TMA521/MMA510 Optimization, project course Lecture 2 The solution of a difficult problem—facility location

Ann-Brith Strömberg

2010-09-03

Location of facilities which serve customers

Problem settings

- ▶ Potential depot sites: $\mathcal{J} = \{1, ..., n\}$ (geographical locations)
- Existing customers: $\mathcal{I} = \{1, \dots, m\}$ (geographical locations) $f_j = \text{fixed cost of opening depot (facility) } j \in \mathcal{J}$ $c_{ij} = \text{transportation cost when customer } i$'s demand is fulfilled entirely from depot j ($i \in \mathcal{I}, j \in \mathcal{J}$)

Decision problem

- ▶ Which depots to open?
- ▶ Which depots to serve which customers, and how much?
- ▶ Goal minimize cost
- ► Assumption: depots have unlimited capacity (to be removed)

Uncapacitated facility location (UFL)

Variables

$$y_j = \left\{ egin{array}{ll} 1, & \mbox{if depot } j \mbox{ is opened} \\ 0, & \mbox{otherwise} \end{array}
ight. \ \ \, x_{ij} = \left[egin{array}{ll} \mbox{proportion of customer } i \mbox{'s demand} \\ \mbox{to be delivered from depot } j \end{array}
ight]$$

Mathematical model

$$z_{0}^{*} = \min \sum_{i \in \mathcal{I}} \sum_{j \in \mathcal{J}} c_{ij} x_{ij} + \sum_{j \in \mathcal{J}} f_{j} y_{j}$$
(0)
s.t.
$$\sum_{j \in \mathcal{J}} x_{ij} = 1, \quad i \in \mathcal{I}$$
(1)

$$x_{ij} - y_{j} \leq 0, \quad i \in \mathcal{I}, j \in \mathcal{J}$$
(2)

$$x_{ij} \in [0, 1], \quad i \in \mathcal{I}, j \in \mathcal{J}$$
(3)

$$y_{j} \in \{0, 1\}, \quad j \in \mathcal{J}$$
(4)

s.t.
$$\sum_{j \in \mathcal{J}} x_{ij} = 1, \quad i \in \mathcal{I}$$
 (1)

$$x_{ij} - y_j \leq 0, \qquad i \in \mathcal{I}, j \in \mathcal{J}$$
 (2)

$$x_{ij} \in [0,1], \quad i \in \mathcal{I}, j \in \mathcal{J}$$
 (3)

$$y_j \in \{0,1\}, \qquad j \in \mathcal{J} \quad (4)$$

The mathematical model

$$z_{0}^{*} = \min \sum_{i \in \mathcal{I}} \sum_{j \in \mathcal{J}} c_{ij} x_{ij} + \sum_{j \in \mathcal{J}} f_{j} y_{j}$$
s.t.
$$\sum_{j \in \mathcal{J}} x_{ij} = 1, \quad i \in \mathcal{I}$$

$$x_{ij} - y_{j} \leq 0, \quad i \in \mathcal{I}, j \in \mathcal{J}$$

$$x_{ij} \in [0, 1], \quad i \in \mathcal{I}, j \in \mathcal{J}$$

$$y_{j} \in \{0, 1\}, \quad j \in \mathcal{J}$$

$$(1)$$

s.t.
$$\sum_{i \in \mathcal{I}} x_{ij} = 1, \quad i \in \mathcal{I}$$
 (1)

$$x_{ij} - y_j \leq 0, \qquad i \in \mathcal{I}, j \in \mathcal{J} \quad (2)$$

$$x_{ij} \in [0,1], \quad i \in \mathcal{I}, j \in \mathcal{J}$$
 (3

$$y_j \in \{0,1\}, \qquad j \in \mathcal{J}$$
 (4)

- Minimize cost
- Deliver precisely the demand
- Deliver from open depots only
- (3) \mathbf{x}_{ij} is the *proportion* of the demand of customer i to be delivered from depot i
- (4) A depot may not be partially opened

Suppose that the depots have limited capacity

- $ightharpoonup d_i = ext{demand of customer } i \ (D = \sum_{i \in \mathcal{I}} d_i)$
- ▶ b_j = capacity of depot j—if it is opened Constraints:

$$\sum_{i\in\mathcal{I}}d_ix_{ij}\leq b_jy_j,\quad j\in\mathcal{J}\quad (5)\qquad (\Rightarrow x_{ij}\leq y_j,\ \forall i,j)$$

 \Rightarrow replace (2) (i.e., $x_{ij} \leq y_j$) by (5) \Rightarrow

$$z_{0}^{*} = \min \sum_{i \in \mathcal{I}} \sum_{j \in \mathcal{J}} c_{ij} x_{ij} + \sum_{j \in \mathcal{J}} f_{j} y_{j}$$
(0)
s.t.
$$\sum_{j \in \mathcal{J}} x_{ij} = 1, \quad i \in \mathcal{I}$$
(1)

$$\sum_{i \in \mathcal{I}} d_{i} x_{ij} - b_{j} y_{j} \leq 0, \quad j \in \mathcal{J}$$
(5)

$$x_{ij} \in [0,1], \quad i \in \mathcal{I}, j \in \mathcal{J}$$
(3)

$$y_{j} \in \{0,1\}, \quad j \in \mathcal{J}$$
(4)

Capacitated facility location (CFL)

$$z^* = \min \sum_{i \in \mathcal{I}} \sum_{j \in \mathcal{J}} c_{ij} x_{ij} + \sum_{j \in \mathcal{J}} f_j y_j$$
s.t.
$$\sum_{i \in \mathcal{I}} x_{ij} = 1, \quad i \in \mathcal{I}$$
 (1)

(1)

$$\sum_{j \in \mathcal{J}} x_{ij} = 1, \quad i \in \mathcal{I}$$

$$\sum_{i \in \mathcal{I}} d_i x_{ij} - b_j y_j \leq 0, \quad j \in \mathcal{J}$$

$$\in [0, 1] \quad i \in \mathcal{T} \quad i \in \mathcal{I}$$
(1)

 \in [0,1], $i \in \mathcal{I}, j \in \mathcal{J}$ (3) $y_i \in \{0,1\}, j \in \mathcal{J}$ (4)

$$y_j \in \{0,1\}, j \in \mathcal{J}$$
 (4)

Observation: The total capacity of open depots must cover the entire demand \Longrightarrow an additional (redundant) constraint:

$$(1),(5)\Rightarrow \overbrace{\sum_{j\in\mathcal{J}}^{\text{capacity}}}^{\text{capacity}} \sum_{j\in\mathcal{J}} \sum_{i\in\mathcal{I}} d_i x_{ij} = \sum_{i\in\mathcal{I}} d_i \sum_{j\in\mathcal{J}} x_{ij} = \sum_{i\in\mathcal{I}} d_i \cdot 1 = \overbrace{D}^{\text{demand}} (6)$$

Add this constraint to the model

Trick – variable splitting

- ▶ Replace x_{ij} by w_{ij} in constraint (1) and in "half" the objective
- ▶ Let $0 \le \alpha \le 1$.
- ▶ Add the constraints $x_{ij} = w_{ij}$

$$z^* = \min \quad \alpha \sum_{i \in \mathcal{I}} \sum_{j \in \mathcal{J}} c_{ij} x_{ij} + (1 - \alpha) \sum_{i \in \mathcal{I}} \sum_{j \in \mathcal{J}} c_{ij} w_{ij} + \sum_{j \in \mathcal{J}} f_j y_j$$
s.t.
$$\sum_{j \in \mathcal{J}} w_{ij} = 1, \quad i \in \mathcal{I}$$
 (1)

$$\sum_{i \in \mathcal{I}} d_i x_{ij} - b_j y_j \leq 0, \qquad j \in \mathcal{J}$$
 (5)

$$\sum_{j\in\mathcal{J}}b_jy_j \geq D, \tag{6}$$

$$w_{ij} - x_{ij} = 0, \qquad i \in \mathcal{I}, j \in \mathcal{J}$$
 (7)

$$x_{ij} \in [0,1], \quad i \in \mathcal{I}, j \in \mathcal{J}$$
 (3)

$$w_{ij} \geq 0, \qquad i \in \mathcal{I}, j \in \mathcal{J}$$
 (8)

$$y_j \in \{0,1\}, \qquad j \in \mathcal{J}$$
 (4)

Lagrangian relaxation

- ▶ The constraints (7) tie together the variables (x, y) and w
- ▶ Lagrangian relax these with multipliers λ_{ij}
- ⇒ Lagrange function

$$L(\mathbf{x}, \mathbf{w}, \mathbf{y}, \lambda) = \sum_{i \in \mathcal{I}} \sum_{j \in \mathcal{J}} \left[\alpha c_{ij} x_{ij} + (1 - \alpha) c_{ij} w_{ij} + \lambda_{ij} (w_{ij} - x_{ij}) \right] + \sum_{j \in \mathcal{J}} f_{j} y_{j}$$

$$= \sum_{i \in \mathcal{I}} \sum_{j \in \mathcal{J}} (\alpha c_{ij} - \lambda_{ij}) x_{ij} + \sum_{j \in \mathcal{J}} f_{j} y_{j} + \sum_{i \in \mathcal{I}} \sum_{j \in \mathcal{J}} \left[(1 - \alpha) c_{ij} + \lambda_{ij} \right] w_{ij}$$

- For a fixed value of λ:
 Minimize the Lagrange function under the constraints (1),
 (5), (6), (3), (8) & (4)
- lacktriangle Separates into one problem in (\mathbf{x},\mathbf{y}) and $|\mathcal{I}|$ problems in \mathbf{w}

The subproblem in x and y (for a fixed value of λ)

$$q_{\mathbf{x}\mathbf{y}}(\boldsymbol{\lambda}) = \min_{\mathbf{x}, \mathbf{y}} \quad \sum_{i \in \mathcal{I}} \sum_{j \in \mathcal{J}} [\alpha c_{ij} - \lambda_{ij}] x_{ij} + \sum_{j \in \mathcal{J}} f_{j} y_{j}$$
s.t.
$$\sum_{j \in \mathcal{J}} b_{j} y_{j} \geq D, \qquad (6)$$

$$\sum_{i \in \mathcal{I}} d_{i} x_{ij} \leq b_{j} y_{j}, \qquad j \in \mathcal{J} \qquad (5)$$

$$x_{ij} \in [0, 1], \qquad i \in \mathcal{I}, j \in \mathcal{J} \qquad (3)$$

$$y_{j} \in \{0, 1\}, \qquad j \in \mathcal{J} \qquad (4)$$

- This problem can be further decomposed through the following observation
- ▶ For every **y**-solution (such that $\sum_{i \in \mathcal{I}} b_i y_i \geq D$ holds) we have the following:
 - ▶ If $y_i = 0$ then $x_{ii} = 0$, $i \in \mathcal{I}$ must hold
 - ▶ If $y_i = 1$ then $\sum_{i \in \mathcal{I}} d_i x_{ij} \le b_j$ and $x_{ij} \in [0, 1]$ must hold

The value/cost of opening depot j, i.e., letting $y_j = 1$ (in the (x, y)-subproblem)

 $ightharpoonup |\mathcal{J}|$ continuous knapsack problems (easy to solve)

$$\begin{aligned} [\mathsf{CKSP}_j] \qquad v_j(\pmb{\lambda}) &= f_j + \min_{\pmb{\mathsf{x}}} \qquad \sum_{i \in \mathcal{I}} \left[\alpha c_{ij} - \lambda_{ij} \right] x_{ij} \\ \text{s.t.} \qquad \sum_{i \in \mathcal{I}} d_i x_{ij} \leq b_j \\ x_{ii} \in [0,1], \quad i \in \mathcal{I} \end{aligned}$$

- ▶ Then, decide which depots to open (for a certain value of λ)
- ▶ Projection onto the **y**-space (one 0/1 knapsack problem)

$$[0/1\text{-KSP}] \qquad q_{\mathbf{x}\mathbf{y}}(\boldsymbol{\lambda}) = \min_{\mathbf{y}} \quad \sum_{j \in \mathcal{J}} v_j(\boldsymbol{\lambda}) \cdot y_j$$
 s.t.
$$\sum_{j \in \mathcal{J}} b_j y_j \ \geq \ D,$$

$$y_j \ \in \ \{0,1\}, \ j \in \mathcal{J}$$

Solving the continuous knapsack problems [CKSP_j]

Greedy algorithm

- ▶ Sort the values $\frac{\alpha c_{ij} \lambda_{ij}}{d_i} < 0$, $i \in \mathcal{I}$, in increasing order \Rightarrow indices $\{i_1, i_2, \dots, i_p\}$, where $p \leq m = |\mathcal{I}|$
- ▶ $x_{ij} := 0, i \in \mathcal{I}, k := 0$ repeat k := k + 1 $x_{i_k j} := \min \left\{ 1; \left(b_j - \sum_{s=1}^{k-1} d_{i_s} x_{i_s j} \right) / d_{i_k} \right\}$ until $\sum_{s=1}^{k} d_i x_{i_s i} = b_j$ or k = p
- ▶ The solution fulfills $\sum_{i \in \mathcal{I}} d_i x_{ij} \leq b_j$ and $x_{ij} \in [0,1]$, $i \in \mathcal{I}$
- \Rightarrow The value/cost of opening depot j
- $v_j(\lambda) = f_j + \sum_{k=1}^p \sum_{i \in \mathcal{I}} \left[\alpha c_{i_k j} \lambda_{i_k j} \right] x_{i_k j}$

Solving the 0/1 knapsack problems [0/1-KSP]

$$q_{\mathbf{x}\mathbf{y}}(\boldsymbol{\lambda}) = \min_{\mathbf{y}} \quad \sum_{j \in \mathcal{J}} v_j(\boldsymbol{\lambda}) \cdot y_j$$
 s.t. $\sum_{j \in \mathcal{J}} b_j y_j \geq D$, $y_j \in \{0,1\}, \ j \in \mathcal{J}$

where $v_j(\lambda) = f_j + \sum_{i \in \mathcal{I}} \sum_{j \in \mathcal{J}} [\alpha c_{ij} - \lambda_{ij}] x_{ij}$ and x_{ij} , $i \in \mathcal{I}$, $j \in \mathcal{J}$, are computed by the greedy algorithm

- ▶ 0/1-KSP *cannot* be solved in polynomial time
- Solve using Dynamic Programming or Branch & Bound (CPLEX)

Summary of the solution of the (x, y)-problem

For a fixed value of the penalty λ

- ▶ Solve $|\mathcal{J}|$ continuous knapsack problems
- \Rightarrow Solution x_{ij} , $i \in \mathcal{I}$, $j \in \mathcal{J}$,
- \Rightarrow The value of opening depot $j: v_j(\lambda), j \in \mathcal{J}$
 - ► Solve a 0/1-knapsack problem
- \Rightarrow $y_j(\lambda) \in \{0,1\}, j \in \mathcal{J}$
 - If $y_j(\lambda) = 0 \Rightarrow x_{ij}(\lambda) = 0$, $i \in \mathcal{I}$
 - ▶ If $y_j(\lambda) = 1 \Rightarrow x_{ij}(\lambda) = x_{ij}$ by the above, $i \in \mathcal{I}$,
 - ▶ Solution $(x(\lambda), y(\lambda))$

The subproblem in w (for a fixed value of λ)

$|\mathcal{I}|$ semi-assignment problems (SAP)

$$q_{\mathbf{w}}(\boldsymbol{\lambda}) = \sum_{i \in \mathcal{I}} \left[\begin{array}{cc} \min_{\mathbf{w}} & \sum_{j \in \mathcal{J}} \left[(1 - \alpha)c_{ij} + \lambda_{ij} \right] w_{ij} \\ \text{s.t.} & \sum_{j \in \mathcal{J}} w_{ij} = 1, \quad w_{ij} \ge 0, \quad j \in \mathcal{J} \end{array} \right]$$

Solving semi-assignment problem $i \in \mathcal{I}$

- $ightharpoonup w_{i\ell_i}(oldsymbol{\lambda}) := 1, \ w_{ij}(oldsymbol{\lambda}) := 0, \ j \neq \ell_i$

The value of the relaxed problem for a fixed value of λ

$$q(\lambda) = \underbrace{q_{xy}(\lambda)}_{\text{difficult}} + \underbrace{q_{w}(\lambda)}_{\text{simple}}$$

- lackbox Can show that $q(oldsymbol{\lambda}) \leq z^*$ for all $oldsymbol{\lambda} \in \mathbb{R}^{|\mathcal{I}| imes |\mathcal{I}|}$ (weak duality)
- \triangleright λ_{ij} is the penalty for violating the constraint $w_{ij} = x_{ij}$
- ▶ Find best *underestimate* of $z^* \iff$ find optimal values for the penalties λ_{ij}
- ► That is

$$egin{aligned} q^* := \max_{oldsymbol{\lambda} \in \mathbb{R}^{|\mathcal{I}| imes |\mathcal{J}|}} q(oldsymbol{\lambda}) \leq z^* \end{aligned}$$

▶ Most often

$$q^* < z^*$$

(not strong duality)

How to find better values for λ_{ij} ?

Penalty: min
$$\dots + \sum_{i \in \mathcal{I}} \sum_{j \in \mathcal{J}} \lambda_{ij} (w_{ij} - x_{ij})$$

- ▶ If $w_{ij}(\lambda) > x_{ij}(\lambda) \Rightarrow$ Increase the value of λ_{ij} (higher penalty for violating the constraint)
- ▶ If $w_{ij}(\lambda) < x_{ij}(\lambda) \Rightarrow$ Decrease the value of λ_{ij} (higher penalty for violating the constraint)
- ▶ **Iterative method** (subgradient algorithm) to find optimal penalties λ^* (\Rightarrow underestimate of $q^* \le z^*$)

$$\lambda_{ij}^{t+1} = \lambda_{ij}^t + \rho_t \left[w_{ij}(\boldsymbol{\lambda}^t) - x_{ij}(\boldsymbol{\lambda}^t) \right], \qquad t = 0, 1, \dots$$

where $\rho_t > 0$ is a step length, decreasing with t

- ▶ Use **feasibility heuristic** from every $[\mathbf{x}(\lambda^t), \mathbf{w}(\lambda^t), \mathbf{y}(\lambda^t)]$ to yield a **feasible solution** to CFL (\Rightarrow overestimate of z^*)
- E.g., open more depots, send only from open depots,
 x := w,...

Example: $|\mathcal{I}| = 4$, $|\mathcal{J}| = 3$, $\alpha = \frac{1}{2}$

$$(c_{ij}) = \begin{pmatrix} 6 & 2 & 4 \\ 2 & 8 & 4 \\ 16 & 2 & 6 \\ 10 & 12 & 4 \end{pmatrix}, (f_j) = \begin{pmatrix} 11 \\ 16 \\ 21 \end{pmatrix}, (d_i) = \begin{pmatrix} 6 \\ 4 \\ 8 \\ 5 \end{pmatrix}, (b_j) = \begin{pmatrix} 12 \\ 10 \\ 13 \end{pmatrix}$$

The 0/1-knapsack problem

$$q_{\mathbf{xy}}(\lambda) = \min \sum_{j=1}^{3} v_j(\lambda) \cdot y_j$$
s.t. $12y_1 + 10y_2 + 13y_3 \ge 23$

$$\mathbf{y} \in \{0, 1\}^3$$

$$\operatorname{Let}(\lambda_{ij}^t) = \begin{pmatrix} 7 & 0 & 0 \\ 3 & 10 & 2 \\ 5 & 2 & 0 \\ 0 & 7 & 5 \end{pmatrix}$$

Observe: $y_3 = 1$ must hold (why?)

$$\underbrace{\cdots \Longrightarrow \cdots}_{\text{next page}} \quad \begin{array}{c} q_{\mathbf{x}\mathbf{y}}(\boldsymbol{\lambda}^t) = \min & 5y_1 + 8.875y_2 + 18y_3 \\ \text{s.t.} & 12y_1 + 10y_2 + 13y_3 \geq 23, \quad \mathbf{y} \in \{0,1\}^3 \end{array}$$

The value of opening a depot

$$v_{1}(\lambda^{t}) = 11 + \min_{s.t.} -4x_{11} - 2x_{21} + 3x_{31} + 5x_{41}$$

$$s.t. 6x_{11} + 4x_{21} + 8x_{31} + 5x_{41} \leq 12, \quad \mathbf{x}_{.1} \in [0, 1]^{4}$$

$$\Rightarrow \boxed{\text{solution } x_{11} = x_{21} = 1, \ x_{31} = x_{41} = 0, \quad v_{1}(\lambda^{t}) = 5}$$

$$v_{2}(\lambda^{t}) = 16 + \min_{s} x_{12} - 6x_{22} - x_{32} - x_{42}$$

$$s.t. 6x_{12} + 4x_{22} + 8x_{32} + 5x_{42} \leq 10, \quad \mathbf{x}_{.2} \in [0, 1]^{4}$$

$$\Rightarrow \boxed{\text{solution } x_{22} = x_{42} = 1, \ x_{32} = \frac{1}{8}, \ x_{12} = 0, \quad v_{2}(\lambda^{t}) = 8.875}$$

$$v_{3}(\lambda^{t}) = 21 + \min_{s} 2x_{13} + 0x_{23} + 3x_{33} - 3x_{43}$$

$$s.t. 6x_{13} + 4x_{23} + 8x_{33} + 5x_{43} \leq 13, \quad \mathbf{x}_{.3} \in [0, 1]^{4}$$

 \Rightarrow solution $x_{23} = x_{43} = 1$, $x_{13} = x_{33} = 0$, $v_3(\lambda^t) = 18$

The solution to the (x, y)-problem for $\lambda = \lambda^t$

- ▶ Open depots: $\mathbf{y}(\lambda^t) = \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix}$
- ➤ Transport goods from open depots to customers (this solution does *not* fulfil the demand constraints (1) for each customer):

$$\mathbf{x}(\boldsymbol{\lambda}^t) = egin{pmatrix} 1 & 0 & 0 \ 1 & 0 & 1 \ 0 & 0 & 0 \ 0 & 0 & 1 \end{pmatrix}$$

▶ Objective value: $q_{xy}(\lambda^t) = 5 + 0 + 18 = 23$

The w-problem separates into one problem for each customer *i*

$$oxed{q_{f w}(m{\lambda}^t) = \sum_{i=1}^4 q_{f w}^i(m{\lambda}^t)}$$

where

$$egin{aligned} q_{\mathbf{w}}^i(oldsymbol{\lambda}^t) &= \min_{w} & \sum_{j=1}^3 \left[(1-lpha)c_{ij} + \lambda_{ij}^t
ight] w_{ij} \ & ext{s.t.} & \sum_{i=1}^3 w_{ij} = 1, \quad w_{ij} \geq 0, \ j = 1,2,3 \end{aligned}$$

and
$$1-\alpha=\frac{1}{2}$$

The solution to the w-problem

$$q_{\mathbf{w}}^{1}(\lambda^{t}) = \min 10w_{11} + w_{12} + 2w_{13}$$

s.t. $w_{11} + w_{12} + w_{13} = 1, \quad w_{1j} \ge 0, \ j = 1, 2, 3$

$$\Rightarrow$$
 solution $w_{12}(\boldsymbol{\lambda}^t)=1, \ w_{11}(\boldsymbol{\lambda}^t)=w_{13}(\boldsymbol{\lambda}^t)=0, \ q_{\mathbf{w}}^1(\boldsymbol{\lambda}^t)=1$

$$q_{\mathbf{w}}^{2}(\lambda^{t}) = \min 4w_{21} + 14w_{22} + 4w_{23}$$

s.t. $w_{21} + w_{22} + w_{23} = 1$, $w_{2j} \ge 0$, $j = 1, 2, 3$

$$\Rightarrow$$
 solution $w_{21}(\lambda^t) = 1$, $w_{22}(\lambda^t) = w_{23}(\lambda^t) = 0$, $q_{\mathbf{w}}^2(\lambda^t) = 4$

$$q_{\mathbf{w}}^{3}(\lambda^{t}) = \min 13w_{31} + 3w_{32} + 3w_{33}$$

s.t. $w_{31} + w_{32} + w_{33} = 1$, $w_{3j} \ge 0$, $j = 1, 2, 3$

$$\Rightarrow$$
 solution $w_{32}(\lambda^t) = w_{33}(\lambda^t) = \frac{1}{2}, \ w_{31}(\lambda^t) = 0, \ q_{\mathbf{w}}^3(\lambda^t) = 3$

$$q_{\mathbf{w}}^{4}(\lambda^{t}) = \min \quad 5w_{41} + 13w_{42} + 7w_{43}$$

s.t. $w_{41} + w_{42} + w_{43} = 1, \quad w_{4j} \ge 0, \ j = 1, 2, 3$

$$\Rightarrow$$
 solution $w_{41}(\lambda^t) = 1$, $w_{42}(\lambda^t) = w_{43}(\lambda^t) = 0$, $q_{\mathbf{w}}^4(\lambda^t) = 5$

The solution to the (x, y)- and w-problems

▶ Send the right amout of goods to each customer (this solution presumes that *all* depots are opened):

$$\mathbf{w}(m{\lambda}^t) = egin{pmatrix} 0 & 1 & 0 \ 1 & 0 & 0 \ 0 & rac{1}{2} & rac{1}{2} \ 1 & 0 & 0 \end{pmatrix}$$

- ▶ Objective value: $q_{\mathbf{w}}(\boldsymbol{\lambda}^t) = 13$
- ▶ Total objective value $q(\lambda^t) = q_{\mathsf{x}\mathsf{y}}(\lambda^t) + q_{\mathsf{w}}(\lambda^t) = 35$
- ▶ Lower bound on the optimal objective value: $z^* \ge 35$

Compute a new λ **-vector** (here, the steplength $\rho_t = 8$)

$$\boldsymbol{\lambda}^{t+1} = \boldsymbol{\lambda}^t + \rho_t \left[\mathbf{w}(\boldsymbol{\lambda}^t) - \mathbf{x}(\boldsymbol{\lambda}^t) \right]$$

$$= \begin{pmatrix} 7 - \rho_t & \rho_t & 0 \\ 3 & 10 & 2 - \rho_t \\ 5 & 2 + \frac{\rho_t}{2} & \frac{\rho_t}{2} \\ \rho_t & 7 & 5 - \rho_t \end{pmatrix} = \begin{pmatrix} -1 & 8 & 0 \\ 3 & 10 & -6 \\ 5 & 6 & 4 \\ 8 & 7 & -3 \end{pmatrix}$$

Feasible solution $\Leftrightarrow x(\lambda^t) = w(\lambda^t)$? If not \Rightarrow Feasibility heuristic

- ▶ Open the depots given by $\mathbf{y}(\boldsymbol{\lambda}^t) \Rightarrow \mathbf{y}^H = \mathbf{y}(\boldsymbol{\lambda}^t) = (1,0,1)^{\mathrm{T}}$
- ► Transport goods only from opened depots:

$$y_j^H = 0 \Rightarrow x_{ij}^H = 0, i \in \mathcal{I}$$

Fulfill the demand but do not violate the capacity restrictions

Let
$$\mathbf{x}^H = \begin{pmatrix} \frac{1}{6} & 0 & \frac{5}{6} \\ 1 & 0 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0 \end{pmatrix}$$

$$\Rightarrow z^{H} = 6 \cdot \frac{1}{6} + 4 \cdot \frac{5}{6} + 2 + 6 + 10 + 11 + 21 = 52 + \frac{1}{3}$$
$$\Rightarrow z^{*} \in [35, 52 + \frac{1}{3}] = [q(\lambda^{t}), z^{H}]$$

More about the solution method

- ▶ Choice of step lengths (ρ_t) : Lecture 4 (subgradient optimization, convergence to an optimal value of λ)
- ► Feasibility heuristics can be made more or less sophisticated
- ► There are more ways to Lagrangian relax continuous constraints in an optimization problem
- ▶ E.g.: Lagrangian relax (1) or (5) (with multipliers $\mu_i \in \mathbb{R}$ and $\nu_j \in \mathbb{R}_+$, respectively) in the original formulation (CFL)

More solution methods for the CFL

- ▶ There are also other methods for solving CFL
- ► E.g., for a fixed value of y, the remaining problem over x is simple (a transportation problem, network flow)
- ▶ An algorithm can be based on only adjusting y, optimizing over x for each value of y
- The problem is then projected onto the y variable space
- ► This is the Benders' decomposition (later in the course)