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Subgradients of convex functions

» Let f : R" — R be a convex function
A vector p € R" is a subgradient of f at x € R" if

fly)>f(x)+p"(y—x), yeR” (1)

» The set of such vectors p defines the subdifferential of f at x,
and is denoted Of(x)

» Of(x) is the collection of “slopes” of the function f at x

» For every x € R", Of(x) is a non-empty, convex, and compact
set
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Subgradients of convex functions, Il

Figure: Four possible slopes of the convex function f at x
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Subgradients of convex functions, Il

Figure: The subdifferential of a convex function f at x
f is indicated by level curves

» The convex function f is differentiable at x if there exists
exactly one subgradient of f at x, which then equals the
gradient of f at x, Vf(x)
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Differentiability of the Lagrangian dual function

» Consider the problem
f* = infimum f(x), (2a)
X

subject to x € X, (2b)
gi(x) <0, i=1,...,m, (2¢)

and assume that
f,gi (Vi) continuous; X nonempty and compact (3)
» The set of solutions to the Lagrangian subproblem
X = in L
(k) = argmin L(x, u)

is non-empty and compact for every u € R™
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Subgradients and gradients of g

» Suppose that (3) holds (f, gi, Vi continuous; X nonempty
and compact) in the problem (2):
f*=infy {f(x) | x€ X,gi(x) <0, i=1,...,m}

» The dual function g is finite, continuous, and concave on R™.
If its supremum over R'7 is attained, then the optimal solution
set therefore is closed and convex

> Let p € R™. If x € X(p), then g(x) is a subgradient to g at
w, that is, g(x) € dq(u)
» Proof. Let i € R™ be arbitrary. We have that
q(R) = infimum L(y, ) < f(x) + i g(x)

= f(x) + (i — p)"g(x) + p'g(x)
=q(p) + (i — p)"g(x)
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Subgradients and gradients of g, cont'd

> Recall the subgradient inequality (1) for a convex function f:
p is a subgradient of f at x if

fly)>f(x)+p"(y—x), yeR”

» The function f(x) + pT(y — x) is linear w.r.t. y and
underestimates f(y) over R"

» Here, we have a concave function g and the opposite
inequality: g(x) is a subgradient (actually, supgradient) of g
at p if x € X(p) and

g(m) < q(p) + (b — p)'g(x), @ERT

» The function q(u) + (& — p)Tg(x) is linear w.r.t. @i and
overestimates q(p) over R™
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> Let h(x) = min{hi(x), ha(x)}, where hi(x) =4 — |x| and
hy(x) = 4 — (x — 2)?
4 — x, 1<x<4,
» Then, h(x)—{ bo(x—22, x<1, x>4
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Example, cont'd

» h is non-differentiable at x =1 and x = 4, since its graph has
non-unique supporting hyperplanes there

\éh(X) i—l}, } l<x<4
4 —-2x}, x<1, x> 4
=9 [c1,2, x=1
[—4,-1], x=4

X

» The subdifferential is here either a singleton (at differentiable
points) or an interval (at non-differentiable points)
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The Lagrangian dual problem

» Let p € R™. Then, 0q(p) = conv {g(x) | x € X(u) }

» Let p € R™. The dual function q is differentiable at p if and
only if {g(x) | x € X(u) } is a singleton set. Then,

Va(p) = g(x),

for every x € X(p)
» Holds in particular if the Lagrangian subproblem has a unique
solution < The solution set X () is a singleton

True, e.g., when X is convex, f strictly convex on X, and g;
convex on X Vi (e.g., f quadratic, X polyhedral, g; linear)
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How do we write the subdifferential of h?

» Theorem:
If h(x) = minj=1,m hi(x), where each function h; is concave
and differentiable on R", then h is a concave function on R"

» Define the set Z(x) C {1,...,m} by the active segments at x:

i€Z(x) if h(x) = hi(x), .
{ i I(x) if h(x) < hi(x), Pe{l...,m}

» Then, the subdifferential dh(x) is the convex hull of the
gradients {Vh;(x) | i € Z(x)}:

Oh(x)=¢ &= D NVh(x)| > XNi=1; A\ >0,i € I(x)

i€Z(x) i€Z(x)
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Optimality conditions for the dual problem

» For a differentiable, concave function h it holds that
x* € argmax h(x) <= Vh(x*)=0"
xcR"
» Theorem: Assume that h is concave on R". Then,

x* € argmax h(x) <= 07 € Jh(x")
xeR"

» Proof.
Suppose that 0" € dh(x*) = h(x) < h(x*) + (0")T (x — x*)
for all x € R”, that is, h(x) < h(x*) for all x € R"
Suppose that x* € arg maxyeg» h(x) =
h(x) < h(x*) = h(x*) + (0m)T(x — x*) for all x € R", that is,

0" € Dh(x*) 0
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Optimality conditions for the dual problem, cont'd

» The example: 0 € 0h(l) = x* =1
» For optimization with constraints the KKT conditions are
generalized:

x* € arg max h(x) <= Oh(x")N Nx(x*) # 0,
xe

where Nx(x*) is the normal cone to X at x*, that is, the
conical hull of the active constraints’ normals at x*

Figure: An optimal solution x* A non-optimal solution x

Michael Patriksson Algorithms for the Lagrangian dual problem



Optimality conditions for the dual problem, cont'd

» The dual problem has only sign conditions p > 0™

» Consider the dual problem

q" = maximize q(p)

> p* > 07 is then optimal if and only if there exists a
subgradient g € dq(p*) for which the following holds:

g<0™ uig=0i=1...,m

» Compare with a one-dimensional max-problem (h concave):

x*>0isoptimal < H(x*)<0; x*-H(x*)=0
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A subgradient method for the dual problem

» Subgradient methods extend gradient projection methods
from C?! to general convex (or, concave) functions, generating
a sequence of dual vectors in R’ using a single subgradient in
each iteration

» The simplest type of iteration has the form

phtt = Projgm [1* + ongh]
= [* + axg ] (4)
= (maximum {0, (1*); + ax(g")i Ny,

where k is the iteration counter and gk € dq(u*) is an
arbitrarily chosen subgradient
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A subgradient method for the dual problem, cont'd

> We often write gk = g(x¥), where x¥ € argminyex L(x, )

» Main difference to C! case: an arbitrary subgradient gk may
not be an ascent direction!

= Cannot make line searches; must use predetermined step
lengths ay

> Suppose that p € R is not optimal in maxy>om q(p)
Then, for every optimal solution u* € U*

k+1

* k *
™" — ]| <™ — p*|

holds for every step length ay in the interval

ak € (0,2[q" — q(u")]/l1g"(I*)
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A subgradient method for the dual problem, cont'd

» Why? Let g € 9q(fz), and let U* be the set of optimal
solutions to max,,>om q(p). Then,

U'C{peR”|g"(p—p)>0}

In other words, g defines a half-space that contains the set of
optimal solutions

» Good news: If the step length ay is small enough we get
closer to the set of optimal solutions!
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Each (sub)gradient defines a halfspace containing the
optimal set

Figure: g non-differentiable q differentiable
g€dq(p) = U C{peR™|gl(n—pn)>0}
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Each (sub)gradient defines a halfspace containing the

optimal set

9q(p)

Figure: The half-space defined by a subgradient g € g(u)
Note that this subgradient is not an ascent direction
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Polyak’s step length rule

» Choose the step length ay such that

o <ar<2q — b))/l P —o, k=12... (5)

» o > 0 = step lengths oy don't converge to 0, or converges to
a too large value

» Bad news: Utilizes knowledge of the optimal value g*!

» But: g* can be replaced by an approximation g, > g*
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The divergent series step length rule

» Choose the step length ay such that

k=1,2,...; li = =
o > 0, 2,0 limage= 0; Zas (6)

» Additional condition often added:

[o.¢]
> a? <400 (7)
s=1
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Convergence results

» Suppose that f and g are continuous, X is compact,
dx € X : g(x) < 0, and consider the problem

f* = inf{f(x)|x € X,g(x) <0} (8)

(a) Let {u*} be generated by the method on p. 15, under the
Polyak step length rule (5), where o > 0 is small
Then, {u*} — p* € U*

(b) Let {u*} be generated by the method on p. 15, under the
divergent series step length rule (6)

Then, {q(p*)} — q*, and {disty-(p*)} — 0

(c) Let {uk} be generated by the method on p. 15, under the
divergent series step length rule (6), (7)
Then, {u*} — p* € U*
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Application to the Lagrangian dual problem

1. Given uk >Qm

2. Solve the Lagrangian subproblem: minyex L(x, )

3. Let an optimal solution to this problem be x* = x(u*)
4. Calculate g(x*) € dq(u*)

5. Take a step ay > 0 in the direction of g(x¥) from u*,
according to a step length rule
6. Set any negative components of this vector to 0 = p*+1

7. Let k := k + 1 and repeat from 2
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Additional algorithms

» We can choose the subgradient more carefully, to obtain
ascent directions

> Gather several subgradients at nearby points X and solve
quadratic programming problems to find the best convex
combination of them (Bundle methods)

» Pre-multiply the subgradient by some positive definite matrix
= methods similar to Newton methods
(Space dilation methods)

» Pre-project the subgradient vector (onto the tangent cone of

RT) = step direction is a feasible direction
(Subgradient-projection methods)
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More to come ...

Discrete optimization: The size of the duality gap, and the
relation to the continuous relaxation

v

Convexification

v

v

Primal feasibility heuristics

v

Global optimality conditions for discrete optimization (and
general problems)
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