Lectures 4: Algorithms for the Lagrangian dual problem

Michael Patriksson

2010-09-08

Michael Patriksson Algorithms for the Lagrangian dual problem

A B K

3

▶ Let $f : \mathbb{R}^n \mapsto \mathbb{R}$ be a convex function A vector $\mathbf{p} \in \mathbb{R}^n$ is a *subgradient* of f at $\mathbf{x} \in \mathbb{R}^n$ if

$$f(\mathbf{y}) \ge f(\mathbf{x}) + \mathbf{p}^{\mathrm{T}}(\mathbf{y} - \mathbf{x}), \qquad \mathbf{y} \in \mathbb{R}^{n}$$
 (1)

- ► The set of such vectors **p** defines the *subdifferential* of f at **x**, and is denoted ∂f(**x**)
- ▶ $\partial f(\mathbf{x})$ is the collection of "slopes" of the function f at \mathbf{x}
- For every x ∈ ℝⁿ, ∂f(x) is a non-empty, convex, and compact set

Subgradients of convex functions, II

Figure: Four possible slopes of the convex function f at x

< ∃ >

Subgradients of convex functions, III

Figure: The subdifferential of a convex function f at **x** f is indicated by level curves

The convex function f is differentiable at x if there exists exactly one subgradient of f at x, which then equals the gradient of f at x, ∇f(x)

Differentiability of the Lagrangian dual function

Consider the problem

$$f^* = \inf_{\mathbf{x}} f(\mathbf{x}), \tag{2a}$$

subject to
$$\mathbf{x} \in X$$
, (2b)

$$g_i(\mathbf{x}) \leq 0, \qquad i=1,\ldots,m,$$
 (2c)

and assume that

 $f, g_i (\forall i)$ continuous; X nonempty and compact (3)

The set of solutions to the Lagrangian subproblem

$$X(\mu) = \arg\min_{\mathbf{x}\in X} L(\mathbf{x}, \mu)$$

is non-empty and compact for every $oldsymbol{\mu} \in \mathbb{R}^m$

Subgradients and gradients of q

- Suppose that (3) holds (f, g_i , $\forall i$ continuous; X nonempty and compact) in the problem (2): $f^* = \inf_{\mathbf{x}} \{f(\mathbf{x}) \mid \mathbf{x} \in X, g_i(\mathbf{x}) \le 0, i = 1, ..., m\}$
- ► The dual function q is *finite*, *continuous*, and *concave* on ℝ^m. If its supremum over ℝ^m₊ is attained, then the optimal solution set therefore is closed and convex
- ▶ Let $\mu \in \mathbb{R}^m$. If $\mathbf{x} \in X(\mu)$, then $\mathbf{g}(\mathbf{x})$ is a subgradient to q at μ , that is, $\mathbf{g}(\mathbf{x}) \in \partial q(\mu)$
- *Proof.* Let $\bar{\mu} \in \mathbb{R}^m$ be arbitrary. We have that

$$egin{aligned} q(ar{m{\mu}}) &= \inf_{m{y}\in X} L(m{y},ar{m{\mu}}) \leq f(m{x}) + ar{m{\mu}}^{\mathrm{T}}m{g}(m{x}) \ &= f(m{x}) + (ar{m{\mu}} - m{\mu})^{\mathrm{T}}m{g}(m{x}) + m{\mu}^{\mathrm{T}}m{g}(m{x}) \ &= q(m{\mu}) + (ar{m{\mu}} - m{\mu})^{\mathrm{T}}m{g}(m{x}) \end{aligned}$$

Subgradients and gradients of q, cont'd

Recall the *subgradient inequality* (1) for a *convex* function *f*:
 p is a subgradient of *f* at **x** if

$$f(\mathbf{y}) \geq f(\mathbf{x}) + \mathbf{p}^{\mathrm{T}}(\mathbf{y} - \mathbf{x}), \qquad \mathbf{y} \in \mathbb{R}^n$$

- ► The function f(x) + p^T(y x) is linear w.r.t. y and underestimates f(y) over ℝⁿ
- Here, we have a concave function q and the opposite inequality: g(x) is a subgradient (actually, supgradient) of q at µ if x ∈ X(µ) and

$$q(oldsymbol{ar{\mu}}) \leq q(oldsymbol{\mu}) + (oldsymbol{ar{\mu}} - oldsymbol{\mu})^{\mathrm{T}} \mathbf{g}(\mathbf{x}), \qquad oldsymbol{ar{\mu}} \in \mathbb{R}^m$$

▲ □ ► ▲ □ ►

Example

• Let $h(x) = \min\{h_1(x), h_2(x)\}$, where $h_1(x) = 4 - |x|$ and $h_2(x) = 4 - (x - 2)^2$ ► Then, $h(x) = \begin{cases} 4 - x, & 1 \le x \le 4, \\ 4 - (x - 2)^2, & x \le 1, x > 4 \end{cases}$

御 と く ヨ と く ヨ と …

3

Example, cont'd

h is non-differentiable at x = 1 and x = 4, since its graph has non-unique supporting hyperplanes there

 The subdifferential is here either a singleton (at differentiable points) or an interval (at non-differentiable points)

伺 ト イヨト イヨト

▶ Let $\mu \in \mathbb{R}^m$. Then, $\partial q(\mu) = \operatorname{conv} \{ \mathbf{g}(\mathbf{x}) \mid \mathbf{x} \in X(\mu) \}$

Let µ ∈ ℝ^m. The dual function q is differentiable at µ if and only if { g(x) | x ∈ X(µ) } is a singleton set. Then,

$$abla q(oldsymbol{\mu}) = \mathbf{g}(\mathbf{x}),$$

for every $\mathbf{x} \in X(oldsymbol{\mu})$

► Holds in particular if the Lagrangian subproblem has a unique solution ⇔ The solution set X(µ) is a singleton True, e.g., when X is convex, f strictly convex on X, and g_i convex on X ∀i (e.g., f quadratic, X polyhedral, g_i linear)

How do we write the subdifferential of h?

Theorem:

If $h(\mathbf{x}) = \min_{i=1,...,m} h_i(\mathbf{x})$, where each function h_i is concave and differentiable on \mathbb{R}^n , then h is a concave function on \mathbb{R}^n

▶ Define the set $\mathcal{I}(\mathbf{x}) \subseteq \{1, \dots, m\}$ by the active segments at \mathbf{x} :

$$\begin{cases} i \in \mathcal{I}(\mathbf{x}) & \text{if } h(\mathbf{x}) = h_i(\mathbf{x}), \\ i \notin \mathcal{I}(\mathbf{x}) & \text{if } h(\mathbf{x}) < h_i(\mathbf{x}), \end{cases} \quad i \in \{1, \dots, m\}$$

► Then, the subdifferential ∂h(x) is the convex hull of the gradients {∇h_i(x) | i ∈ I(x)}:

$$\partial h(\mathbf{x}) = \left\{ \xi = \sum_{i \in \mathcal{I}(\mathbf{x})} \lambda_i \nabla h_i(\mathbf{x}) \middle| \sum_{i \in \mathcal{I}(\mathbf{x})} \lambda_i = 1; \ \lambda_i \ge 0, i \in \mathcal{I}(\mathbf{x}) \right\}$$

Optimality conditions for the dual problem

▶ For a differentiable, concave function *h* it holds that

$$\mathbf{x}^* \in rg\max_{\mathbf{x} \in \mathbb{R}^n} h(\mathbf{x}) \quad \Longleftrightarrow \quad
abla h(\mathbf{x}^*) = \mathbf{0}^n$$

▶ Theorem: Assume that h is concave on \mathbb{R}^n . Then,

$$\mathbf{x}^* \in \arg \max_{\mathbf{x} \in \mathbb{R}^n} h(\mathbf{x}) \iff \mathbf{0}^n \in \partial h(\mathbf{x}^*)$$

Proof.

Suppose that
$$\mathbf{0}^n \in \partial h(\mathbf{x}^*) \Longrightarrow h(\mathbf{x}) \le h(\mathbf{x}^*) + (\mathbf{0}^n)^{\mathrm{T}}(\mathbf{x} - \mathbf{x}^*)$$

for all $\mathbf{x} \in \mathbb{R}^n$, that is, $h(\mathbf{x}) \le h(\mathbf{x}^*)$ for all $\mathbf{x} \in \mathbb{R}^n$
Suppose that $\mathbf{x}^* \in \arg \max_{\mathbf{x} \in \mathbb{R}^n} h(\mathbf{x}) \Longrightarrow$
 $h(\mathbf{x}) \le h(\mathbf{x}^*) = h(\mathbf{x}^*) + (\mathbf{0}^n)^{\mathrm{T}}(\mathbf{x} - \mathbf{x}^*)$ for all $\mathbf{x} \in \mathbb{R}^n$, that is,
 $\mathbf{0}^n \in \partial h(\mathbf{x}^*)$

Optimality conditions for the dual problem, cont'd

- The example: $0 \in \partial h(1) \Longrightarrow x^* = 1$
- For optimization with constraints the KKT conditions are generalized:

$$\mathbf{x}^* \in \arg \max_{\mathbf{x} \in X} h(\mathbf{x}) \quad \Longleftrightarrow \quad \partial h(\mathbf{x}^*) \cap N_X(\mathbf{x}^*) \neq \emptyset,$$

where $N_X(\mathbf{x}^*)$ is the normal cone to X at \mathbf{x}^* , that is, the conical hull of the active constraints' normals at \mathbf{x}^*

Figure: An optimal solution \mathbf{x}^*

- 4 回 5 - 4 三 5 - 4 三 5

A non-optimal solution \boldsymbol{x}

Optimality conditions for the dual problem, cont'd

- The dual problem has only sign conditions $\mu \geq \mathbf{0}^m$
- Consider the dual problem

$$q^* = \operatorname*{maximize}_{oldsymbol{\mu} \geq oldsymbol{0}^m} q(oldsymbol{\mu})$$

μ^{*} ≥ 0^m is then optimal *if and only if* there exists a subgradient g ∈ ∂q(μ^{*}) for which the following holds:

$$\mathbf{g} \leq \mathbf{0}^{m}; \quad \mu_{i}^{*}g_{i} = 0, \ i = 1, \dots, m$$

Compare with a one-dimensional max-problem (h concave):

$$x^* \geq 0$$
 is optimal \Leftrightarrow $h'(x^*) \leq 0$; $x^* \cdot h'(x^*) = 0$

向下 イヨト イヨト

A subgradient method for the dual problem

- Subgradient methods extend gradient projection methods from C¹ to general convex (or, concave) functions, generating a sequence of dual vectors in ℝ^m₊ using a single subgradient in each iteration
- The simplest type of iteration has the form

$$\boldsymbol{\mu}^{k+1} = \operatorname{Proj}_{\mathbb{R}_{+}^{m}} [\boldsymbol{\mu}^{k} + \alpha_{k} \mathbf{g}^{k}]$$

= $[\boldsymbol{\mu}^{k} + \alpha_{k} \mathbf{g}^{k}]_{+}$ (4)
= (maximum {0, $(\boldsymbol{\mu}^{k})_{i} + \alpha_{k} (\mathbf{g}^{k})_{i}$ })_{i=1}^{m},

where k is the iteration counter and $\mathbf{g}^k \in \partial q(\boldsymbol{\mu}^k)$ is an arbitrarily chosen subgradient

A subgradient method for the dual problem, cont'd

- ▶ We often write $\mathbf{g}^k = \mathbf{g}(\mathbf{x}^k)$, where $\mathbf{x}^k \in \arg\min_{\mathbf{x} \in X} L(\mathbf{x}, \boldsymbol{\mu}^k)$
- Main difference to C¹ case: an arbitrary subgradient g^k may not be an ascent direction!
- $\Rightarrow\,$ Cannot make line searches; must use predetermined step lengths α_k
 - Suppose that $\mu \in \mathbb{R}^m_+$ is not optimal in $\max_{\mu \ge 0^m} q(\mu)$ Then, for every optimal solution $\mu^* \in U^*$

$$\|\mu^{k+1} - \mu^*\| < \|\mu^k - \mu^*\|$$

holds for every step length α_k in the interval

$$\alpha_k \in (0, 2[q^* - q(\boldsymbol{\mu}^k)] / \|\mathbf{g}^k\|^2)$$

A subgradient method for the dual problem, cont'd

Why? Let g ∈ ∂q(µ
), and let U* be the set of optimal solutions to max_{µ≥0}^m q(µ). Then,

$$U^* \subseteq \set{\mu \in \mathbb{R}^m \mid \mathbf{g}^{\mathrm{T}}(\mu - ar{m{\mu}}) \geq 0}$$

In other words, ${\bf g}$ defines a half-space that contains the set of optimal solutions

Good news: If the step length α_k is small enough we get closer to the set of optimal solutions!

向下 イヨト イヨト

Each (sub)gradient defines a halfspace containing the optimal set

 $\mathbf{g} \in \partial q(ar{m{\mu}}) \quad \Rightarrow \quad U^* \subseteq \{\, m{\mu} \in \mathbb{R}^m \mid \mathbf{g}^{\mathrm{T}}(m{\mu} - ar{m{\mu}}) \geq 0 \,\}$

Each (sub)gradient defines a halfspace containing the optimal set

Figure: The half-space defined by a subgradient $\mathbf{g} \in q(\mu)$ Note that this subgradient is *not an ascent direction* • Choose the step length α_k such that

$$\sigma \leq \alpha_k \leq 2[q^* - q(\boldsymbol{\mu}^k)] / \|\mathbf{g}^k\|^2 - \sigma, \quad k = 1, 2, \dots$$
 (5)

- ► $\sigma > 0 \Rightarrow$ step lengths α_k don't converge to 0, or converges to a too large value
- Bad news: Utilizes knowledge of the optimal value q*!
- But: q^* can be replaced by an approximation $ar{q}_k \geq q^*$

向下 イヨト イヨト

• Choose the step length α_k such that

$$\alpha_k > 0, \ k = 1, 2, \dots; \quad \lim_{k \to \infty} \alpha_k = 0; \quad \sum_{s=1}^{\infty} \alpha_s = +\infty$$
 (6)

Additional condition often added:

$$\sum_{s=1}^{\infty} \alpha_s^2 < +\infty \tag{7}$$

• 3 >

• 3 3

-

Convergence results

Suppose that f and g are continuous, X is compact, $\exists x \in X : g(x) < 0$, and consider the problem

$$f^* = \inf\{f(\mathbf{x}) | \mathbf{x} \in X, \mathbf{g}(\mathbf{x}) \le \mathbf{0}\}$$
(8)

- (a) Let $\{\mu^k\}$ be generated by the method on p. 15, under the Polyak step length rule (5), where $\sigma > 0$ is small Then, $\{\mu^k\} \rightarrow \mu^* \in U^*$
- (b) Let $\{\mu^k\}$ be generated by the method on p. 15, under the divergent series step length rule (6) Then, $\{q(\mu^k)\} \rightarrow q^*$, and $\{\text{dist}_{U^*}(\mu^k)\} \rightarrow 0$
- (c) Let $\{\mu^k\}$ be generated by the method on p. 15, under the divergent series step length rule (6), (7) Then, $\{\mu^k\} \rightarrow \mu^* \in U^*$

イロト イポト イヨト イヨト

Application to the Lagrangian dual problem

- 1. Given $\boldsymbol{\mu}^k \geq \boldsymbol{0}^m$
- 2. Solve the Lagrangian subproblem: $\min_{\mathbf{x}\in X} L(\mathbf{x}, \boldsymbol{\mu}^k)$
- 3. Let an optimal solution to this problem be $\mathbf{x}^k = \mathbf{x}(\boldsymbol{\mu}^k)$

4. Calculate
$$\mathbf{g}(\mathbf{x}^k) \in \partial q(oldsymbol{\mu}^k)$$

- 5. Take a step $\alpha_k > 0$ in the direction of $\mathbf{g}(\mathbf{x}^k)$ from $\boldsymbol{\mu}^k$, according to a step length rule
- 6. Set any negative components of this vector to $0 \Rightarrow \mu^{k+1}$
- 7. Let k := k + 1 and repeat from 2

・ 同 ト ・ ヨ ト ・ ヨ ト

Additional algorithms

- We can choose the subgradient more carefully, to obtain ascent directions
- Gather several subgradients at nearby points μ^k and solve quadratic programming problems to find the best convex combination of them (*Bundle methods*)
- Pre-multiply the subgradient by some positive definite matrix
 methods similar to Newton methods
 (Space dilation methods)

(日本) (日本) (日本)

 Discrete optimization: The size of the duality gap, and the relation to the continuous relaxation

Convexification

- Primal feasibility heuristics
- Global optimality conditions for discrete optimization (and general problems)

(B) (B)