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The Relaxation Theorem

» Problem: find

f* = infimum f(x), (1a)
subject to x € S, (1b)

where f : R” — R is a given function and $ C R”
» A relaxation to (1a)—(1b) has the following form: find

fg = infimum  fg(x), (2a)

subject to  x € Sg, (2b)

where 7 : R" — R is a function with fg < f on S and
Sr D S.
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Relaxation example (maximization)

» Binary knapsack problem:

z* = maximize T7x1 + 4x2 + 5x3 + 2x4
xe{0,1}4

subjectto 3x31 +3xx+4x3+2x4 < 5
» Optimal solution: x* = (1,0,0,1), z* =9
» Continuous relaxation:
z{p = maximize 7xj + 4x; + 5x3 + 2x4
x€[0,1]*
subject to 3x3 +3x +4x3+2x4 < 5

» Optimal solution: x}, = (1,3,0,0), z5 =93 > z*

> X} is not feasible in the binary problem
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The relaxation theorem

1. [relaxation] fg < f*
2. [infeasibility] If (2) is infeasible, then so is (1)

3. [optimal relaxation]
If the problem (2) has an optimal solution X} € S for which

fr(xg) = f(xg),

then x% is an optimal solution to (1) as well.

» Proof portion. For 3., note that

f(xg) = fr(xk) < fr(x) < f(x), xeS
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Lagrangian relaxation, |

» Consider the optimization problem:
f* = infimum f(x), (3a)

subject to x € X, (3b)
gi(x) <0, i=1,...,m, (3¢)

where f :R" —» Rand gi: R" = R (i =1,2,...,m) are
given functions, and X C R”

» Here we assume that
—o0 < f* < o0, (4)

that is, that f is bounded from below and that the problem
has at least one feasible solution
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Lagrangian relaxation, |l

» For a vector u € R™, we define the Lagrange function

L(x, p) = £(x) + Y _ pigi(x) = £(x) + n"g(x)
i=1

» We call the vector u* € R™ a Lagrange multiplier if it is
non-negative and if * = infycx L(x, p*) holds.
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Lagrange multipliers and global optima

> Let u* be a Lagrange multiplier.
Then, x* is an optimal solution to

f*=inf{f(x)|x € X,gi(x) <0, i=1,...,m},
if and only if it is feasible and
x* € arg mi)rg L(x,u*), and pigi(x*)=0,i=1,....m
x€

» Notice the resemblance to the KKT conditions:
» If X = R" and all functions are in C! then
“x* € arg mingex L(x, u*)" < “force equilibrium condition”,
i.e., the first row of the KKT conditions.
» The second item, “u’gi(x*) = 0 for all i” < complementarity
conditions
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The Lagrangian dual problem associated with the

Lagrangian relaxation

» The Lagrangian dual function is
= infi L
q(p) = infimum L(x, )

» The Lagrangian dual problem is to

. _ .. 5
q" = maximize q(p) ()
» For some u, q(p) = —oc is possible. If this is true for all
p > 0™ then
q" = supremum q(p) = —o0
p>om
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The Lagrangian dual problem, cont'd

» The effective domain of qis Dg = { p € R™ | q(pu) > —o0 }
[Theorem] D, is convex, and q is concave on Dy O

> Very good news: The Lagrangian dual problem is always
convex!

» Maximize a concave function

> Need still to show how a Lagrangian dual optimal solution can
be used to generate a primal optimal solution
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Weak Duality Theorem

Let x and p be feasible in
£ = inf{f(x)[x € X, gi(x) <0,i = 1,...,m}
and

q" = max{ q(p) |p > 0™},
respectively. Then,
q(p) < f(x).
In particular,
gt < f*.

If q(p) = f(x), then the pair (x, n) is optimal in the respective
problem and

q" =q(p) =f(x) =1~
O
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Weak Duality Theorem, cont'd

» Weak duality is also a consequence of the Relaxation
Theorem: For any p > 0™, let

S=Xn{xeR"|gkx) <0m},
SR:X,
fR:L(ua)

Apply the Relaxation Theorem
» If g* = f*, there is no duality gap.

> If there exists a Lagrange multiplier vector, then by the weak
duality theorem, there is no duality gap.
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Global optimality conditions

» The vector (x*, u*) is a pair of an optimal primal solution and
a Lagrange multiplier if and only if

p* > 0™, (Dual feasibility) (6a)
x* € arg nélxn L(x,u™), (Lagrangian optimality) (6b)
x* € X, g(x*) <0™, (Primal feasibility) (6¢)

uigi(x*)=0, i=1,...,m (Complementary slackness) (6d)

» If 3(x*, p*) that fulfil (6), then there is a zero duality gap and
Lagrange multipliers exist
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Saddle points

» The vector (x*, u*) is a pair of an optimal primal solution and
a Lagrange multiplier if and only if x* € X, pu* > 0™, and
(x*, pu*) is a saddle point of the Lagrangian function on
X x R, that is,

L(x*, p) < L(x*, ") < L(x, ™), (x,p) € X xR,

holds.

» If 3(x*, u*), equivalent to the global optimality conditions,
the existence of Lagrange multipliers, and a zero duality gap
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Strong duality for convex programs, introduction

» Convexity of the dual problem comes with very few
assumptions on the original, primal problem

» The characterization of the primal-dual set of optimal
solutions is also quite easily established

» To establish strong duality—sufficient conditions under which
there is no duality gap—takes much more

» In particular—as with the KKT conditions—we need regularity
conditions (constraint qualifications) and separation theorems
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Strong duality theorem

» Consider the problem (3), that is,
f*=inf{f(x)|x € X,gi(x) <0,i=1,...,m},

where f : R" — R and g; (i =1,..., m) are convex and
X CR" is a convex set

» Introduce the following constraint qualification (CQ):

JIx € X with g(x) < 0™ (7)
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Strong duality theorem

Suppose that —oo < f* < 00, and that the CQ (7) holds for the

(convex) problem (3)

(a) There is no duality gap and there exists at least one Lagrange
multiplier p*. Moreover, the set of Lagrange multipliers is
bounded and convex

(b) If infimum in (3) is attained at some x*, then the pair (x*, u*)
satisfies the global optimality conditions (6)

(¢) If the functions f and g; are in C' and X is open (for
example, X = R") then (6) equals the KKT conditions

If all constraints are linear we can remove the CQ (7).
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Example I: An explicit, differentiable dual problem

» Consider the problem to
« . . o 2 2
minimize f(x) := xi + x3,
X
subject to x3 + xp > 4,
xj > 0, j=12

> Let
g(x)=—x1 —x2+4

and
X={(a,%)|x>0,j=12} =T
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Example I, cont'd

» The Lagrangian dual function is
q(p) = min L(x, ) = F(x) + p(—x1 — xz +4)
= 4p +min {x} + X3 — ux — pxo}
x>0

=4y + min {x — px; } + min 3¢ — pxo}, p >0
x12>0 X2 2>0

» For a fixed x> 0, the minimum is attained at
x(p) =5,%() =45
» Substituting this expression into q(u) =
a(n) = F(x()) + p(=x(n) = xa(ps) +4) = 4 — 5

» Note that q is strictly concave, and it is differentiable
everywhere (since f, g are differentiable and x(u) is unique)
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Example I, cont'd

» Recall the dual problem

12
q = = max q(u) max (4u - 7)

» We have that ¢'(u) =4 —pu=0<= pu=4.
As 4 > 0, this is the optimum in the dual problem!

St = and X = (x (), ()T = (2,2)7
» Also: f(x*) =q(p*) =28

» Here, the dual function is differentiable. The optimum x* is
also unique and automatically given by x* = x(u*).
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Example II: Implicit non-differentiable dual problem

» Consider the linear programming problem to

minimize f(x):= —x3 — xp,
X

subject to 2x3 + 4xp < 3,
0 <x1 < 25
0 S X2 S 1

» The optimal solution is x* = (3/2,0)", f(x*) = —3/2

X2

X1
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Example Il: Lagrangian relax the first constraint

L(x,p) = —x1 — xo + pu(2x1 + 4x> — 3);

q(p) = —3pt+ min {(=1+ 2/‘)"1}*03;21 {(=1+44u)x2}

—3+5M, OSHSI/4’ = Xl(M):21X2(M):
=9 2+ p, 1/4<p<1/2, & x(p)=2,%(u) =
—3u, 1/2<p & x(p) =x(u)=0

T
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Example Il, cont'd

>

>

For linear (convex) programs strong duality holds, but how
obtain x* from p*7

q is non-differentiable at p* = Utilize characterization in (6)

The subproblem solution set at p* is
2
X(w)={(p)0<a<1}.
Among the subproblem solutions, we next have to find one
that is primal feasible as well as complementary

Primal feasibility means that 2-2a+4-0 <3 «<= a < 3/4

Complementarity means that
p - (2xf + 4x5 —3) = 0 <= a = 3/4, since p* # 0.

Conclusion: the only primal vector x that satisfies the system
(6) together with the dual solution pu* = 1/2 is x* = (3/2,0)"

Observe finally that * = g*
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A theoretical argument for p* = 1/2

» Due to the global optimality conditions, the optimal solution
must in this convex case be among the subproblem solutions

» Since x{" is not in one of the “corners” of X (0 < x{ < 2), the
value of u* must be such that the cost term for x; in L(x,u*)
is zero! Thatis, —1+2u* =0 = p* =1/2!

» A non-coordinability phenomenon—a non-unique subproblem
solution means that the optimal solution is not obtained
automatically

» In non-convex cases (e.g., integrality constraints) the optimal
solution may not be among the points in X(u*) (the set of
subproblem solutions at p*)

» What do we do then??
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