
Lectures 4:

Algorithms for the Lagrangian dual problem

Michael Patriksson

2010-09-08

Michael Patriksson Algorithms for the Lagrangian dual problem



Subgradients of convex functions

◮ Let f : R
n 7→ R be a convex function

A vector p ∈ R
n is a subgradient of f at x ∈ R

n if

f (y) ≥ f (x) + pT(y − x), y ∈ R
n (1)

◮ The set of such vectors p defines the subdifferential of f at x,
and is denoted ∂f (x)

◮ ∂f (x) is the collection of “slopes” of the function f at x

◮ For every x ∈ R
n, ∂f (x) is a non-empty, convex, and compact

set
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Subgradients of convex functions, II
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Figure: Four possible slopes of the convex function f at x
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Subgradients of convex functions, III
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Figure: The subdifferential of a convex function f at x

f is indicated by level curves

◮ The convex function f is differentiable at x if there exists
exactly one subgradient of f at x, which then equals the
gradient of f at x, ∇f (x)
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Differentiability of the Lagrangian dual function

◮ Consider the problem

f ∗ = infimum
x

f (x), (2a)

subject to x ∈ X , (2b)

gi (x) ≤ 0, i = 1, . . . ,m, (2c)

and assume that

f , gi (∀i) continuous; X nonempty and compact (3)

◮ The set of solutions to the Lagrangian subproblem

X (µ) = arg min
x∈X

L(x,µ)

is non-empty and compact for every µ ∈ R
m
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Subgradients and gradients of q

◮ Suppose that (3) holds (f , gi , ∀i continuous; X nonempty
and compact) in the problem (2):
f ∗ = infx {f (x) | x ∈ X , gi (x) ≤ 0, i = 1, . . . ,m}

◮ The dual function q is finite, continuous, and concave on R
m.

If its supremum over R
m
+ is attained, then the optimal solution

set therefore is closed and convex

◮ Let µ ∈ R
m. If x ∈ X (µ), then g(x) is a subgradient to q at

µ, that is, g(x) ∈ ∂q(µ)

◮ Proof. Let µ̄ ∈ R
m be arbitrary. We have that

q(µ̄) = infimum
y∈X

L(y, µ̄) ≤ f (x) + µ̄
Tg(x)

= f (x) + (µ̄ − µ)Tg(x) + µ
Tg(x)

= q(µ) + (µ̄ − µ)Tg(x)
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Subgradients and gradients of q, cont’d

◮ Recall the subgradient inequality (1) for a convex function f :
p is a subgradient of f at x if

f (y) ≥ f (x) + pT(y − x), y ∈ R
n

◮ The function f (x) + pT(y − x) is linear w.r.t. y and
underestimates f (y) over R

n

◮ Here, we have a concave function q and the opposite
inequality: g(x) is a subgradient (actually, supgradient) of q
at µ if x ∈ X (µ) and

q(µ̄) ≤ q(µ) + (µ̄ − µ)Tg(x), µ̄ ∈ R
m

◮ The function q(µ) + (µ̄ − µ)Tg(x) is linear w.r.t. µ̄ and
overestimates q(µ) over R

m
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Example

◮ Let h(x) = min{h1(x), h2(x)}, where h1(x) = 4 − |x | and
h2(x) = 4 − (x − 2)2

◮ Then, h(x) =

{

4 − x , 1 ≤ x ≤ 4,
4 − (x − 2)2, x ≤ 1, x ≥ 4
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Example, cont’d

◮ h is non-differentiable at x = 1 and x = 4, since its graph has
non-unique supporting hyperplanes there

∂h(x) =















{−1}, 1 < x < 4
{4 − 2x}, x < 1, x > 4
[−1, 2] , x = 1
[−4,−1] , x = 4

x

∂h(x)

◮ The subdifferential is here either a singleton (at differentiable
points) or an interval (at non-differentiable points)
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The Lagrangian dual problem

◮ Let µ ∈ R
m. Then, ∂q(µ) = conv {g(x) | x ∈ X (µ) }

◮ Let µ ∈ R
m. The dual function q is differentiable at µ if and

only if {g(x) | x ∈ X (µ) } is a singleton set. Then,

∇q(µ) = g(x),

for every x ∈ X (µ)

◮ Holds in particular if the Lagrangian subproblem has a unique
solution ⇔ The solution set X (µ) is a singleton
True, e.g., when X is convex, f strictly convex on X , and gi

convex on X ∀i (e.g., f quadratic, X polyhedral, gi linear)
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How do we write the subdifferential of h?

◮ Theorem:
If h(x) = mini=1,...,m hi (x), where each function hi is concave
and differentiable on R

n, then h is a concave function on R
n

◮ Define the set I(x) ⊆ {1, . . . ,m} by the active segments at x:

{

i ∈ I(x) if h(x) = hi(x),
i 6∈ I(x) if h(x) < hi(x),

i ∈ {1, . . . ,m}

◮ Then, the subdifferential ∂h(x) is the convex hull of the
gradients {∇hi (x) | i ∈ I(x)}:

∂h(x)=







ξ=
∑

i∈I(x)

λi∇hi(x)

∣

∣

∣

∣

∣

∣

∑

i∈I(x)

λi =1; λi ≥ 0, i ∈ I(x)






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Optimality conditions for the dual problem

◮ For a differentiable, concave function h it holds that

x∗ ∈ arg max
x∈Rn

h(x) ⇐⇒ ∇h(x∗) = 0n

◮ Theorem: Assume that h is concave on R
n. Then,

x∗ ∈ arg max
x∈Rn

h(x) ⇐⇒ 0n ∈ ∂h(x∗)

◮ Proof.

Suppose that 0n ∈ ∂h(x∗) =⇒ h(x) ≤ h(x∗) + (0n)T(x − x∗)
for all x ∈ R

n, that is, h(x) ≤ h(x∗) for all x ∈ R
n

Suppose that x∗ ∈ arg maxx∈Rn h(x) =⇒
h(x) ≤ h(x∗) = h(x∗) + (0n)T(x − x∗) for all x ∈ R

n, that is,
0n ∈ ∂h(x∗)
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Optimality conditions for the dual problem, cont’d

◮ The example: 0 ∈ ∂h(1) =⇒ x∗ = 1

◮ For optimization with constraints the KKT conditions are
generalized:

x∗ ∈ arg max
x∈X

h(x) ⇐⇒ ∂h(x∗) ∩ NX (x∗) 6= ∅,

where NX (x∗) is the normal cone to X at x∗, that is, the
conical hull of the active constraints’ normals at x∗

X

NX (x∗)

∂h(x∗)x∗

X

NX (x)∂h(x)

x

Figure: An optimal solution x∗ A non-optimal solution x
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Optimality conditions for the dual problem, cont’d

◮ The dual problem has only sign conditions µ ≥ 0m

◮ Consider the dual problem

q∗ = maximize
µ≥0m

q(µ)

◮ µ
∗ ≥ 0m is then optimal if and only if there exists a

subgradient g ∈ ∂q(µ∗) for which the following holds:

g ≤ 0m; µ∗
i gi = 0, i = 1, . . . ,m

◮ Compare with a one-dimensional max-problem (h concave):

x∗ ≥ 0 is optimal ⇔ h′(x∗) ≤ 0; x∗ · h′(x∗) = 0
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A subgradient method for the dual problem

◮ Subgradient methods extend gradient projection methods
from C 1 to general convex (or, concave) functions, generating
a sequence of dual vectors in R

m
+ using a single subgradient in

each iteration

◮ The simplest type of iteration has the form

µ
k+1 = ProjRm

+
[µk + αkg

k ]

= [µk + αkg
k ]+ (4)

= (maximum {0, (µk)i + αk(gk)i})
m

i=1,

where k is the iteration counter and gk ∈ ∂q(µk) is an
arbitrarily chosen subgradient
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A subgradient method for the dual problem, cont’d

◮ We often write gk = g(xk), where xk ∈ arg minx∈X L(x,µk)

◮ Main difference to C 1 case: an arbitrary subgradient gk may
not be an ascent direction!

⇒ Cannot make line searches; must use predetermined step
lengths αk

◮ Suppose that µ ∈ R
m
+ is not optimal in maxµ≥0m q(µ)

Then, for every optimal solution µ
∗ ∈ U∗

‖µk+1 − µ
∗‖ < ‖µk − µ

∗‖

holds for every step length αk in the interval

αk ∈ (0, 2[q∗ − q(µk)]/‖gk‖2)
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A subgradient method for the dual problem, cont’d

◮ Why? Let g ∈ ∂q(µ̄), and let U∗ be the set of optimal
solutions to maxµ≥0m q(µ). Then,

U∗ ⊆ {µ ∈ R
m | gT(µ − µ̄) ≥ 0 }

In other words, g defines a half-space that contains the set of
optimal solutions

◮ Good news: If the step length αk is small enough we get
closer to the set of optimal solutions!
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Each (sub)gradient defines a halfspace containing the

optimal set

µ

µ̄

µ − µ̄

µ1

µ2

g

U∗

µ

µ̄

µ − µ̄

µ1

µ2

g

U∗

Figure: q non-differentiable q differentiable

g ∈ ∂q(µ̄) ⇒ U∗ ⊆ {µ ∈ R
m | gT(µ − µ̄) ≥ 0 }
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Each (sub)gradient defines a halfspace containing the

optimal set

1
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3

4
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q

g

µ

∂q(µ)

Figure: The half-space defined by a subgradient g ∈ q(µ)
Note that this subgradient is not an ascent direction
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Polyak’s step length rule

◮ Choose the step length αk such that

σ ≤ αk ≤ 2[q∗ − q(µk)]/‖gk‖2 − σ, k = 1, 2, . . . (5)

◮ σ > 0 ⇒ step lengths αk don’t converge to 0, or converges to
a too large value

◮ Bad news: Utilizes knowledge of the optimal value q∗!

◮ But: q∗ can be replaced by an approximation q̄k ≥ q∗
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The divergent series step length rule

◮ Choose the step length αk such that

αk > 0, k = 1, 2, . . . ; lim
k→∞

αk = 0;

∞
∑

s=1

αs = +∞ (6)

◮ Additional condition often added:

∞
∑

s=1

α2
s < +∞ (7)
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Convergence results

◮ Suppose that f and g are continuous, X is compact,
∃x ∈ X : g(x) < 0, and consider the problem

f ∗ = inf{f (x) |x ∈ X ,g(x) ≤ 0} (8)

(a) Let {µk} be generated by the method on p. 15, under the
Polyak step length rule (5), where σ > 0 is small
Then, {µk} → µ

∗ ∈ U∗

(b) Let {µk} be generated by the method on p. 15, under the
divergent series step length rule (6)
Then, {q(µk)} → q∗, and {distU∗(µk)} → 0

(c) Let {µk} be generated by the method on p. 15, under the
divergent series step length rule (6), (7)
Then, {µk} → µ

∗ ∈ U∗
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Application to the Lagrangian dual problem

1. Given µ
k ≥ 0m

2. Solve the Lagrangian subproblem: minx∈X L(x,µk)

3. Let an optimal solution to this problem be xk = x(µk)

4. Calculate g(xk) ∈ ∂q(µk)

5. Take a step αk > 0 in the direction of g(xk) from µ
k ,

according to a step length rule

6. Set any negative components of this vector to 0 ⇒ µ
k+1

7. Let k := k + 1 and repeat from 2

Michael Patriksson Algorithms for the Lagrangian dual problem



Additional algorithms

◮ We can choose the subgradient more carefully, to obtain
ascent directions

◮ Gather several subgradients at nearby points µ
k and solve

quadratic programming problems to find the best convex
combination of them (Bundle methods)

◮ Pre-multiply the subgradient by some positive definite matrix
⇒ methods similar to Newton methods
(Space dilation methods)

◮ Pre-project the subgradient vector (onto the tangent cone of
R

m
+) ⇒ step direction is a feasible direction

(Subgradient-projection methods)
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More to come . . .

◮ Discrete optimization: The size of the duality gap, and the
relation to the continuous relaxation

◮ Convexification

◮ Primal feasibility heuristics

◮ Global optimality conditions for discrete optimization (and
general problems)
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