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TMAb521/MMAB10 Optimization, project course

» Teachers/Examiners
» Michael Patriksson (room L2084, mipat@chalmers.se)
» Ann-Brith Strémberg (room 2087, anstr@chalmers.se)
» Guest lecturers Karin Thornblad & Adam Wojciechowski
» Schedule on the course homepage
www.math.chalmers.se/Math/Grundutb/CTH/tma521/1011/
~ 3 meetings/lectures per week during four weeks
» Two projects:
» Lagrangian relaxation for a VLSI design problem (Matlab)

» (Different) decomposition methods applied to a real
production scheduling problem (AMPL/Cplex, Matlab)

» Literature: Optimization theory for large systems (Lasdon,
2002, Cremona), An introduction to continuous optimization
(Andréasson et al., Cremona), hand-outs from books and
articles, lecture notes

» Examination: Written reports on the two projects
Oral presentations and opposition!

» For higher grades than pass (4, 5, VG): oral exam
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Topics: Turn difficult problems into sequences of

simpler ones using decomposition and coordination

Prerequisites

» Linear Programming (LP), (Mixed) Integer Linear
programming ((M)ILP), NonLinear Programming (NLP),

Decomposition methods covered
Lagrangian relaxation (for MILP, NLP)
Dantzig-Wolfe decomposition (for LP)
Benders decomposition (for MILP, NLP)
Column generation (for LP, MILP, NLP)
Heuristics (for ILP)

Branch & Bound (for MILP, non-convex NLP)
Greedy algorithms (for ILP, NLP)

Subgradient optimization (for convex NLP, Lagrangian duals)

vV vV vV VvV vV v VY
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Examples of simple problems

» For simple problems, there exist polynomial algorithms
preferably with a small largest exponent

» Simple problems belong to the complexity class P

» Network flow problems (see Wolsey):

» Shortest paths

Maximum flows

Minimum cost (single-commodity) network flows
The transportation problem

The assignment problem

Maximum cardinality matching

vV vy VY VvYy

» Linear programming (see Andréasson et al.)

» Problems over simple matroids — next!
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Example: Shortest path

Find the shortest path from node 1 to node 7
dy=9

d; = length of edge i

Shortest path from node 1 to node 7
d4=9

Total length: 12
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Example: Maximum flow

Find the maximum flow from node 1 to node 7
Maximum flow from node 1 to node 7

ki = flow capacity of arc i x; = optimal flow through arc i

Minimum cut separating nodes 1 and 7

ki — x; = residual flow capacity on arc |
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Matroids and the greedy algorithm (Lawler)

> Greedy algorithm

» Create a "complete solution” by iteratively choosing the best
alternative
» Never regret a previous choice

» Which problems can be solved using such a simple method?

» Problems whose feasible sets can be described by matroids
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Matroids and independent sets

» Given a finite set £ and a family F of subsets of &:
If Z € F and Z' C 7 imply Z’ € F, then the elements of F
are called independent

» A matroid M = (€, F) is a structure in which £ is a finite set
of elements and F is a family of subsets of £, such that

1. @ € F and all proper subsets of a set Z in F are in F

2. If Z, and Z,1 are sets in F with |Z,| = p and |Zp41| = p+ 1,
then 3 an element e € 7,11 \ Z, such that Z, U {e} € F

» Let M = (£, F) be a matroid and A C £.
If Z and Z’ are maximal independent subsets of A, then
Z] = |7']
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Example |I: Matric matroids

» £ = a set of column vectors in R”

» F = the set of linearly independent subsets of vectors in £.

N = O

1 2 10
» Let n=3and £ =[e1,...,e5] = |0 100
3 0 01
» We have:
» {e1,e,e3} € F and {e, &3} € F but

> {e17e27e37e5} g F and {e17e47e5} ¢ F
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Example Il: Graphic matroids

» £ ={e1, e, 63,646,667} = the set of links (edges) in an
undirected graph

» F = the set of all cycle-free subsets of edges in £

e 12 e
el 5 O
& ={e,. ., ¥ _C _C :
1 e . & . & o
el
< = - o020
4 e1 3 el O
7 e 7 o O

> {er,e,e,60} €F, {ev,es, e} € F, {er,e3,65 ¢ F,
{e1,e,6e3, 67} € F, {e1,es,65,66,1} ¢ F, {e}eF.
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Matroids and the greedy algorithm applied to

SETER]

> Let w(e) be the cost of element e € £.
Problem: Find the element 7 € F of maximal cardinality such
that the total cost is at minimum/maximum

» Example Il, continued: w(&) = (7,4,2,15,6,3,2)

An element Z € F of maximal

cardinality with minimum total cost
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The Greedy algorithm for minimization problems

1. A=0.

2. Sort the elements of £ in increasing order with respect to

w(e).

3. Take the first element e € £ in the list. If AU {e} is still
independent = let A := AU {e}.

4. Repeat from step 3. with the next element—until either the

list is empty, or A possesses the maximal cardinality.

What are the special versions of this algorithm for Examples | and
17
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Example I: Linearly independent vectors—matric

matroids

> Let
1 0 2 01
0 -1 -1 11
A=1ls 2 & 1 4]
2 1 5 02
wi=(10 9 8 4 1).

» Choose the maximal independent set with the maximum
weight

» Can this technique solve linear programming problems?
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Example Il: minimum spanning trees (MST)

—graphic matroids

» The maximal cycle-free set of links in an undirected graph is a
spanning tree

» In a graph G = (W, &), it has [N] — 1 links

» Classic greedy algorithm—Kruskal's algorithm has complexity
O(|€| - log(|€])). The main cost is in the sorting itself

» Prim’s algorithm builds the spanning tree through graph
search techniques, from node to node; complexity O(|A|?).
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Example IlI: continuous knapsack problem (in fact

not a matroid problem)

» Continuous relaxation of the 0/1-knapsack problem (BKP):

n
maximize f(x) := Z CjXj,

j=t

n
subject to Z ajxj < b, (aj,be Zy)
j=1
0<x,<1, j=1,...,n

» Greedy algorithm:
1. Sort ¢j/a;j in descending order
2. Set the variables to 1 until the knapsack is full
3. One variable may become fractional and the rest zero
» Linear programming duality shows that the greedy algorithm
solves the problem correctly
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Example Ill, continued

Linear programming dual:

n
minimize  bu + E W,
j=1

subject to aju + wi > ¢, j=1,...,n,
u > 0,
wi > 0, j=1,...,n

Hint: Complementarity slackness.
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Example 111, continued: Binary knapsack problem

» Rounding down the fractional variable value yields a feasible
solution to (BKP)

» Is it also optimal in (BKP)?
maximize f(x) := 2x; + ¢ xo,

subject to  x1 + cx2 < c, (ce zy)
x1,x € {0,1},

> If ¢ > 2 then x* = (0,1)T and f* = c.

» The greedy algorithm, plus rounding, always yields
x = (1,0)T, with f(X) =2

» This solution is arbitrarily bad (when c is large)
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Example IV: The traveling salesperson problem

(TSP)

The greedy algorithm for the TSP:
1. Start in node 1
2. Go to the nearest node which is not yet visited
3. Repeat step 2 until no nodes are left
4. Return to node 1; the tour is closed

» Greedy solution

Not optimal whenever ¢ > 4.

Optimal solution for ¢ > 4
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Example V: the shortest path problem (SPP)

» The greedy algorithm constructs a path that uses — locally —
the cheapest link to reach a new node. Optimal?

» Greedy solution

Not optimal whenever ¢ > 9

Optimal solution for ¢ > 9
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Example VI: Semi-matching

m n
maximize f(x) := E E WiiXij,

i=1 j=1

n
subject to ZX,'J' <1, i=1,...,m,
j=1

xje{0,1}, i=1,...,m j=1,...,n.

» Semi-assignment

Replace maximum = minimum; “<" = "=";let m=n
» Algorithm

For each i:

1. choose the best (lowest) w;;
2. Set x;; = 1 for that j, and x;; = 0 for every other j
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Matroid types

» Graph matroid: F = the set of forests in a graph G = (N, £).
Example problem: MST

» Partition matroid: Consider a partition of £ into m sets
Bi,...,Bmand let d; (i =1,...,m) be non-negative integers.
Let

]-':{I|I§5; |IﬂB;|§di,i:1,...,m}.

Example problem: semi-matching in bipartite graphs.

» Matrix matroid: S = (£, F), where £ is a set of column
vectors and F is the set of subsets of £ with linearly
independent vectors.

» Observe: The above matroids can be expressed as matrix
matroids!
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Problems over matroid intersections

» Given two matroids M = (£,P) and N = (£,R), find the
maximum cardinality set in PR

» Example 1: maximum-cardinality matching in a bipartite graph
is the intersection of two partition matroids (with d; = 1).
DRAW ILLUSTRATION!

» The intersection of two matroids can not be solved by using
the greedy algorithm

» There exist polynomial algorithms for them, though

» Examples: bipartite matching and assignment problems can be
solved as maximum flow problems, which are polynomially
solvable
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Problems over matroid intersections, cont.

» Example 2: The traveling salesperson problem (TSP) is the
intersection of three matroids:
» one graph matroid
» two partition matroids

(formulation on next page: assignment + tree constraints)
» TSP is not solvable in polynomial time.

» Conclusion (not proven here):

» Matroid problems are extremely easy to solve (greedy works)

» Two-matroid problems are polynomially solvable

» Three-matroid problems are very difficult (exponential solution
time)

» The TSP—different mathematical formulations give rise to
different algorithms when Lagrangean relaxed or otherwise
decomposed

Ann-Brith Stromberg Simple/difficult problems



Tree formulation

n n
minimize E E CijXij

i=1 j=1
n
subject to Zx,-j =1, ieN, (1)
j=1
D xi=1, JEN, (2)
i=1
S wclsion scan @
ies jes

xje {0,1}, i, jeN.
> (1)—(2): assignment; (3): cycle-free

» Relax (3) = Assignment
» Relax (1)—(2) & add the sum of (1) = 1-MST
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Node valence based formulation

n n
minimize E g CijXij

i=1j=1
n
subject to Zx,-j =2, ieN, (1)
j=1
n n
2D xi=n @)
i=1 j=1

Yoo =1, SCcN, (3
(iS)E(S,N\S)
xje€ {0,1}, i,jeN.
(1): valence = 2; (2): sum of (1); (3): cycle-free (alt. version)
Hamiltonian cycle = spanning tree + one link = every node
receives valence = 2

v

v

v

Relax (1), except for node s = 1-tree relaxation.
Relax (3) = 2-matching.

v

Ann-Brith Stromberg Simple/difficult problems



Tree-based formulation for directed graphs

minimize g Cij Xij

(ij)e€
subject to Z xij =1, ieN, (1)
J:(ij)ee
Y oxi=1, jeN, (2
i:(ij)e€
S xi= I, 3)
(ij)e€
Z Xij + Z X,'J'Z]., SCN, (4)
(IJ)e(S, N\S)* U,1E(S,M\S)~

Xij € {0’1}’ (’7./) eg.

. assignment; (3): redundant; (4) cycle-free

(1)-(2
Relax (1) or (2), plus (4) = semi-assignment

Relax (3) plus (4) = assignment

vV v. v .Yy

Relax

N SN AN —

1), and (2) except for node s = directed 1-tree
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