Lectures 4: Algorithms for the Lagrangian dual problem

Michael Patriksson

2010-09-08

Subgradients of convex functions

▶ Let $f : \mathbb{R}^n \mapsto \mathbb{R}$ be a convex function A vector $\mathbf{p} \in \mathbb{R}^n$ is a *subgradient* of f at $\mathbf{x} \in \mathbb{R}^n$ if

$$f(\mathbf{y}) \ge f(\mathbf{x}) + \mathbf{p}^{\mathrm{T}}(\mathbf{y} - \mathbf{x}), \qquad \mathbf{y} \in \mathbb{R}^n$$
 (1)

- ▶ The set of such vectors \mathbf{p} defines the *subdifferential* of f at \mathbf{x} , and is denoted $\partial f(\mathbf{x})$
- $ightharpoonup \partial f(\mathbf{x})$ is the collection of "slopes" of the function f at \mathbf{x}
- ▶ For every $\mathbf{x} \in \mathbb{R}^n$, $\partial f(\mathbf{x})$ is a non-empty, convex, and compact (i.e., closed and bounded) set

Subgradients of convex functions, II

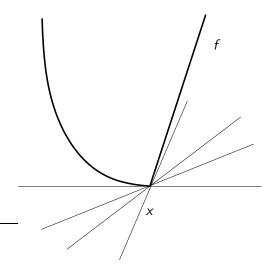


Figure: Four possible slopes of the convex function f at x

Subgradients of convex functions, III



Figure: The subdifferential of a convex function f at \mathbf{x} f is indicated by level curves

▶ The convex function f is differentiable at \mathbf{x} if there exists exactly one subgradient of f at \mathbf{x} , which then equals the gradient of f at \mathbf{x} , $\nabla f(\mathbf{x})$

Differentiability of the Lagrangian dual function

Consider the problem

$$f^* = \underset{\mathbf{x}}{\text{infimum }} f(\mathbf{x}), \tag{2a}$$

subject to
$$\mathbf{x} \in X$$
, (2b)

$$g_i(\mathbf{x}) \leq 0, \qquad i = 1, \dots, m,$$
 (2c)

and assume that

$$f, g_i(\forall i)$$
 continuous; X nonempty and compact (3)

▶ The set of solutions to the Lagrangian subproblem

$$X(\mu) = \arg\min_{\mathbf{x} \in X} L(\mathbf{x}, \mu)$$

is non-empty and compact for every $\mu \in \mathbb{R}^m$

Subgradients and gradients of q

- ▶ Suppose that (3) holds (f, g_i , $\forall i$ continuous; X nonempty and compact) in the problem (2): $f^* = \inf_{\mathbf{x}} \{ f(\mathbf{x}) \mid \mathbf{x} \in X, g_i(\mathbf{x}) < 0, i = 1, ..., m \}$
- ▶ The dual function q is *finite*, *continuous*, and *concave* on \mathbb{R}^m . If its supremum over \mathbb{R}^m_+ is attained, then the optimal solution set therefore is closed and convex
- ▶ Let $\mu \in \mathbb{R}^m$. If $\mathbf{x} \in X(\mu)$, then $\mathbf{g}(\mathbf{x})$ is a subgradient to q at μ , that is, $\mathbf{g}(\mathbf{x}) \in \partial q(\mu)$
- ▶ *Proof.* Let $\bar{\mu} \in \mathbb{R}^m$ be arbitrary. We have that

$$\begin{aligned} q(\bar{\boldsymbol{\mu}}) &= \underset{\mathbf{y} \in X}{\text{infimum}} \ L(\mathbf{y}, \bar{\boldsymbol{\mu}}) \leq f(\mathbf{x}) + \bar{\boldsymbol{\mu}}^{\text{T}} \mathbf{g}(\mathbf{x}) \\ &= f(\mathbf{x}) + (\bar{\boldsymbol{\mu}} - \boldsymbol{\mu})^{\text{T}} \mathbf{g}(\mathbf{x}) + \boldsymbol{\mu}^{\text{T}} \mathbf{g}(\mathbf{x}) \\ &= q(\boldsymbol{\mu}) + (\bar{\boldsymbol{\mu}} - \boldsymbol{\mu})^{\text{T}} \mathbf{g}(\mathbf{x}) \end{aligned}$$

Subgradients and gradients of q, cont'd

Recall the subgradient inequality (1) for a convex function f:
p is a subgradient of f at x if

$$f(\mathbf{y}) \ge f(\mathbf{x}) + \mathbf{p}^{\mathrm{T}}(\mathbf{y} - \mathbf{x}), \qquad \mathbf{y} \in \mathbb{R}^n$$

- ▶ The function $\mathbf{y} \mapsto f(\mathbf{x}) + \mathbf{p}^{\mathrm{T}}(\mathbf{y} \mathbf{x})$ is linear w.r.t. \mathbf{y} and underestimates $f(\mathbf{y})$ over \mathbb{R}^n
- ▶ Here, we have a *concave* function q and the opposite inequality: $\mathbf{g}(\mathbf{x})$ is a subgradient (actually, supgradient) of q at μ if $\mathbf{x} \in X(\mu)$:

$$q(ar{m{\mu}}) \leq q(m{\mu}) + (ar{m{\mu}} - m{\mu})^{\mathrm{T}} \mathbf{g}(\mathbf{x}), \qquad ar{m{\mu}} \in \mathbb{R}^m$$

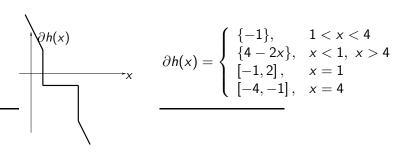
▶ The function $q(\mu) + (\bar{\mu} - \mu)^{\mathrm{T}} \mathbf{g}(\mathbf{x})$ is linear w.r.t. $\bar{\mu}$ and overestimates $q(\mu)$ over \mathbb{R}^m

Example

- A pointwise minimum of any collection of concave functions is concave
- ▶ Let $h(x) = \min\{h_1(x), h_2(x)\}$, where $h_1(x) = 4 |x|$ and $h_2(x) = 4 (x 2)^2$
- ► Then, $h(x) = \begin{cases} 4-x, & 1 \le x \le 4, \\ 4-(x-2)^2, & x \le 1, & x \ge 4 \end{cases}$

Example, cont'd

▶ h is non-differentiable at x = 1 and x = 4, since its graph has non-unique supporting hyperplanes there



► The subdifferential is here either a singleton (at differentiable points) or an interval (at non-differentiable points)

Monotonicity of the subdifferential

▶ Recall from convex analysis that differentiable convex functions have a monotone gradient: if $f: \mathbb{R}^n \to \mathbb{R}$ is convex and in C^1 then for any pair (\mathbf{x}, \mathbf{y}) of vectors in \mathbb{R}^n it holds that

$$[\nabla f(\mathbf{x}) - \nabla f(\mathbf{y})]^{\mathrm{T}}(\mathbf{x} - \mathbf{y}) \geq 0$$

- ► Case of n = 1: $[f'(x) f'(y)](x y) \ge 0$: f' is increasing
- ▶ For general convex functions we have an extended notion of monotonicity of its subdifferential: for every pair of subgradients $\boldsymbol{\xi}_{x} \in \partial f(\mathbf{x})$ and $\boldsymbol{\xi}_{y} \in \partial f(\mathbf{y})$ it holds that

$$[\boldsymbol{\xi}_x - \boldsymbol{\xi}_y]^{\mathrm{T}}(\mathbf{x} - \mathbf{y}) \geq 0$$

▶ For general concave functions the reverse inequality of course holds; see the figure of ∂h above!

The Lagrangian dual problem

- ▶ Let $\mu \in \mathbb{R}^m$. Then, $\partial q(\mu) = \operatorname{conv} \{ \mathbf{g}(\mathbf{x}) \mid \mathbf{x} \in X(\mu) \}$
- ▶ Let $\mu \in \mathbb{R}^m$. The dual function q is differentiable at μ if and only if $\{ \mathbf{g}(\mathbf{x}) \mid \mathbf{x} \in X(\mu) \}$ is a singleton set. Then,

$$\nabla q(\boldsymbol{\mu}) = \mathbf{g}(\mathbf{x}),$$

for every $\mathbf{x} \in X(\boldsymbol{\mu})$

▶ Holds in particular if the Lagrangian subproblem has a unique solution (the solution set $X(\mu)$ is a singleton)

True, e.g., when X is convex, f strictly convex on X, and g_i convex on $X \, \forall i$ (e.g., f strictly convex quadratic, X polyhedral, g_i linear)

How do we write the subdifferential of *h*?

- ▶ If $h(\mathbf{x}) = \min_{i=1,...,m} h_i(\mathbf{x})$, where each function h_i is concave and differentiable on \mathbb{R}^n , then h is a concave function on \mathbb{R}^n
- ▶ Define the set $\mathcal{I}(\mathbf{x}) \subseteq \{1, ..., m\}$ by the active segments at \mathbf{x} :

$$\begin{cases} i \in \mathcal{I}(\mathbf{x}) & \text{if } h(\mathbf{x}) = h_i(\mathbf{x}), \\ i \notin \mathcal{I}(\mathbf{x}) & \text{if } h(\mathbf{x}) < h_i(\mathbf{x}), \end{cases}$$
 $i \in \{1, \ldots, m\}$

▶ Then, the subdifferential $\partial h(\mathbf{x})$ is the *convex hull* of the gradients $\{\nabla h_i(\mathbf{x}) \mid i \in \mathcal{I}(\mathbf{x})\}$:

$$\partial h(\mathbf{x}) = \left\{ \xi = \sum_{i \in \mathcal{I}(\mathbf{x})} \lambda_i \nabla h_i(\mathbf{x}) \left| \sum_{i \in \mathcal{I}(\mathbf{x})} \lambda_i = 1; \ \lambda_i \geq 0, i \in \mathcal{I}(\mathbf{x}) \right. \right\}$$

Optimality conditions for the dual problem

▶ For a differentiable, concave function h it holds that

$$\mathbf{x}^* \in \arg\max_{\mathbf{x} \in \mathbb{R}^n} h(\mathbf{x}) \quad \Longleftrightarrow \quad \nabla h(\mathbf{x}^*) = \mathbf{0}^n$$

▶ Theorem: Assume that h is concave on \mathbb{R}^n . Then,

$$\mathbf{x}^* \in \arg\max_{\mathbf{x} \in \mathbb{R}^n} h(\mathbf{x}) \quad \Longleftrightarrow \quad \mathbf{0}^n \in \partial h(\mathbf{x}^*)$$

► Proof.

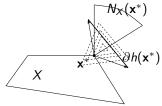
Suppose that
$$\mathbf{0}^n \in \partial h(\mathbf{x}^*) \Longrightarrow h(\mathbf{x}) \leq h(\mathbf{x}^*) + (\mathbf{0}^n)^{\mathrm{T}}(\mathbf{x} - \mathbf{x}^*)$$
 for all $\mathbf{x} \in \mathbb{R}^n$, that is, $h(\mathbf{x}) \leq h(\mathbf{x}^*)$ for all $\mathbf{x} \in \mathbb{R}^n$ Suppose that $\mathbf{x}^* \in \arg\max_{\mathbf{x} \in \mathbb{R}^n} h(\mathbf{x}) \Longrightarrow h(\mathbf{x}) \leq h(\mathbf{x}^*) = h(\mathbf{x}^*) + (\mathbf{0}^n)^{\mathrm{T}}(\mathbf{x} - \mathbf{x}^*)$ for all $\mathbf{x} \in \mathbb{R}^n$, that is, $\mathbf{0}^n \in \partial h(\mathbf{x}^*)$

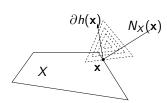
Optimality conditions for the dual problem, cont'd

- ▶ The example: $0 \in \partial h(1) \Longrightarrow x^* = 1$
- For optimization with constraints the KKT conditions are generalized:

$$\mathbf{x}^* \in \arg\max_{\mathbf{x} \in X} \ h(\mathbf{x}) \quad \Longleftrightarrow \quad \partial h(\mathbf{x}^*) \cap N_X(\mathbf{x}^*)
eq \emptyset,$$

where $N_X(\mathbf{x}^*)$ is the normal cone to X at \mathbf{x}^* , that is, the conical hull of the active constraints' normals at \mathbf{x}^*





A non-optimal solution x

Optimality conditions for the dual problem, cont'd

- ▶ The dual problem has only sign conditions $\mu \ge \mathbf{0}^m$
- ► Consider the dual problem

▶ $\mu^* \ge \mathbf{0}^m$ is then optimal *if and only if* there exists a subgradient $\mathbf{g} \in \partial q(\mu^*)$ for which the following holds:

$$\mathbf{g} \leq \mathbf{0}^m$$
; $\mu_i^* g_i = 0, i = 1, ..., m$

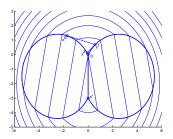
► Compare with a one-dimensional max-problem (*h* concave):

$$x^* \ge 0$$
 is optimal $\iff h'(x^*) \le 0$; $x^* \cdot h'(x^*) = 0$

Note: it is not possible in general to obtain the whole subdifferential, only a representative $\mathbf{g} \in \partial q(\mu)$ from the constraint function value $\mathbf{g}(\mathbf{x}(\mu))$ of a Lagrangian subproblem solution $\mathbf{x}(\mu)$. Hence, verifying optimality is considerably more difficult than in the differentiable case

Methods for convex nondifferentiable optimization: A caution

- Continuous convex functions are differentiable almost everywhere; use methods from smooth optimization!
- ▶ No! Big mistake!
- ► Take $f(\mathbf{x}) := \max\{-5x_1 + x_2; x_1^2 + x_2^2 + 4x_2; 5x_1 + x_2\}$



▶ Optimum at $(0, -3)^T$ with $f^* = -3$, but starting at \mathbf{x}^0 , using steepest descent with an exact line search leads to $\mathbf{x} = (0, 0)^T$ with f = 0

A subgradient method for the dual problem

- Subgradient methods extend gradient projection methods from C^1 to general convex (or, concave) functions, generating a sequence of dual vectors in \mathbb{R}^m_+ using a single subgradient in each iteration
- The simplest type of iteration has the form

$$\mu^{k+1} = \operatorname{Proj}_{\mathbb{R}_{+}^{m}} [\mu^{k} + \alpha_{k} \mathbf{g}^{k}]$$

$$= [\mu^{k} + \alpha_{k} \mathbf{g}^{k}]_{+}$$

$$= (\operatorname{maximum} \{0, (\mu^{k})_{i} + \alpha_{k} (\mathbf{g}^{k})_{i}\})_{i=1}^{m},$$
(4)

where k is the iteration counter, $\mathbf{g}^k \in \partial q(\mu^k)$ is an arbitrary subgradient, and $\alpha_k > 0$ is a step length

A subgradient method for the dual problem, cont'd

- ▶ We often write $\mathbf{g}^k = \mathbf{g}(\mathbf{x}^k)$, where $\mathbf{x}^k \in \arg\min_{\mathbf{x} \in \mathcal{X}} L(\mathbf{x}, \boldsymbol{\mu}^k)$
- Main difference to C^1 case: an arbitrary subgradient \mathbf{g}^k may not be an ascent direction!
- \Rightarrow Cannot make line searches; must use predetermined step lengths α_k
 - Suppose that $\mu \in \mathbb{R}_+^m$ is not optimal in $\max_{\mu \geq \mathbf{0}^m} q(\mu)$ Then, for every optimal solution $\mu^* \in U^*$

$$\|\mu^{k+1} - \mu^*\| < \|\mu^k - \mu^*\|$$

holds for every step length α_k in the interval

$$\alpha_k \in (0, 2[q^* - q(\boldsymbol{\mu}^k)]/\|\mathbf{g}^k\|^2)$$

A subgradient method for the dual problem, cont'd

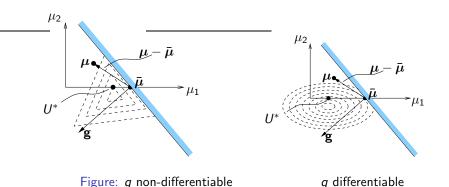
▶ Why? Let $\mathbf{g} \in \partial q(\bar{\mu})$, and let U^* be the set of optimal solutions to $\max_{\mu \geq \mathbf{0}^m} q(\mu)$. Then,

$$U^* \subseteq \{ \, \boldsymbol{\mu} \in \mathbb{R}^m \mid \mathbf{g}^{\mathrm{T}}(\boldsymbol{\mu} - \bar{\boldsymbol{\mu}}) \geq 0 \, \}$$

In other words, ${\bf g}$ defines a half-space that contains the set of optimal solutions

▶ Good news: If the step length α_k is small enough we get closer to the set of optimal solutions!

Each (sub)gradient defines a halfspace containing the optimal set



$$\mathbf{g} \in \partial q(\bar{\boldsymbol{\mu}}) \quad \Rightarrow \quad U^* \subseteq \{\, \boldsymbol{\mu} \in \mathbb{R}^m \mid \mathbf{g}^{\mathrm{T}}(\boldsymbol{\mu} - \bar{\boldsymbol{\mu}}) \geq 0 \,\}$$

Each (sub)gradient defines a halfspace containing the optimal set

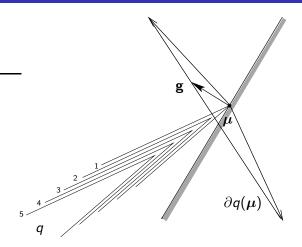


Figure: The half-space defined by a subgradient $\mathbf{g} \in q(\mu)$ Note that this subgradient is *not an ascent direction*

Polyak's step length rule

▶ Choose the step length α_k such that

$$\sigma \le \alpha_k \le 2[q^* - q(\mu^k)]/\|\mathbf{g}^k\|^2 - \sigma, \quad k = 1, 2, \dots$$
 (5)

- ▶ $\sigma > 0$ \Rightarrow step lengths α_k don't converge to 0, or converges to a too large value
- ▶ Bad news: Utilizes knowledge of the optimal value q*!
- ▶ But: q^* can be replaced by an approximation $\bar{q}_k \geq q^*$

The divergent series step length rule

▶ Choose the step lengths α_k such that

$$\alpha_k > 0, \ k = 1, 2, \dots; \quad \lim_{k \to \infty} \alpha_k = 0; \quad \sum_{s=1}^{\infty} \alpha_s = +\infty$$
 (6)

Additional condition often added:

$$\sum_{s=1}^{\infty} \alpha_s^2 < +\infty \tag{7}$$

Convergence results

▶ Suppose that f and g are continuous, X is compact, $\exists x \in X : g(x) < 0$, and consider the problem

$$f^* = \inf\{f(\mathbf{x}) \mid \mathbf{x} \in X, \mathbf{g}(\mathbf{x}) \le \mathbf{0}\}$$
 (8)

- (a) Let $\{\mu^k\}$ be generated by the method on p. 17, under the Polyak step length rule (5), where $\sigma>0$ is small Then, $\{\mu^k\}\to\mu^*\in U^*$
- (b) Let $\{\mu^k\}$ be generated by the method on p. 17, under the divergent series step length rule (6) Then, $\{q(\mu^k)\} \to q^*$, and $\{\text{dist}_{U^*}(\mu^k)\} \to 0$
- (c) Let $\{\mu^k\}$ be generated by the method on p. 17, under the divergent series step length rule (6), (7)Then, $\{\mu^k\} \to \mu^* \in U^*$

Application to the Lagrangian dual problem

- 1. Given $\mu^k \geq \mathbf{0}^m$
- 2. Solve the Lagrangian subproblem: $\min_{\mathbf{x} \in X} L(\mathbf{x}, \boldsymbol{\mu}^k)$
- 3. Let an optimal solution to this problem be $\mathbf{x}^k = \mathbf{x}(\boldsymbol{\mu}^k)$
- 4. Calculate $\mathbf{g}(\mathbf{x}^k) \in \partial q(\boldsymbol{\mu}^k)$
- 5. Take a step $\alpha_k > 0$ in the direction of $\mathbf{g}(\mathbf{x}^k)$ from $\boldsymbol{\mu}^k$, according to a step length rule
- 6. Set any negative components of this vector to $0 \Rightarrow \mu^{k+1}$
- 7. Let k := k + 1 and repeat from 2

Additional algorithms

- We can choose the subgradient more carefully, to obtain ascent directions
- ▶ Gather several subgradients at nearby points μ^k and solve quadratic programming problems to find the best convex combination of them (*Bundle methods*)
- ▶ Pre-multiply the subgradient by some positive definite matrix
 ⇒ methods similar to Newton methods
 (Space dilation methods)
- ▶ Pre-project the subgradient vector (onto the tangent cone of \mathbb{R}_+^m) ⇒ step direction is a feasible direction (Subgradient-projection methods)

More to come . . .

▶ Discrete optimization: The size of the duality gap, and the relation to the continuous relaxation

Convexification

Primal feasibility heuristics

 Global optimality conditions for discrete optimization (and general problems)