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TMA521/MMA510 Optimization, project course
◮ Teachers/Examiners

◮ Michael Patriksson (room L2084, mipat@chalmers.se)
◮ Ann-Brith Strömberg (room 2087, anstr@chalmers.se)

◮ Guest lecturers Karin Thörnblad & Adam Wojciechowski
◮ Schedule on the course homepage

www.math.chalmers.se/Math/Grundutb/CTH/tma521/1011/

≈ 3 meetings/lectures per week during four weeks
◮ Two projects:

◮ Lagrangian relaxation for a VLSI design problem (Matlab)
◮ (Different) decomposition methods applied to a real

production scheduling problem (AMPL/Cplex, Matlab)
◮ Literature: Optimization theory for large systems (Lasdon,

2002, Cremona), An introduction to continuous optimization

(Andréasson et al., Cremona), hand-outs from books and
articles, lecture notes

◮ Examination: Written reports on the two projects
Oral presentations and opposition!

◮ For higher grades than pass (4, 5, VG): oral exam
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Topics: Turn difficult problems into sequences of

simpler ones using decomposition and coordination

Prerequisites

◮ Linear Programming (LP), (Mixed) Integer Linear
programming ((M)ILP), NonLinear Programming (NLP),

Decomposition methods covered

◮ Lagrangian relaxation (for MILP, NLP)

◮ Dantzig–Wolfe decomposition (for LP)

◮ Benders decomposition (for MILP, NLP)

◮ Column generation (for LP, MILP, NLP)

◮ Heuristics (for ILP)

◮ Branch & Bound (for MILP, non-convex NLP)

◮ Greedy algorithms (for ILP, NLP)

◮ Subgradient optimization (for convex NLP, Lagrangian duals)
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Examples of simple problems

◮ For simple problems, there exist polynomial algorithms

preferably with a small largest exponent

◮ Simple problems belong to the complexity class P

◮ Network flow problems (see Wolsey):
◮ Shortest paths
◮ Maximum flows
◮ Minimum cost (single-commodity) network flows
◮ The transportation problem
◮ The assignment problem
◮ Maximum cardinality matching

◮ Linear programming (see Andréasson et al.)

◮ Problems over simple matroids — next!

Ann-Brith Strömberg Simple/difficult problems



Example: Shortest path
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Find the shortest path from node 1 to node 7

di = length of edge i

d1=2
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Shortest path from node 1 to node 7

Total length: 12
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Example: Maximum flow
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Find the maximum flow from node 1 to node 7

ki = flow capacity of arc i

k1=6

k2=2

k3=4
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Maximum flow from node 1 to node 7

xi = optimal flow through arc i

x1=6

x2=1

x3=3

x4=3

x5=3x6=0
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Minimum cut separating nodes 1 and 7

ki − xi = residual flow capacity on arc i

k1−x1=0

k2−x2=1

k3−x3=1

k4−x4=1

k5−x5=0k6−x6=2

k7−x7=0

k8−x8=0

k9−x9=0

k10−x10=1
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Matroids and the greedy algorithm (Lawler)

◮ Greedy algorithm
◮ Create a “complete solution” by iteratively choosing the best

alternative
◮ Never regret a previous choice

◮ Which problems can be solved using such a simple method?

◮ Problems whose feasible sets can be described by matroids
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Matroids and independent sets

◮ Given a finite set E and a family F of subsets of E :
If I ∈ F and I ′ ⊆ I imply I ′ ∈ F , then the elements of F
are called independent

◮ A matroid M = (E ,F ) is a structure in which E is a finite set
of elements and F is a family of subsets of E , such that

1. ∅ ∈ F and all proper subsets of a set I in F are in F

2. If Ip and Ip+1 are sets in F with |Ip| = p and |Ip+1| = p + 1,
then ∃ an element e ∈ Ip+1 \ Ip such that Ip ∪ {e} ∈ F

◮ Let M = (E ,F) be a matroid and A ⊆ E .
If I and I ′ are maximal independent subsets of A, then
|I| = |I ′|
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Example I: Matric matroids

◮ E = a set of column vectors in R
n

◮ F = the set of linearly independent subsets of vectors in E .

◮ Let n = 3 and E = [e1, . . . , e5] =





1 0 2 1 0
0 1 1 0 0
3 2 0 0 1





◮ We have:

◮ {e1, e2, e3} ∈ F and {e2, e3} ∈ F but

◮ {e1, e2, e3, e5} 6∈ F and {e1, e4, e5} 6∈ F
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Example II: Graphic matroids

◮ E = {e1, e2, e3, e4, e5, e6, e7} = the set of links (edges) in an
undirected graph

◮ F = the set of all cycle-free subsets of edges in E

e1

e1e1

e1

e2e2e2

e2e2

e2

e3

e3

e3

e4e4

e4

e4

e5

e5

e5
e6

e6

e7e7

e7e7

e7

E = {e1, . . . , e7}

◮ {e1, e2, e4, e7} ∈ F , {e2, e4, e7} ∈ F , {e2, e3, e5} 6∈ F ,
{e1, e2, e3, e7} ∈ F , {e1, e4, e5, e6, e7} 6∈ F , {e2} ∈ F .
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Matroids and the greedy algorithm applied to

Example II

◮ Let w(e) be the cost of element e ∈ E .
Problem: Find the element I ∈ F of maximal cardinality such
that the total cost is at minimum/maximum

◮ Example II, continued: w(E) = (7, 4, 2, 15, 6, 3, 2)

77
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22

15

6

33

22

An element I ∈ F of maximal

cardinality with minimum total cost
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The Greedy algorithm for minimization problems

1. A = ∅.

2. Sort the elements of E in increasing order with respect to
w(e).

3. Take the first element e ∈ E in the list. If A ∪ {e} is still
independent =⇒ let A := A∪ {e}.

4. Repeat from step 3. with the next element—until either the
list is empty, or A possesses the maximal cardinality.

What are the special versions of this algorithm for Examples I and
II?
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Example I: Linearly independent vectors—matric

matroids

◮ Let

A =









1 0 2 0 1
0 −1 −1 1 1
3 2 8 1 4
2 1 5 0 2









,

wT =
(

10 9 8 4 1
)

.

◮ Choose the maximal independent set with the maximum
weight

◮ Can this technique solve linear programming problems?
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Example II: minimum spanning trees (MST)

—graphic matroids

◮ The maximal cycle-free set of links in an undirected graph is a
spanning tree

◮ In a graph G = (N , E), it has |N | − 1 links
◮ Classic greedy algorithm—Kruskal’s algorithm has complexity

O(|E| · log(|E|)). The main cost is in the sorting itself
◮ Prim’s algorithm builds the spanning tree through graph

search techniques, from node to node; complexity O(|N |2).
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Example III: continuous knapsack problem (in fact

not a matroid problem)

◮ Continuous relaxation of the 0/1-knapsack problem (BKP):

maximize f (x) :=

n
∑

j=1

cjxj ,

subject to

n
∑

j=1

ajxj ≤ b, (aj , b ∈ Z+)

0 ≤ xj ≤ 1, j = 1, . . . , n.

◮ Greedy algorithm:
1. Sort cj/aj in descending order
2. Set the variables to 1 until the knapsack is full
3. One variable may become fractional and the rest zero

◮ Linear programming duality shows that the greedy algorithm
solves the problem correctly
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Example III, continued

Linear programming dual:

minimize bu +
n

∑

j=1

wj ,

subject to aju + wj ≥ cj , j = 1, . . . , n,
u ≥ 0,

wj ≥ 0, j = 1, . . . , n

Hint: Complementarity slackness.
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Example III, continued: Binary knapsack problem

◮ Rounding down the fractional variable value yields a feasible
solution to (BKP)

◮ Is it also optimal in (BKP)?

maximize f (x) := 2x1 + c x2,

subject to x1 + c x2 ≤ c , (c ∈ Z+)

x1, x2 ∈ {0, 1},

◮ If c ≥ 2 then x∗ = (0, 1)T and f ∗ = c .

◮ The greedy algorithm, plus rounding, always yields
x̄ = (1, 0)T, with f (x̄) = 2

◮ This solution is arbitrarily bad (when c is large)
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Example IV: The traveling salesperson problem

(TSP)

The greedy algorithm for the TSP:

1. Start in node 1

2. Go to the nearest node which is not yet visited

3. Repeat step 2 until no nodes are left

4. Return to node 1; the tour is closed

◮ Greedy solution

Not optimal whenever c > 4.
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Optimal solution for c ≥ 4
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Example V: the shortest path problem (SPP)

◮ The greedy algorithm constructs a path that uses – locally –
the cheapest link to reach a new node. Optimal?

◮ Greedy solution

Not optimal whenever c > 9
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Optimal solution for c ≥ 9
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Example VI: Semi-matching

maximize f (x) :=

m
∑

i=1

n
∑

j=1

wijxij ,

subject to

n
∑

j=1

xij ≤ 1, i = 1, . . . ,m,

xij ∈ {0, 1}, i = 1, . . . ,m, j = 1, . . . , n.

◮ Semi-assignment
Replace maximum =⇒ minimum; “≤” =⇒ “=”; let m = n

◮ Algorithm
For each i :

1. choose the best (lowest) wij

2. Set xij = 1 for that j , and xij = 0 for every other j
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Matroid types

◮ Graph matroid: F = the set of forests in a graph G = (N , E).
Example problem: MST

◮ Partition matroid: Consider a partition of E into m sets
B1, . . . ,Bm and let di (i = 1, . . . ,m) be non-negative integers.
Let

F = { I | I ⊆ E ; |I ∩ Bi | ≤ di , i = 1, . . . ,m }.

Example problem: semi-matching in bipartite graphs.

◮ Matrix matroid: S = (E ,F), where E is a set of column
vectors and F is the set of subsets of E with linearly
independent vectors.

◮ Observe: The above matroids can be expressed as matrix
matroids!
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Problems over matroid intersections

◮ Given two matroids M = (E ,P) and N = (E ,R), find the
maximum cardinality set in P ∩R

◮ Example 1: maximum-cardinality matching in a bipartite graph
is the intersection of two partition matroids (with di = 1).
Draw illustration!

◮ The intersection of two matroids can not be solved by using
the greedy algorithm

◮ There exist polynomial algorithms for them, though

◮ Examples: bipartite matching and assignment problems can be
solved as maximum flow problems, which are polynomially
solvable
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Problems over matroid intersections, cont.

◮ Example 2: The traveling salesperson problem (TSP) is the
intersection of three matroids:

◮ one graph matroid
◮ two partition matroids

(formulation on next page: assignment + tree constraints)

◮ TSP is not solvable in polynomial time.

◮ Conclusion (not proven here):
◮ Matroid problems are extremely easy to solve (greedy works)
◮ Two-matroid problems are polynomially solvable
◮ Three-matroid problems are very difficult (exponential solution

time)

◮ The TSP—different mathematical formulations give rise to
different algorithms when Lagrangean relaxed or otherwise
decomposed
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Tree formulation

minimize

n
∑

i=1

n
∑

j=1

cijxij

subject to

n
∑

j=1

xij = 1, i ∈ N , (1)

n
∑

i=1

xij = 1, j ∈ N , (2)

∑

i∈S

∑

j∈S

xij ≤ |S| − 1, S ⊂ N , (3)

xij ∈ {0, 1}, i , j ∈ N .

◮ (1)–(2): assignment; (3): cycle-free

◮ Relax (3) ⇒ Assignment

◮ Relax (1)–(2) & add the sum of (1) ⇒ 1-MST
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Node valence based formulation

minimize

n
∑

i=1

n
∑

j=1

cijxij

subject to

n
∑

j=1

xij = 2, i ∈ N , (1)

n
∑

i=1

n
∑

j=1

xij = n, (2)

∑

(i ,j)∈(S,N\S)

xij ≥ 1, S ⊂ N , (3)

xij ∈ {0, 1}, i , j ∈ N .

◮ (1): valence = 2; (2): sum of (1); (3): cycle-free (alt. version)

◮ Hamiltonian cycle = spanning tree + one link ⇒ every node
receives valence = 2

◮ Relax (1), except for node s ⇒ 1-tree relaxation.

◮ Relax (3) ⇒ 2-matching.
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Tree-based formulation for directed graphs

minimize
∑

(i ,j)∈E

cijxij

subject to
∑

j :(i ,j)∈E

xij = 1, i ∈ N , (1)

∑

i :(i ,j)∈E

xij = 1, j ∈ N , (2)

∑

(i ,j)∈E

xij = |N |, (3)

∑

(i ,j)∈(S,N\S)+

xij +
∑

(j ,i)∈(S,N\S)−

xij ≥ 1, S ⊂ N , (4)

xij ∈ {0, 1}, (i , j) ∈ E .

◮ (1)–(2): assignment; (3): redundant; (4) cycle-free

◮ Relax (1) or (2), plus (4) ⇒ semi-assignment

◮ Relax (3) plus (4) ⇒ assignment

◮ Relax (1), and (2) except for node s ⇒ directed 1-tree
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