# Lectures 4: Algorithms for the Lagrangian dual problem

Michael Patriksson

2010-09-08

#### Subgradients of convex functions

▶ Let  $f : \mathbb{R}^n \mapsto \mathbb{R}$  be a convex function A vector  $\mathbf{p} \in \mathbb{R}^n$  is a *subgradient* of f at  $\mathbf{x} \in \mathbb{R}^n$  if

$$f(\mathbf{y}) \ge f(\mathbf{x}) + \mathbf{p}^{\mathrm{T}}(\mathbf{y} - \mathbf{x}), \qquad \mathbf{y} \in \mathbb{R}^n$$
 (1)

- ▶ The set of such vectors  $\mathbf{p}$  defines the *subdifferential* of f at  $\mathbf{x}$ , and is denoted  $\partial f(\mathbf{x})$
- $ightharpoonup \partial f(\mathbf{x})$  is the collection of "slopes" of the function f at  $\mathbf{x}$
- ▶ For every  $\mathbf{x} \in \mathbb{R}^n$ ,  $\partial f(\mathbf{x})$  is a non-empty, convex, and compact (i.e., closed and bounded) set

## Subgradients of convex functions, II

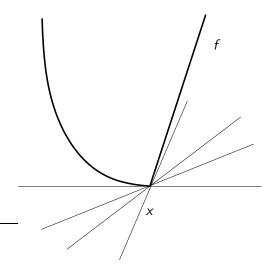


Figure: Four possible slopes of the convex function f at x

#### Subgradients of convex functions, III



Figure: The subdifferential of a convex function f at  $\mathbf{x}$  f is indicated by level curves

▶ The convex function f is differentiable at  $\mathbf{x}$  if there exists exactly one subgradient of f at  $\mathbf{x}$ , which then equals the gradient of f at  $\mathbf{x}$ ,  $\nabla f(\mathbf{x})$ 

#### Differentiability of the Lagrangian dual function

Consider the problem

$$f^* = \underset{\mathbf{x}}{\text{infimum }} f(\mathbf{x}), \tag{2a}$$

subject to 
$$\mathbf{x} \in X$$
, (2b)

$$g_i(\mathbf{x}) \leq 0, \qquad i = 1, \dots, m,$$
 (2c)

and assume that

$$f, g_i(\forall i)$$
 continuous;  $X$  nonempty and compact (3)

▶ The set of solutions to the Lagrangian subproblem

$$X(\mu) = \arg\min_{\mathbf{x} \in X} L(\mathbf{x}, \mu)$$

is non-empty and compact for every  $\mu \in \mathbb{R}^m$ 

### Subgradients and gradients of q

- ▶ Suppose that (3) holds (f,  $g_i$ ,  $\forall i$  continuous; X nonempty and compact) in the problem (2):  $f^* = \inf_{\mathbf{x}} \{ f(\mathbf{x}) \mid \mathbf{x} \in X, g_i(\mathbf{x}) < 0, i = 1, ..., m \}$
- ▶ The dual function q is *finite*, *continuous*, and *concave* on  $\mathbb{R}^m$ . If its supremum over  $\mathbb{R}^m_+$  is attained, then the optimal solution set therefore is closed and convex
- ▶ Let  $\mu \in \mathbb{R}^m$ . If  $\mathbf{x} \in X(\mu)$ , then  $\mathbf{g}(\mathbf{x})$  is a subgradient to q at  $\mu$ , that is,  $\mathbf{g}(\mathbf{x}) \in \partial q(\mu)$
- ▶ *Proof.* Let  $\bar{\mu} \in \mathbb{R}^m$  be arbitrary. We have that

$$\begin{aligned} q(\bar{\boldsymbol{\mu}}) &= \underset{\mathbf{y} \in X}{\text{infimum}} \ L(\mathbf{y}, \bar{\boldsymbol{\mu}}) \leq f(\mathbf{x}) + \bar{\boldsymbol{\mu}}^{\text{T}} \mathbf{g}(\mathbf{x}) \\ &= f(\mathbf{x}) + (\bar{\boldsymbol{\mu}} - \boldsymbol{\mu})^{\text{T}} \mathbf{g}(\mathbf{x}) + \boldsymbol{\mu}^{\text{T}} \mathbf{g}(\mathbf{x}) \\ &= q(\boldsymbol{\mu}) + (\bar{\boldsymbol{\mu}} - \boldsymbol{\mu})^{\text{T}} \mathbf{g}(\mathbf{x}) \end{aligned}$$

#### Subgradients and gradients of q, cont'd

Recall the subgradient inequality (1) for a convex function f:
p is a subgradient of f at x if

$$f(\mathbf{y}) \ge f(\mathbf{x}) + \mathbf{p}^{\mathrm{T}}(\mathbf{y} - \mathbf{x}), \qquad \mathbf{y} \in \mathbb{R}^n$$

- ▶ The function  $\mathbf{y} \mapsto f(\mathbf{x}) + \mathbf{p}^{\mathrm{T}}(\mathbf{y} \mathbf{x})$  is linear w.r.t.  $\mathbf{y}$  and underestimates  $f(\mathbf{y})$  over  $\mathbb{R}^n$
- ▶ Here, we have a *concave* function q and the opposite inequality:  $\mathbf{g}(\mathbf{x})$  is a subgradient (actually, supgradient) of q at  $\mu$  if  $\mathbf{x} \in X(\mu)$ :

$$q(ar{m{\mu}}) \leq q(m{\mu}) + (ar{m{\mu}} - m{\mu})^{\mathrm{T}} \mathbf{g}(\mathbf{x}), \qquad ar{m{\mu}} \in \mathbb{R}^m$$

▶ The function  $q(\mu) + (\bar{\mu} - \mu)^{\mathrm{T}} \mathbf{g}(\mathbf{x})$  is linear w.r.t.  $\bar{\mu}$  and overestimates  $q(\mu)$  over  $\mathbb{R}^m$ 

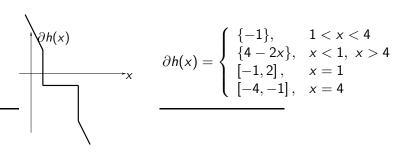
#### Example

- A pointwise minimum of any collection of concave functions is concave
- ▶ Let  $h(x) = \min\{h_1(x), h_2(x)\}$ , where  $h_1(x) = 4 |x|$  and  $h_2(x) = 4 (x 2)^2$
- ► Then,  $h(x) = \begin{cases} 4-x, & 1 \le x \le 4, \\ 4-(x-2)^2, & x \le 1, & x \ge 4 \end{cases}$



#### Example, cont'd

▶ h is non-differentiable at x = 1 and x = 4, since its graph has non-unique supporting hyperplanes there



► The subdifferential is here either a singleton (at differentiable points) or an interval (at non-differentiable points)

#### Monotonicity of the subdifferential

▶ Recall from convex analysis that differentiable convex functions have a monotone gradient: if  $f: \mathbb{R}^n \to \mathbb{R}$  is convex and in  $C^1$  then for any pair  $(\mathbf{x}, \mathbf{y})$  of vectors in  $\mathbb{R}^n$  it holds that

$$[\nabla f(\mathbf{x}) - \nabla f(\mathbf{y})]^{\mathrm{T}}(\mathbf{x} - \mathbf{y}) \geq 0$$

- ► Case of n = 1:  $[f'(x) f'(y)](x y) \ge 0$ : f' is increasing
- ▶ For general convex functions we have an extended notion of monotonicity of its subdifferential: for every pair of subgradients  $\boldsymbol{\xi}_{x} \in \partial f(\mathbf{x})$  and  $\boldsymbol{\xi}_{y} \in \partial f(\mathbf{y})$  it holds that

$$[\boldsymbol{\xi}_x - \boldsymbol{\xi}_y]^{\mathrm{T}}(\mathbf{x} - \mathbf{y}) \geq 0$$

▶ For general concave functions the reverse inequality of course holds; see the figure of  $\partial h$  above!

#### The Lagrangian dual problem

- ▶ Let  $\mu \in \mathbb{R}^m$ . Then,  $\partial q(\mu) = \operatorname{conv} \{ \mathbf{g}(\mathbf{x}) \mid \mathbf{x} \in X(\mu) \}$
- ▶ Let  $\mu \in \mathbb{R}^m$ . The dual function q is differentiable at  $\mu$  if and only if  $\{ \mathbf{g}(\mathbf{x}) \mid \mathbf{x} \in X(\mu) \}$  is a singleton set. Then,

$$\nabla q(\boldsymbol{\mu}) = \mathbf{g}(\mathbf{x}),$$

for every  $\mathbf{x} \in X(\boldsymbol{\mu})$ 

▶ Holds in particular if the Lagrangian subproblem has a unique solution (the solution set  $X(\mu)$  is a singleton)

True, e.g., when X is convex, f strictly convex on X, and  $g_i$  convex on  $X \, \forall i$  (e.g., f strictly convex quadratic, X polyhedral,  $g_i$  linear)

#### How do we write the subdifferential of *h*?

- ▶ If  $h(\mathbf{x}) = \min_{i=1,...,m} h_i(\mathbf{x})$ , where each function  $h_i$  is concave and differentiable on  $\mathbb{R}^n$ , then h is a concave function on  $\mathbb{R}^n$
- ▶ Define the set  $\mathcal{I}(\mathbf{x}) \subseteq \{1, ..., m\}$  by the active segments at  $\mathbf{x}$ :

$$\begin{cases} i \in \mathcal{I}(\mathbf{x}) & \text{if } h(\mathbf{x}) = h_i(\mathbf{x}), \\ i \notin \mathcal{I}(\mathbf{x}) & \text{if } h(\mathbf{x}) < h_i(\mathbf{x}), \end{cases}$$
  $i \in \{1, \ldots, m\}$ 

▶ Then, the subdifferential  $\partial h(\mathbf{x})$  is the *convex hull* of the gradients  $\{\nabla h_i(\mathbf{x}) \mid i \in \mathcal{I}(\mathbf{x})\}$ :

$$\partial h(\mathbf{x}) = \left\{ \xi = \sum_{i \in \mathcal{I}(\mathbf{x})} \lambda_i \nabla h_i(\mathbf{x}) \left| \sum_{i \in \mathcal{I}(\mathbf{x})} \lambda_i = 1; \ \lambda_i \geq 0, i \in \mathcal{I}(\mathbf{x}) \right. \right\}$$

#### Optimality conditions for the dual problem

▶ For a differentiable, concave function h it holds that

$$\mathbf{x}^* \in \arg\max_{\mathbf{x} \in \mathbb{R}^n} h(\mathbf{x}) \quad \Longleftrightarrow \quad \nabla h(\mathbf{x}^*) = \mathbf{0}^n$$

▶ Theorem: Assume that h is concave on  $\mathbb{R}^n$ . Then,

$$\mathbf{x}^* \in \arg\max_{\mathbf{x} \in \mathbb{R}^n} h(\mathbf{x}) \quad \Longleftrightarrow \quad \mathbf{0}^n \in \partial h(\mathbf{x}^*)$$

► Proof.

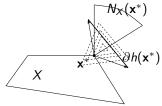
Suppose that 
$$\mathbf{0}^n \in \partial h(\mathbf{x}^*) \Longrightarrow h(\mathbf{x}) \leq h(\mathbf{x}^*) + (\mathbf{0}^n)^{\mathrm{T}}(\mathbf{x} - \mathbf{x}^*)$$
 for all  $\mathbf{x} \in \mathbb{R}^n$ , that is,  $h(\mathbf{x}) \leq h(\mathbf{x}^*)$  for all  $\mathbf{x} \in \mathbb{R}^n$  Suppose that  $\mathbf{x}^* \in \arg\max_{\mathbf{x} \in \mathbb{R}^n} h(\mathbf{x}) \Longrightarrow h(\mathbf{x}) \leq h(\mathbf{x}^*) = h(\mathbf{x}^*) + (\mathbf{0}^n)^{\mathrm{T}}(\mathbf{x} - \mathbf{x}^*)$  for all  $\mathbf{x} \in \mathbb{R}^n$ , that is,  $\mathbf{0}^n \in \partial h(\mathbf{x}^*)$ 

#### Optimality conditions for the dual problem, cont'd

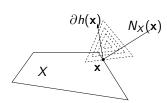
- ▶ The example:  $0 \in \partial h(1) \Longrightarrow x^* = 1$
- For optimization with constraints the KKT conditions are generalized:

$$\mathbf{x}^* \in \arg\max_{\mathbf{x} \in X} \ h(\mathbf{x}) \quad \Longleftrightarrow \quad \partial h(\mathbf{x}^*) \cap N_X(\mathbf{x}^*) 
eq \emptyset,$$

where  $N_X(\mathbf{x}^*)$  is the normal cone to X at  $\mathbf{x}^*$ , that is, the conical hull of the active constraints' normals at  $\mathbf{x}^*$ 







A non-optimal solution x

### Optimality conditions for the dual problem, cont'd

- ▶ The dual problem has only sign conditions  $\mu \ge \mathbf{0}^m$
- ► Consider the dual problem

▶  $\mu^* \ge \mathbf{0}^m$  is then optimal *if and only if* there exists a subgradient  $\mathbf{g} \in \partial q(\mu^*)$  for which the following holds:

$$\mathbf{g} \leq \mathbf{0}^m$$
;  $\mu_i^* g_i = 0, i = 1, ..., m$ 

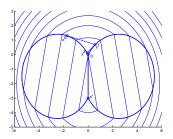
► Compare with a one-dimensional max-problem (*h* concave):

$$x^* \ge 0$$
 is optimal  $\iff h'(x^*) \le 0$ ;  $x^* \cdot h'(x^*) = 0$ 

Note: it is not possible in general to obtain the whole subdifferential, only a representative  $\mathbf{g} \in \partial q(\mu)$  from the constraint function value  $\mathbf{g}(\mathbf{x}(\mu))$  of a Lagrangian subproblem solution  $\mathbf{x}(\mu)$ . Hence, verifying optimality is considerably more difficult than in the differentiable case

## Methods for convex nondifferentiable optimization: A caution

- Continuous convex functions are differentiable almost everywhere; use methods from smooth optimization!
- ▶ No! Big mistake!
- ► Take  $f(\mathbf{x}) := \max\{-5x_1 + x_2; x_1^2 + x_2^2 + 4x_2; 5x_1 + x_2\}$



▶ Optimum at  $(0, -3)^T$  with  $f^* = -3$ , but starting at  $\mathbf{x}^0$ , using steepest descent with an exact line search leads to  $\mathbf{x} = (0, 0)^T$  with f = 0

#### A subgradient method for the dual problem

- Subgradient methods extend gradient projection methods from  $C^1$  to general convex (or, concave) functions, generating a sequence of dual vectors in  $\mathbb{R}^m_+$  using a single subgradient in each iteration
- The simplest type of iteration has the form

$$\mu^{k+1} = \operatorname{Proj}_{\mathbb{R}_{+}^{m}} [\mu^{k} + \alpha_{k} \mathbf{g}^{k}]$$

$$= [\mu^{k} + \alpha_{k} \mathbf{g}^{k}]_{+}$$

$$= (\operatorname{maximum} \{0, (\mu^{k})_{i} + \alpha_{k} (\mathbf{g}^{k})_{i}\})_{i=1}^{m},$$
(4)

where k is the iteration counter,  $\mathbf{g}^k \in \partial q(\mu^k)$  is an arbitrary subgradient, and  $\alpha_k > 0$  is a step length

#### A subgradient method for the dual problem, cont'd

- ▶ We often write  $\mathbf{g}^k = \mathbf{g}(\mathbf{x}^k)$ , where  $\mathbf{x}^k \in \arg\min_{\mathbf{x} \in \mathcal{X}} L(\mathbf{x}, \boldsymbol{\mu}^k)$
- Main difference to  $C^1$  case: an arbitrary subgradient  $\mathbf{g}^k$  may not be an ascent direction!
- $\Rightarrow$  Cannot make line searches; must use predetermined step lengths  $\alpha_k$ 
  - Suppose that  $\mu \in \mathbb{R}_+^m$  is not optimal in  $\max_{\mu \geq \mathbf{0}^m} q(\mu)$ Then, for every optimal solution  $\mu^* \in U^*$

$$\|\mu^{k+1} - \mu^*\| < \|\mu^k - \mu^*\|$$

holds for every step length  $\alpha_k$  in the interval

$$\alpha_k \in (0, 2[q^* - q(\boldsymbol{\mu}^k)]/\|\mathbf{g}^k\|^2)$$

#### A subgradient method for the dual problem, cont'd

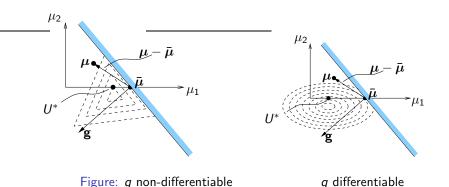
▶ Why? Let  $\mathbf{g} \in \partial q(\bar{\mu})$ , and let  $U^*$  be the set of optimal solutions to  $\max_{\mu \geq \mathbf{0}^m} q(\mu)$ . Then,

$$U^* \subseteq \{ \, \boldsymbol{\mu} \in \mathbb{R}^m \mid \mathbf{g}^{\mathrm{T}}(\boldsymbol{\mu} - \bar{\boldsymbol{\mu}}) \geq 0 \, \}$$

In other words,  ${\bf g}$  defines a half-space that contains the set of optimal solutions

▶ Good news: If the step length  $\alpha_k$  is small enough we get closer to the set of optimal solutions!

# Each (sub)gradient defines a halfspace containing the optimal set



$$\mathbf{g} \in \partial q(\bar{\boldsymbol{\mu}}) \quad \Rightarrow \quad U^* \subseteq \{\, \boldsymbol{\mu} \in \mathbb{R}^m \mid \mathbf{g}^{\mathrm{T}}(\boldsymbol{\mu} - \bar{\boldsymbol{\mu}}) \geq 0 \,\}$$

# Each (sub)gradient defines a halfspace containing the optimal set

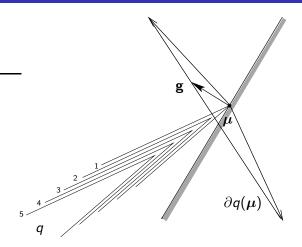


Figure: The half-space defined by a subgradient  $\mathbf{g} \in q(\mu)$ Note that this subgradient is *not an ascent direction* 

#### Polyak's step length rule

▶ Choose the step length  $\alpha_k$  such that

$$\sigma \le \alpha_k \le 2[q^* - q(\mu^k)]/\|\mathbf{g}^k\|^2 - \sigma, \quad k = 1, 2, \dots$$
 (5)

- ▶  $\sigma > 0$   $\Rightarrow$  step lengths  $\alpha_k$  don't converge to 0, or converges to a too large value
- ▶ Bad news: Utilizes knowledge of the optimal value q\*!
- ▶ But:  $q^*$  can be replaced by an approximation  $\bar{q}_k \geq q^*$

#### The divergent series step length rule

▶ Choose the step lengths  $\alpha_k$  such that

$$\alpha_k > 0, \ k = 1, 2, \dots; \quad \lim_{k \to \infty} \alpha_k = 0; \quad \sum_{s=1}^{\infty} \alpha_s = +\infty$$
 (6)

Additional condition often added:

$$\sum_{s=1}^{\infty} \alpha_s^2 < +\infty \tag{7}$$

#### Convergence results

▶ Suppose that f and g are continuous, X is compact,  $\exists x \in X : g(x) < 0$ , and consider the problem

$$f^* = \inf\{f(\mathbf{x}) \mid \mathbf{x} \in X, \mathbf{g}(\mathbf{x}) \le \mathbf{0}\}$$
 (8)

- (a) Let  $\{\mu^k\}$  be generated by the method on p. 17, under the Polyak step length rule (5), where  $\sigma>0$  is small Then,  $\{\mu^k\}\to\mu^*\in U^*$
- (b) Let  $\{\mu^k\}$  be generated by the method on p. 17, under the divergent series step length rule (6) Then,  $\{q(\mu^k)\} \to q^*$ , and  $\{\text{dist}_{U^*}(\mu^k)\} \to 0$
- (c) Let  $\{\mu^k\}$  be generated by the method on p. 17, under the divergent series step length rule (6), (7)Then,  $\{\mu^k\} \to \mu^* \in U^*$

#### Application to the Lagrangian dual problem

- 1. Given  $\mu^k \geq \mathbf{0}^m$
- 2. Solve the Lagrangian subproblem:  $\min_{\mathbf{x} \in X} L(\mathbf{x}, \boldsymbol{\mu}^k)$
- 3. Let an optimal solution to this problem be  $\mathbf{x}^k = \mathbf{x}(\boldsymbol{\mu}^k)$
- 4. Calculate  $\mathbf{g}(\mathbf{x}^k) \in \partial q(\boldsymbol{\mu}^k)$
- 5. Take a step  $\alpha_k > 0$  in the direction of  $\mathbf{g}(\mathbf{x}^k)$  from  $\boldsymbol{\mu}^k$ , according to a step length rule
- 6. Set any negative components of this vector to  $0 \Rightarrow \mu^{k+1}$
- 7. Let k := k + 1 and repeat from 2

#### Additional algorithms

- We can choose the subgradient more carefully, to obtain ascent directions
- ▶ Gather several subgradients at nearby points  $\mu^k$  and solve quadratic programming problems to find the best convex combination of them (*Bundle methods*)
- ▶ Pre-multiply the subgradient by some positive definite matrix
   ⇒ methods similar to Newton methods
   (Space dilation methods)
- ▶ Pre-project the subgradient vector (onto the tangent cone of  $\mathbb{R}_+^m$ ) ⇒ step direction is a feasible direction (Subgradient-projection methods)

#### More to come . . .

▶ Discrete optimization: The size of the duality gap, and the relation to the continuous relaxation

Convexification

Primal feasibility heuristics

 Global optimality conditions for discrete optimization (and general problems)