}^t) = egin{bmatrix} 0 & 1 & 0 \ 1 & 0 & 0 \ 0 & rac{1}{2} & rac{1}{2} \ 1 & 0 & 0 \end{bmatrix}, \, q_{m{w}}(m{\lambda}^t) = 13, \end{aligned}$$

$$q(\boldsymbol{\lambda}^t) = q_{\boldsymbol{x}\boldsymbol{y}}(\boldsymbol{\lambda}^t) + q_{\boldsymbol{w}}(\boldsymbol{\lambda}^t) = 35$$
 $\Longrightarrow z^* \geq 35$
New $\boldsymbol{\lambda}$ vector (e.g., $\rho_t = 8$):

$$\lambda^{t+1} = \lambda^{t} + \rho_{t} \left[w(\lambda^{t}) - x(\lambda^{t}) \right]$$

$$= \begin{bmatrix} 7 - \rho_{t} & \rho_{t} & 0 \\ 3 & 10 & 2 - \rho_{t} \\ 5 & 2 + \frac{\rho_{t}}{2} & \frac{\rho_{t}}{2} \\ \rho_{t} & 7 & 5 - \rho_{t} \end{bmatrix} = \begin{bmatrix} -1 & 8 & 0 \\ 3 & 10 & -6 \\ 5 & 6 & 4 \\ 8 & 7 & -3 \end{bmatrix}$$

Feasible solution $\iff \boldsymbol{x}(\boldsymbol{\lambda}^t) = \boldsymbol{w}(\boldsymbol{\lambda}^t)$? No \implies Feasibility heuristic

Idea: Open depots given by $\mathbf{y}(\boldsymbol{\lambda}^t) \Longrightarrow \mathbf{y}^H = \mathbf{y}(\boldsymbol{\lambda}^t) = (1,0,1)^{\mathrm{T}}$. Send only from open depots $(y_i^H = 0 \Longrightarrow x_{ij}^H = 0, \forall i)$.

Fulfill demand but do not violate capacity restrictions:

$$\text{Let } \boldsymbol{x}^H = \begin{bmatrix} \frac{1}{6} & 0 & \frac{5}{6} \\ 1 & 0 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0 \end{bmatrix} \Longrightarrow$$

$$z^{H} = 6 \cdot \frac{1}{6} + 4 \cdot \frac{5}{6} + 2 + 6 + 10 + 11 + 21 = 52 + \frac{1}{3}$$

$$\implies z^{*} \in [35, 52 + \frac{1}{3}] = [q(\boldsymbol{\lambda}^{t}), z^{H}] \qquad \text{(not very good interval)}$$

- Choice of step lengths (ρ_t) later (subgradient optimization, convergence to an optimal value of λ)
- Feasibility heuristics can be made more or less sophisticated
- There are more ways in which to Lagrangian relax *continuous* constraints in an optimization problem
- E.g.: Lagrangian relax (1) or (5) (with multipliers $\mu_i \in \mathbb{R}$ resp. $\nu_j \in \mathbb{R}_+$) in the original formulation (CFL)

- There are also other methods for solving CFL. Consider for example the fact that for fixed y, the remaining problem over x is very simple (a transportation problem). Algorithms can be based on only adjusting y, always optimizing over x for each y. (We say that we *project* the problem onto the y variables.)
- This is the Benders' subproblem (more on the Benders algorithm later).