# Lecture 8: Cutting plane methods, column generation, and the Dantzig-Wolfe algorithm

Ann-Brith Strömberg

21 September 2009

# A standard LP problem and its Lagrangian dual

$$egin{aligned} \mathbf{v}_{LP} &= \mathrm{minimum} & \mathbf{c}^{\mathrm{T}}\mathbf{x}, \\ & \mathrm{subject \ to} & \mathbf{A}\mathbf{x} \leq \mathbf{b}, \\ & \mathbf{D}\mathbf{x} \leq \mathbf{d}, \\ & \mathbf{x} \in \mathbb{R}^n_+. \end{aligned}$$

- ▶ We suppose for now that X is bounded.
- Let  $P_X := \{\mathbf{x}^1, \mathbf{x}^2, \dots, \mathbf{x}^K\}$  be the set of extreme points in the polyhedron  $X := \{\mathbf{x} \in \mathbb{R}^n_+ \mid \mathbf{A}\mathbf{x} \leq \mathbf{b}\}.$



# The Lagrangian dual

Its Lagrangian dual with respect to relaxing the constraints  $\mathbf{D}\mathbf{x} \leq \mathbf{d}$  is

$$egin{aligned} v_{LP} = v_L := ext{maximum } q(oldsymbol{\mu}), \ & ext{subject to } oldsymbol{\mu} \geq oldsymbol{0}, \end{aligned}$$

where

$$\begin{split} q(\boldsymbol{\mu}) &:= \underset{\mathbf{x} \in \mathcal{X}}{\operatorname{minimum}} \; \left\{ \mathbf{c}^{\mathrm{T}} \mathbf{x} + \boldsymbol{\mu}^{\mathrm{T}} (\mathbf{D} \mathbf{x} - \mathbf{d}) \right\} \\ &= \underset{i \in P_{\mathbf{X}}}{\operatorname{minimum}} \; \left\{ \mathbf{c}^{\mathrm{T}} \mathbf{x}^{i} + \boldsymbol{\mu}^{\mathrm{T}} (\mathbf{D} \mathbf{x}^{i} - \mathbf{d}) \right\}. \end{split}$$

Equivalent statement:

$$q(\mu) \le \mathbf{c}^{\mathrm{T}} \mathbf{x}^{i} + \mu^{\mathrm{T}} (\mathbf{D} \mathbf{x}^{i} - \mathbf{d}), \qquad i \in P_{X}, \quad \mu \ge \mathbf{0}.$$



#### An equivalent formulation

$$egin{aligned} \mathbf{v}_L &:= ext{maximum } \mathbf{z}, \\ & ext{subject to } \mathbf{z} \leq \mathbf{c}^{ ext{T}} \mathbf{x}^i + oldsymbol{\mu}^{ ext{T}} (\mathbf{D} \mathbf{x}^i - \mathbf{d}), \qquad i \in P_X, \\ oldsymbol{\mu} \geq \mathbf{0}. \end{aligned}$$

- ▶ If, at an optimal dual solution  $\mu^*$ , the solution set  $X(\mu^*)$  is a singleton, then—thanks to strong duality—this solution is optimal (and it is unique!).
- ► This typically does not happen, unless an optimal solution **x**\* happens to be an extreme point of X.
- But x\* can always be written as a convex combination of such points.
- ▶ Let's see how it can be generated...



#### A cutting plane method for the Lagrangian dual problem

▶ Suppose only a subset of  $P_X$  is known, and consider the following restriction of the Lagrangian dual problem:

$$z^{k+1} := \max z, \tag{1a}$$

s.t. 
$$z \leq \mathbf{c}^{\mathrm{T}} \mathbf{x}^{i} + \boldsymbol{\mu}^{\mathrm{T}} (\mathbf{D} \mathbf{x}^{i} - \mathbf{d}), \quad i = 1, \dots, k,$$
 (1b)

$$\mu \geq \mathbf{0}$$
. (1c)

- How do we determine whether an optimal solution is found?
- ▶ And what IS the optimal solution when we find it?
- Let  $(\mu^{k+1}, z^{k+1})$  be the solution to (1)
- ▶ If  $z^{k+1} \leq \mathbf{c}^{\mathrm{T}}\mathbf{x}^i + (\boldsymbol{\mu}^{k+1})^{\mathrm{T}}(\mathbf{D}\mathbf{x}^i \mathbf{d})$  holds for all  $i \in P_X$ , then  $\boldsymbol{\mu}^{k+1}$  is optimal in the dual! Why?



# Check optimality—generate new inequality

- How check optimality? Find the most violated dual constraint:
- Solve the subproblem

$$q(\boldsymbol{\mu}^{k+1}) := \underset{\mathbf{x} \in X}{\operatorname{minimum}} \left\{ \mathbf{c}^{\mathrm{T}} \mathbf{x} + (\boldsymbol{\mu}^{k+1})^{\mathrm{T}} (\mathbf{D} \mathbf{x} - \mathbf{d}) \right\}$$
(2)  
$$= \underset{i \in P_X}{\operatorname{minimum}} \left\{ \mathbf{c}^{\mathrm{T}} \mathbf{x}^i + (\boldsymbol{\mu}^{k+1})^{\mathrm{T}} (\mathbf{D} \mathbf{x}^i - \mathbf{d}) \right\}.$$

▶ If  $z^{k+1} \le q(\mu^{k+1})$  then  $\mu^{k+1}$  is optimal in the dual; otherwise, we have identified a constraint of the form

$$z \leq \mathbf{c}^{\mathrm{T}} \mathbf{x}^{i} + \boldsymbol{\mu}^{\mathrm{T}} (\mathbf{D} \mathbf{x}^{i} - \mathbf{d}), \quad i \in P_{X},$$

which is violated at  $(\mu^{k+1}, z^{k+1})$ 

Add this inequality and re-solve the LP problem!



## Cutting plane algorithm

- We call this a cutting plane algorithm, since it is based on adding constraints to the dual problem in order to improve the solution, in the process cutting off the previous point.
- ► Consider the below picture. The thick lines correspond to the subset of *k* inequalities known at iteration *k*.



# Cutting plane algorithm

- ▶ Obviously,  $z^{k+1} \ge q(\mu^{k+1})$  must hold, because of the possible lack of constraints.
- In this case,  $z^{k+1}>q(\mu^{k+1})$  holds, so in the next step when we evaluate  $q(\mu^{k+1})$  we can identify and add the last lacking inequality
- ▶ The resulting maximization will then yield the optimal solution  $\mu^*$  shown in the picture.
- ▶ What is the relationship to the standard simplex method?
- ▶ How do we generate a primal optimal solution from this scheme? Let us look at the dual of the problem (1) in this cutting plane algorithm.



# Duality relations and the Dantzig-Wolfe algorithm

▶ We rewrite the problem (1)

$$\begin{aligned} & \underset{(\boldsymbol{z}, \boldsymbol{\mu})}{\operatorname{maximize}} & \boldsymbol{z}, \\ & \text{subject to } & \boldsymbol{z} - \boldsymbol{\mu}^{\mathrm{T}}(\boldsymbol{\mathsf{D}}\boldsymbol{\mathsf{x}}^{i} - \boldsymbol{\mathsf{d}}) \leq \boldsymbol{\mathsf{c}}^{\mathrm{T}}\boldsymbol{\mathsf{x}}^{i}, \quad i = 1, \dots, k, \\ & \boldsymbol{\mu} \geq \boldsymbol{\mathsf{0}}. \end{aligned}$$

# The linear programming dual

▶ With LP dual variables  $\lambda_i \geq 0$  we obtain the LP dual:

$$egin{aligned} oldsymbol{v}^{k+1} &= ext{minimum} & \sum_{i=1}^k (\mathbf{c}^{\mathrm{T}} \mathbf{x}^i) \lambda_i, \ & ext{subject to} & \sum_{i=1}^k \lambda_i = 1, \ & -\sum_{i=1}^k (\mathbf{D} \mathbf{x}^i - \mathbf{d}) \lambda_i \geq \mathbf{0}, \ & \lambda_i \geq 0, \qquad i = 1, \dots, k, \end{aligned}$$

## The linear programming dual rewritten

Rewritten:

$$\mathbf{v}^{k+1} = \text{minimum } \mathbf{c}^{\mathrm{T}} \left( \sum_{i=1}^{k} \lambda_{i} \mathbf{x}^{i} \right),$$
 subject to 
$$\sum_{i=1}^{k} \lambda_{i} = 1,$$
 
$$\lambda_{i} \geq 0, \qquad i = 1, \dots, k,$$
 
$$\mathbf{D} \left( \sum_{i=1}^{k} \lambda_{i} \mathbf{x}^{i} \right) \leq \mathbf{d}.$$
 (3)

Maximize c<sup>T</sup>x when x lies in the convex hull of the extreme points x<sup>i</sup> found so far and fulfills the constraints that are Lagrangian relaxed.



## The Dantzig-Wolfe algorithm

- ► The problem (3) is known as the restricted master problem (RMP) in the Dantzig-Wolfe algorithm.
- In this algorithm, we have at hand a subset  $\{1, \ldots, k\}$  of extreme points of X (and a dual vector  $\mu^k$ ).
- ▶ Find a feasible solution to the original LP problem by solving the restricted master problem (3).
- ▶ Then generate an optimal dual solution  $\mu^{k+1}$  to this restricted problem problem, corresponding to the constraints  $\mathbf{D}\mathbf{x} \leq \mathbf{d}$ .
- ▶ If and only if the vector x<sup>i</sup> generated in the next subproblem (2) was already included, we have found the optimal solution to the problem.



# Three algorithms which are "dual" to each other

Cutting plane applied to the Lagrangian dual

$$\iff$$

Dantzig—Wolfe applied to the original LP

$$\iff$$

▶ Benders decomposition applied to the dual LP.

## Column generation

► Consider an LP with *very* many variables:  $c_i, x_i \in \mathbb{R}$ ,  $\mathbf{a}_i, \mathbf{b} \in \mathbb{R}^m$ ,  $m \ll n$ 

minimize 
$$z=\sum_{j=1}^n c_jx_j$$
 subject to  $\sum_{j=1}^n \mathbf{a}_jx_j=\mathbf{b}$   $x_j\geq 0, \qquad j=1,\dots,n$ 

- ▶ The matrix  $(\mathbf{a}_1, \dots, \mathbf{a}_n)$  is too large to handle.
- Assume that m is relatively small  $\Longrightarrow$  the basic matrix is not too large  $(m \times m)$



#### Basic feasible solutions

- ▶  $B = \{m \text{ elements from the set } \{1, ..., n\}\}$  is a basis if the corresponding matrix  $\mathbf{B} = (\mathbf{a}_j)_{j \in B}$  has an inverse,  $\mathbf{B}^{-1}$
- ▶ A basic solution is given by  $\mathbf{x}_B = \mathbf{B}^{-1}\mathbf{b}$  and  $x_j = 0$ ,  $j \notin B$ . It is feasible if  $\mathbf{x}_B \ge \mathbf{0}^m$
- ▶ A better basic feasible solution can be found by computing reduced costs:  $\bar{c}_j = c_j \mathbf{c}_B^{\mathrm{T}} \mathbf{B}^{-1} \mathbf{a}_j$  for  $j \notin B$
- ▶ Let  $\bar{c}_s = \underset{j \notin B}{\operatorname{minimum}} \bar{c}_j$
- ▶ If  $\bar{c}_s < 0 \Longrightarrow$  a better solution is received if  $x_s$  enters the basis
- ▶ If  $\bar{c}_s \geq 0 \Longrightarrow \mathbf{x}_B$  is an optimal basic solution



# Generating columns

- ▶ Suppose the columns  $\mathbf{a}_j$  are defined by a set  $S = \{\mathbf{a}_j \mid j=1,\ldots,n\}$  being, e.g., solutions to a system of equations (extreme points, integer points, ...)
- The incoming column is then chosen by solving a subproblem  $\bar{c}(\mathbf{a}') = \min_{\mathbf{a} \in \mathcal{S}} \{c \mathbf{c}_B^{\mathrm{T}} \mathbf{B}^{-1} \mathbf{a}\}$
- ightharpoonup a' is a column having the least reduced cost w.r.t. the basis B
- ▶ If  $\bar{c}(\mathbf{a}') < 0$  let the column  $\begin{pmatrix} c(\mathbf{a}') \\ \mathbf{a}' \end{pmatrix}$  enter the problem



## Example: The cutting stock problem

▶ **Supply:** rolls of e.g. paper of length *L* 

▶ **Demand:**  $b_i$  roll pieces of length  $\ell_i < L$ , i = 1, ..., m

▶ **Objective:** minimize the number of rolls needed for producing the demanded pieces

#### First formulation

$$x_k = \left\{ \begin{array}{ll} 1 & \text{if roll $k$ is used} \\ 0 & \text{otherwise} \end{array} \right. \quad y_{ik} = \left\{ \begin{array}{ll} 1 & \text{if piece $i$ is cut from roll $k$} \\ 0 & \text{otherwise} \end{array} \right.$$
 
$$\min \sum_{k=1}^{M} x_k$$
 
$$\text{subject to } \sum_{i=1}^{m} \ell_i y_{ik} \leq L x_k, \quad k=1,\ldots,M$$
 
$$\sum_{k=1}^{K} y_{ik} = b_i, \qquad i=1,\ldots,m$$
 
$$x_k, y_{ik} \text{ binary}, \quad i=1,\ldots,m, k=1,\ldots,M$$

The value of the LP-relaxation is  $\frac{\sum_{i=1}^m \ell_i b_i}{L}$  which can be very bad if  $\ell_i = \lfloor L/2 + 1 \rfloor$  for large L (large duality gap  $\Rightarrow$  potentially bad performance of IP solvers)

#### Second formulation

- **Cut pattern:** number j contains  $a_{ii}$  pieces of length  $\ell_i$
- ▶ **Feasible** pattern if  $\sum_{i=1}^{m} \ell_i a_{ii} \leq L$ , where  $a_{ii} \geq 0$ , integer
- **Variables:**  $x_i = \text{number of times pattern } i \text{ is used}$

minimize 
$$\sum_{j=1}^n x_j$$
 subject to  $\sum_{j=1}^n a_{ij}x_j = b_i, \qquad i=1,\ldots,m$   $x_j \geq 0, \; \text{integer}, \qquad j=1,\ldots,n$ 

- **Bad news:** n = total number of feasible cut patterns—hugeinteger
- ▶ Good news: the value of the LP relaxation is often very close to that of the optimal solution.
- ⇒ Relax integrality constraints, solve an LP instead of an ILP



# Starting solution

Trivial: m unit columns (gives lots of waste)  $\Longrightarrow$ 

minimize 
$$\sum_{j=1}^m x_j$$
  
subject to  $x_j=b_j, \quad j=1,\ldots,m$   
 $x_j\geq 0, \quad j=1,\ldots,m$ 

#### New columns

Generate better patterns using the dual variable values  $\pi_i \Longrightarrow$  new column

$$1 - \underset{a_{ik}}{\operatorname{maximum}} \sum_{i=1}^{m} \pi_{i} a_{ik} \qquad \left[ \underset{minimize}{\operatorname{minimize}} (c_{k} - \underbrace{\mathbf{c}_{B}^{\mathrm{T}} \mathbf{B}^{-1}}_{\pi} \mathbf{a}_{k}) \right]$$
subject to 
$$\sum_{i=1}^{m} \ell_{i} a_{ik} \leq L,$$

$$a_{ik} \geq 0, \text{ integer, } i = 1, \dots, m$$

Solution to this integer knapsack problem: new column  $\mathbf{a}_k$ 

