Outline	Introduction	Deterministic Model	Stochastic Model	Numerical Results and Conclusions

Opportunistic maintenance optimization of multicomponent systems with deterministic and stochastic lives

Adam Wojciechowski

2009-09-14

Outline	Introduction	Deterministic Model	Stochastic Model	Numerical Results and Conclusions

Introduction

Problem overview

2 Deterministic Model

- Problem and IP model
- Complexity theory
- Theoretical properties

3 Stochastic Model

- Stochastic Problem
- One scenario problem and IP model
- Two stage model

4 Numerical Results and Conclusions

- Numerical Results
- Conclusions and Future Research

Outline	Introduction ●○○	Deterministic Model	Stochastic Model	Numerical Results and Conclusions
Introc	luction			

• Maintenance is a source of large costs

・ロト ・回 ト ・ヨト ・ヨト

Outline	Introduction ●○○	Deterministic Model	Stochastic Model	Numerical Results and Conclusions
Intro	duction			

- Maintenance is a source of large costs
- Common approach is to use maintenance policies (i.e. heuristics)

Outline	Introduction ●○○	Deterministic Model	Stochastic Model	Numerical Results and Conclu
Intro	duction			

• Maintenance is a source of large costs

sions

- Common approach is to use maintenance policies (i.e. heuristics)
- There is a large potential for improvement!

Outline	Introduction	Deterministic Model	Stochastic Model	Numerical Results and Conclusions
	000			

< ≣⇒

Outline	Introduction	Deterministic Model	Stochastic Model	Numerical Results and Conclusions
	000			

• Every component *i* has to be replaced before its life runs out.

Outline	Introduction	Deterministic Model	Stochastic Model	Numerical Results and Conclusions
	000			

- Every component *i* has to be replaced before its life runs out.
- A maintenance occasion costs *d*.

Outline	Introduction	Deterministic Model	Stochastic Model	Numerical Results and Conclusions
	000			

- Every component *i* has to be replaced before its life runs out.
- A maintenance occasion costs *d*.
- Replacing a component *i* costs *c_i*.

Outline	Introduction	Deterministic Model	Stochastic Model	Numerical Results and Conclusions
	000			

- Every component *i* has to be replaced before its life runs out.
- A maintenance occasion costs *d*.
- Replacing a component *i* costs *c_i*.
- We want to find the minimal cost replacement schedule over a finite time horizon *T*.

Outline	Introduction ○○●	Deterministic Model	Stochastic Model	Numerical Results and Conclusions
Applic	ations			

- Energy industry (wind power, nuclear power, ...)
- Aircraft industry (Volvo Aero)
- Pulp production
- ...

Outline	Introduction	Deterministic Model	Stochastic Model	Numerical Results and Conclusions

Introduction Problem overview

2 Deterministic Model

- Problem and IP model
- Complexity theory
- Theoretical properties

3 Stochastic Model

- Stochastic Problem
- One scenario problem and IP model
- Two stage model

4 Numerical Results and Conclusions

- Numerical Results
- Conclusions and Future Research

 Outline
 Introduction
 Deterministic Model
 Stochastic Model
 Numerical Results and Conclusions

 Outline
 Oot
 Oot
 Oot
 Oot

 $\cos t = 2c_1 + 3c_2 + 4d$

▲ □ ► < □ ►</p>

< ≣⇒

Outline	Introduction	Deterministic Model ••••••	Stochastic Model	Numerical Results and Conclusions
The c	determinis	tic replaceme	nt problem	

 $\cos t = 2c_1 + 3c_2 + 4d$

Definition

Given lives T_i for every component i, costs c_{it} , d and timehorizon T, minimize the maintenance cost.

Outline	Introduction	Deterministic Model	Stochastic Model	Numerical Results and Conclusions
Small	example			

<□> <□> <□> <=> <=> <=> <=> <=> <=> <<</p>

Outline	Introduction	Deterministic Model ○○●○○○○○○	Stochastic Model	Numerical Results and Conclusions
The v	variables			

$$x_{it} = \begin{cases} 1 & \text{component } i \text{ is replaced at time } t, \\ 0 & \text{otherwise.} \end{cases}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

Outline	Introduction	Deterministic Model ○○●○○○○○○	Stochastic Model	Numerical Results and Conclusions
The v	variables			

$$x_{it} = \begin{cases} 1 & \text{component } i \text{ is replaced at time } t, \\ 0 & \text{otherwise.} \end{cases}$$

$$z_t = \begin{cases} 1 & \text{maintenance performed at time } t, \\ 0 & \text{otherwise.} \end{cases}$$

Outline	Introduction	Deterministic Model	Stochastic Model	Numerical Results and Conclusions		
The deterministic model						

minimize
$$\sum_{t} \left(\sum_{i} c_{it} x_{it} + dz_t \right)$$

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・ ・

Outline	Introduction	Deterministic Model	Stochastic Model	Numerical Results and Conclusions		
The deterministic model						

minimize
$$\sum_{t} \left(\sum_{i} c_{it} x_{it} + dz_t \right)$$

the constraints

$$x_{it} \leq z_t$$

▲ロン ▲御と ▲注と ▲注と

Э

Outline	Introduction	Deterministic Model	Stochastic Model	Numerical Results and Conclusions
The d	leterminis			

minimize
$$\sum_{t} \left(\sum_{i} c_{it} x_{it} + dz_t \right)$$

the constraints

$$\sum_{t=l+1}^{k_{it}} x_{it} \leq z_t$$

$$\sum_{t=l+1}^{l+T_i} x_{it} \geq 1, \quad l=0,\ldots,T-T_i$$

・ロン ・四と ・ヨン ・ヨン

Outline	Introduction	Deterministic Model ○○○○●○○○○	Stochastic Model	Numerical Results and Conclusions
NP, P	and NPC	<u>.</u>		

• NP: decision problems verifiable in polynomial time.

Example (set covering decision problem)

Given: $A = \{1, ..., k\}, S_1, ..., S_l \subset A$. Question: Is there cover of cardinality $\langle = N$?

Outline	Introduction	Deterministic Model ○○○○●○○○○	Stochastic Model	Numerical Results and Conclusions
NP, P	and NPC	2.		

- NP: decision problems verifiable in polynomial time.
- P: polynomially solvable problems (Ex. shortest path, LP, assignment problem...).

Example (set covering decision problem)

Given: $A = \{1, ..., k\}, S_1, ..., S_l \subset A$. Question: Is there cover of cardinality $\langle = N$?

伺 ト イヨト イヨト

Outline	Introduction	Deterministic Model ○○○○●○○○○	Stochastic Model	Numerical Results and Conclusions
NP, P	and NPC	2.		

- NP: decision problems verifiable in polynomial time.
- P: polynomially solvable problems (Ex. shortest path, LP, assignment problem...).
- NPC: If all problems in NP are polynomially reducible to problem A, A is in NPC.

Example (set covering decision problem)

Given: $A = \{1, ..., k\}, S_1, ..., S_l \subset A$. Question: Is there cover of cardinality $\langle = N$?

Outline	Introduction	Deterministic Model	Stochastic Model	Numerical Results and Conclusions
NP-ha	ard			

NP-hard: A in NPC and A is polynomially reducible to B \iff B is NP-hard

Example (set covering optimization problem)

Given: A = {1,..., k}, S₁,..., S_l ⊂ A.
 Question: Which is the cover of smallest cardinality?

Outline	Introduction	Deterministic Model	Stochastic Model	Numerical Results and Conclusions
NP-ha	ard			

NP-hard: A in NPC and A is polynomially reducible to B \iff B is NP-hard

Example (set covering optimization problem)

Given: A = {1,..., k}, S₁,..., S_l ⊂ A.
 Question: Which is the cover of smallest cardinality?

• IP formulation: $a_{ij} = 1$ if $j \in S_i$ $a_{ij} = 0$ otherwise

$$\begin{array}{ll} \text{minimize} & \sum_{i=1}^{l} y_i \\ \text{subject to} & \sum_{i=1}^{l} a_{ij} y_i \geq 1 \quad j \in \{1, \dots, k\} \\ & y_i \in \{0, 1\} \end{array}$$

Theorem

Set covering is polynomially reducible to the replacement problem.

Proof.

• Consider the replacement problem with n = k, T = l, $T_i = l$, d = 1, $c_{it} = 0$ if $i \in S_t$ and $c_{it} = 2$ otherwise.

<ロ> <同> <同> <同> < 同> < 同>

Theorem

Set covering is polynomially reducible to the replacement problem.

Proof.

- Consider the replacement problem with n = k, T = l, $T_i = l$, d = 1, $c_{it} = 0$ if $i \in S_t$ and $c_{it} = 2$ otherwise.
- Each component will be replaced exactly once.

<ロ> <同> <同> < 同> < 同> < 同><<

Theorem

Set covering is polynomially reducible to the replacement problem.

Proof.

- Consider the replacement problem with n = k, T = l, $T_i = l$, d = 1, $c_{it} = 0$ if $i \in S_t$ and $c_{it} = 2$ otherwise.
- Each component will be replaced exactly once.
- If $i \notin S_t$ then $x_{it} = 0$ since $c_{it} > d$.

<ロ> <同> <同> < 同> < 同> < 同><<

Theorem

Set covering is polynomially reducible to the replacement problem.

Proof.

- Consider the replacement problem with n = k, T = l, $T_i = l$, d = 1, $c_{it} = 0$ if $i \in S_t$ and $c_{it} = 2$ otherwise.
- Each component will be replaced exactly once.
- If $i \notin S_t$ then $x_{it} = 0$ since $c_{it} > d$.
- (x*, z*) optimal in this replacement problem implies that z* optimal in set covering.

イロト イヨト イヨト イヨト

Theorem

Set covering is polynomially reducible to the replacement problem.

Proof.

- Consider the replacement problem with n = k, T = l, $T_i = l$, d = 1, $c_{it} = 0$ if $i \in S_t$ and $c_{it} = 2$ otherwise.
- Each component will be replaced exactly once.
- If $i \notin S_t$ then $x_{it} = 0$ since $c_{it} > d$.
- (x*, z*) optimal in this replacement problem implies that z* optimal in set covering.

If RP in P then P=NP.

イロト イヨト イヨト イヨト

• Totally Unimodular \iff every submatrix det ± 1 .

・ロン ・回と ・ヨン ・ヨン

- Totally Unimodular \iff every submatrix det ± 1 .
- Constraint matrix TU + integer r.h.s. \Rightarrow integer polyhedron.

- 4 回 2 - 4 □ 2 - 4 □

Property II: we can relax integrality on x_{it} .

- Totally Unimodular \iff every submatrix det ± 1 .
- Constraint matrix TU + integer r.h.s. \Rightarrow integer polyhedron.
- Consecutive ones + unit matrix \Rightarrow TU.

イロト イヨト イヨト イヨト

< 67 ▶

→ 三→

< 🗇 > < 🖃 >

-∢ ≣ ≯

▲ 同 ▶ | ▲ 臣 ▶

< ≣⇒

Outline	Introduction	Deterministic Model	Stochastic Model	Numerical Results

and Conclusions

Introduction

Problem overview

2 Deterministic Model

- Problem and IP model
- Complexity theory
- Theoretical properties

3 Stochastic Model

- Stochastic Problem
- One scenario problem and IP model
- Two stage model

4 Numerical Results and Conclusions

- Numerical Results
- Conclusions and Future Research

Outline	Introduction	Deterministic Model	Stochastic Model ●○○○○○	Numerical Results and Conclusions
The s	tochastic	problem		

- Only distributions of lives are known
- Can not creat an optimal schedule
- Can only minimze the expected cost

Outline	Introduction	Deterministic Model	Stochastic Model ●○○○○○	Numerical Results and Conclusions	
The stochastic problem					

- Only distributions of lives are known
- Can not creat an optimal schedule
- Can only minimze the expected cost

Definition

After the failure of some component, decide which additional components to replace in order to minimize the expected maintenance cost for the remaining planning horizon.

Outline	Introduction	Deterministic Model	Stochastic Model	Numerical Results and Conclusions
The c	one scenar	io problem		

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

Outline	Introduction	Deterministic Model	Stochastic Model	Numerical Results and Conclusions
The o	ne scenari	io problem		

Definition

Given lives T_{ir} for every individual r of every component i, costs c_i , d and timehorizon T, minimize the maintenance cost.

イロン イヨン イヨン イヨン

Outline	Introduction	Deterministic Model	Stochastic Model ○○●○○○	Numerical Results and Conclusions
The v	variables			

$$x_{it}^{r} = \begin{cases} 1 & \text{individual } r \text{ of component } i \\ & \text{is/has been replaced at time } t, \\ 0 & \text{otherwise.} \end{cases}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

Outline	Introduction	Deterministic Model	Stochastic Model ○○●○○○	Numerical Results and Conclusions
The v	ariables			

$$x_{it}^{r} = \begin{cases} 1 & \text{individual } r \text{ of component } i \\ & \text{is/has been replaced at time } t, \\ 0 & \text{otherwise.} \end{cases}$$

$$z_t = \begin{cases} 1 & \text{maintenance performed at time } t, \\ 0 & \text{otherwise.} \end{cases}$$

・ロト・(四ト・(川下・(日下・(日下)

Outline	Introduction	Deterministic Model	Stochastic Model ○○○●○○	Numerical Results and Conclusions
The c	one scenar	io model		

minimize
$$\sum_{i} \left(c_i x_{i0}^1 + \sum_{t,r} c_i (x_{it}^r - x_{it-1}^r) + \sum_t dz_t \right)$$

< □ > < □ > < □ > < □ > < □ > < Ξ > = Ξ

Outline	Introduction	Deterministic Model	Stochastic Model ○○○●○○	Numerical Results and Conclusions
The o	ne scenar	io model		

$$\text{minimize} \sum_{i} \left(c_i x_{i0}^1 + \sum_{t,r} c_i (x_{it}^r - x_{it-1}^r) + \sum_t dz_t \right)$$

the constraints

$$x_{it}^r \leq x_{it+1}^r$$

・ロン ・雪 ・ ・ ヨ ・ ・ ヨ ・ ・

Outline	Introduction	Deterministic Model	Stochastic Model ○○○●○○	Numerical Results and Conclusions
The o	ne scenar	io model		

minimize
$$\sum_{i} \left(c_{i} x_{i0}^{1} + \sum_{t,r} c_{i} (x_{it}^{r} - x_{it-1}^{r}) + \sum_{t} dz_{t} \right)$$

the constraints

$$\begin{array}{rcl} x_{it}^r & \leq & x_{it+1}^r \\ x_{it+1}^{r+1} & \leq & x_{it}^r \end{array}$$

Outline	Introduction	Deterministic Model	Stochastic Model ○○○●○○	Numerical Results and Conclusions
The o	ne scenar	io model		

minimize
$$\sum_{i} \left(c_{i} x_{i0}^{1} + \sum_{t,r} c_{i} (x_{it}^{r} - x_{it-1}^{r}) + \sum_{t} dz_{t} \right)$$

the constraints

$$\begin{array}{rcl} x_{it}^r &\leq & x_{it+1}^r \\ x_{it+1}^{r+1} &\leq & x_{it}^r \\ x_{i0}^r &= & 0, \quad r = 2, \dots \end{array}$$

・ロン ・雪 ・ ・ ヨ ・ ・ ヨ ・ ・

Outline	Introduction	Deterministic Model	Stochastic Model ○○○●○○	Numerical Results and Conclusions
The o	ne scenar	io model		

$$\text{minimize} \sum_{i} \left(c_i x_{i0}^1 + \sum_{t,r} c_i (x_{it}^r - x_{it-1}^r) + \sum_t dz_t \right)$$

the constraints

$$\begin{array}{rcl} x_{it}^{r} & \leq & x_{it+1}^{r} \\ x_{it+1}^{r+1} & \leq & x_{it}^{r} \\ x_{i0}^{r} & = & 0, \quad r = 2, \dots \\ \sum_{r} x_{it}^{r} - x_{it-1}^{r} & \leq & z_{t} \end{array}$$

・ロン ・雪 ・ ・ ヨ ・ ・ ヨ ・ ・

Outline	Introduction	Deterministic Model	Stochastic Model ○○○●○○	Numerical Results and Conclusions
The o	ne scenar	io model		

$$\text{minimize} \sum_{i} \left(c_i x_{i0}^1 + \sum_{t,r} c_i (x_{it}^r - x_{it-1}^r) + \sum_t dz_t \right)$$

the constraints

$$\begin{array}{rcl} x_{it}^{r} & \leq & x_{it+1}^{r} \\ x_{it+1}^{r+1} & \leq & x_{it}^{r} \\ x_{i0}^{r} & = & 0, \quad r = 2, \dots \\ \sum_{r} x_{it}^{r} - x_{it-1}^{r} & \leq & z_{t} \\ x_{it}^{r} & \leq & x_{it+T_{ir+1}}^{r+1} \end{array}$$

・ロン ・雪 ・ ・ ヨ ・ ・ ヨ ・ ・

Outline	Introduction	Deterministic Model	Stochastic Model ○○○○●○	Numerical Results and Conclusions
Prope	rties			

• The problem is NP-hard (reduction from vertex cover).

▲ □ ► ▲ □ ►

< ≣⇒

Outline	Introduction	Deterministic Model	Stochastic Model ○○○○●○	Numerical Results and Conclusions
Proper	rties			

• The problem is NP-hard (reduction from vertex cover).

• We can relax the integrality on x_{it}^r .

Outline	Introduction	Deterministic Model	Stochastic Model ○○○○●○	Numerical Results and Conclusions
Prope	rties			

• The problem is NP-hard (reduction from vertex cover).

- We can relax the integrality on x_{it}^r .
- All inequalities are facet defining.

Outline	Introduction	Deterministic Model	Stochastic Model ○○○○○●	Numerical Results and Conclusions		
Two stage model						

$$\begin{array}{ll} \text{minimize} & \sum_{\omega} p(\omega) \left(\sum_{i} \left(c_{i} x_{i0}^{1\omega} + \sum_{t,r} c_{i} (x_{it}^{r\omega} - x_{it-1}^{r\omega}) + \sum_{t} dz_{t}^{\omega} \right) \right) \\ \text{subject to} & x_{it}^{r\omega} \leq x_{it+1}^{r\omega} \\ & x_{it+1}^{r+1\omega} \leq x_{it}^{r\omega} \\ & x_{i0}^{r\omega} = 0, \quad r = 2, \dots \\ & \sum_{r} x_{it}^{r\omega} - x_{it-1}^{r\omega} \leq z_{t}^{\omega} \\ & x_{it}^{r\omega} \leq x_{it+T_{ir+1}}^{r+1\omega} \\ & x_{i0}^{r\omega} = x_{i0}^{r\omega_{2}} \end{array}$$

◆□ → ◆□ → ◆目 → ◆目 → ◆□ →

Outline	Introduction	Deterministic Model	Stochastic Model	Numerical Results and Conclusions

Introduction

Problem overview

2 Deterministic Model

- Problem and IP model
- Complexity theory
- Theoretical properties

3 Stochastic Model

- Stochastic Problem
- One scenario problem and IP model
- Two stage model

4 Numerical Results and Conclusions

- Numerical Results
- Conclusions and Future Research

Outline	Introduction	Deterministic Model	Stochastic Model	Numerical Results and Conclusions
Test	case			

• Wind power turbine with 5 major components

・ロト ・回ト ・ヨト

< ≣⇒

Э

Outline	Introduction	Deterministic Model	Stochastic Model	Numerical Results and Conclusions
Test	case			

- Wind power turbine with 5 major components
- Simulation on 100 scenarios

Outline	Introduction	Deterministic Model	Stochastic Model	Numerical Results and Conclusions ●○○
Test	case			

- Wind power turbine with 5 major components
- Simulation on 100 scenarios
- *T* = 25 years, *d* = 270

component	median life	eta	С
blades	200	1	270
pitch bearing	10	3.5	300
main bearing	14	3.5	480
gearbox	17	3.5	640
generator	14	3.5	190

@ ▶ ▲ 臣

Outline	Introduction	Deterministic Model	Stochastic Model	Numerical Results and Conclusions
Resul	ts			

・ロン ・回 と ・ ヨン ・ ヨン

Outline	Introduction	Deterministic Model	Stochastic Model	Numerical Results and Conclusions
Resul	ts			

• \$102 500 or 2.7 % improvement (stochastiv vs non-opportunistic)

• \$26 500 or 0.7 % improvement (stochastiv vs deterministic)

(4回) (4回) (4回)

Outline	Introduction	Deterministic Model	Stochastic Model	Numerical Results and Conclusions
				000

• Maintenance optimization can save costs

Future research

- < ≣ →

< ∃ >

Outline	Introduction	Deterministic Model	Stochastic Model	Numerical Results and Conclusions
				000

- Maintenance optimization can save costs
- The stochastic model performs better than the deterministic

Future research

Outline	Introduction	Deterministic Model	Stochastic Model	Numerical Results and Conclusions
				000

- Maintenance optimization can save costs
- The stochastic model performs better than the deterministic
- Only small problems can be solved

Future research

Outline	Introduction	Deterministic Model	Stochastic Model	Numerical Results and Conclusions
				000

- Maintenance optimization can save costs
- The stochastic model performs better than the deterministic
- Only small problems can be solved

Future research

• We need an efficient method to solve the stochastic problem (Two stage and multi stage)

Outline	Introduction	Deterministic Model	Stochastic Model	Numerical Results and Conclusions
				000

- Maintenance optimization can save costs
- The stochastic model performs better than the deterministic
- Only small problems can be solved

Future research

- We need an efficient method to solve the stochastic problem (Two stage and multi stage)
- Theoretical work:
 - New facets
 - Complexity of deterministic problem with time independet costs