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A reminder of nice properties in the convex case, I

◮ Example I (explicit dual) (x∗ = (2, 2), µ∗ = 4, f ∗ = 8)

f ∗ = minimum f (x) = x2
1 + x2

2

subject to g(x) = −x1 − x2 + 4 ≤ 0
x1, x2 ≥ 0

◮ Let X := {x ∈ R
2 | x1, x2 ≥ 0} = R

2
+

◮ L(x, µ) = x2
1 + x2

2 + µ · (−x1 − x2 + 4)
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A reminder of nice properties in the convex case, II

q(µ) = minimum
x∈X

{
x2
1 + x2

2 + µ · (−x1 − x2 + 4)
}

= 4µ + minimum
x∈X

{
x2
1 + x2

2 − µx1 − µx2

}

= 4µ + minimum
x1≥0

{
x2
1 − µx1

}
+ minimum

x2≥0

{
x2
2 − µx2

}

◮ For a fixed value of µ ≥ 0, the minimum of L(x, µ) over
x ∈ X is attained at x1(µ) = µ

2 , x2(µ) = µ
2

⇒ q(µ) = L(x(µ), µ) = . . . = 4µ − µ2

2 for all µ ≥ 0

◮ The dual function q is concave and differentiable

◮ f ∗ = f (x∗) = 8 = q∗

◮ µ∗ = 4, x(µ∗) = x∗ = (2, 2)
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Weak duality! Strong duality?

◮ The primal optimal solution is obtained from the Lagrangian
dual optimal solution under convexity and CQ. (For
non-strictly convex f we have to deal with the
non-coordinability, though)

◮ What happens otherwise?

◮ Recall the relationships between feasible values of f and q and
the respective optimal values

◮ How do we generate optimal primal solutions in the case of a
positive duality gap?
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A first example where the duality gap is non-zero, I

◮ Example II (x∗ = (0, 1, 1), f ∗ = 17)

f ∗ = minimum f (x) = 3x1 + 7x2 + 10x3

subject to x1 + 3x2 + 5x3 ≥ 7
xj ∈ {0, 1}, j = 1, 2, 3

◮ Let X := { x ∈ R
3 | xj ∈ {0, 1}, j = 1, 2, 3 } = B3

◮ Let g(x) := 7 − x1 − 3x2 − 5x3

◮ L(x, µ) = 3x1 + 7x2 + 10x3 + µ · (7 − x1 − 3x2 − 5x3)
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A first example where the duality gap is non-zero, II

◮ The dual function is computed according to

q(µ) = 7µ + minimum
x∈X

{(3 − µ)x1 + (7 − 3µ)x2 + (10 − 5µ)x3}

= 7µ + minimum
x1∈{0,1}

{(3 − µ)x1} + minimum
x2∈{0,1}

{(7 − 3µ)x2}

+ minimum
x3∈{0,1}

{(10 − 5µ)x3}

◮ X (µ) is obtained by setting

xj(µ) =

{
1
0

when the objective coefficient is

{
≤ 0
≥ 0
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Subproblem solutions and the dual function, I

◮ The subproblem solution:

µ ∈ x1(µ) x2(µ) x3(µ) g(x(µ)) q(µ)

[−∞, 2] 0 0 0 7 7µ
[2, 7

3 ] 0 0 1 2 2µ + 10
[73 , 3] 0 1 1 -1 −µ + 17
[3,∞] 1 1 1 -2 −2µ + 20
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Subproblem solutions and the dual function, II

◮ The dual function:

1 2 3

5

10

15

µ
µ∗

7µ

2µ + 10

17 − µ
20 − 2µ

q(µ)
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Subproblem solutions and the dual function, III

◮ q concave, non-differentiable at break points µ ∈ {2, 7
3 , 3}

µ < µ∗ µ > µ∗

slope of q(µ) > 0 < 0
x(µ) infeasible feasible

◮ Check that the slope equals the value of the constraint
function!

◮ In particular, the slope of q is negative for objective pieces
corresponding to feasible solutions to the original problem
(g(x(µ)) ≤ 0m)

◮ The one-variable function q has a “derivative” which is
non-increasing; this is a property of every concave function of
one variable

◮ µ∗ = 7
3 , q∗ = q(µ∗) = 44

3 = 142
3 .

◮ Recall: x∗ = (0, 1, 1), f ∗ = 17
◮ A positive duality gap!
◮ X (µ∗) = {(0, 0, 1), (0, 1, 1)} ∋ x∗
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Another example with non-zero duality gap, I

◮ Example III (x∗ = (2, 1), f ∗ = −3)

f ∗ = min f (x) = −2x1 + x2

s.t. x1 + x2 − 3 = 0,
x ∈ X = {(0, 0), (0, 4), (4, 4), (4, 0), (1, 2), (2, 1)}

x1

x2

◮ L(x, µ) = −3µ + (−2 + µ)x1 + (1 + µ)x2
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Another example with non-zero duality gap, II

◮ Observe: µ ∈ R (the relaxed constraint is g(x) = 0)

◮ X (µ) =
argminx∈{(0,0),(0,4),(4,4),(4,0),(1,2),(2,1)} {(−2 + µ)x1 + (1 + µ)x2}

X (µ) =







{(4, 4)}, µ < −1
{(4, 4), (4, 0)}, µ = −1
{(4, 0)}, µ ∈ (−1, 2);
{(4, 0), (0, 0)}, µ = 2
{(0, 0)}, µ > 2

q(µ) =







−4 + 5µ, µ ≤ −1
−8 + µ, µ ∈ [−1, 2]
−3µ, µ ≥ 2

◮ µ∗ = 2; q∗ = q(µ∗) = −6 < f ∗ = −3, x∗ = (2, 1) 6∈ X (µ∗)

◮ The set X (µ∗) does not even contain a feasible solution!
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Strong duality—repetition

The following three statements are equivalent:

(a) (x∗,µ∗) is a saddle point to L(x,µ)

(b) i. f (x∗) + (µ∗)Tg(x∗) = minx∈X {f (x) + (µ∗)Tg(x)}
[⇐⇒ x∗ ∈ X (µ∗)]

ii. (µ∗)Tg(x∗) = 0
iii. g(x∗) ≤ 0m

(c) f ∗ = f (x∗) = q(µ∗) = q∗
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Method for finding an optimal solution, I

1) Solve the Lagrangian dual problem =⇒ µ
∗;

2) Find a vector x∗ ∈ X which satisfies (b)

◮ When does this work? (What if it doesn’t?)

◮ First the convex case (with zero duality gap)

◮ Even with a zero duality gap, it is not always trivial to find an
optimal primal solution in this way, since the set X (µ∗) is
normally not explicitly available—we normally get one element
of the set X (µ)
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Method for finding an optimal solution, II

◮ A good example was given in Lecture 3—Example II (the
2-variable LP problem)

◮ Imagine using the simplex method for solving each LP
subproblem. Then, we only get extreme points of X , and x∗

was, in this case, an extreme point of
X ∩ { x ∈ R

2 | g(x) ≤ 0 } (since it is an LP!) but not an
extreme point of X !
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Method for finding an optimal solution, III

◮ Several ways out from this non-coordinability:

(1) Remember all the points x(µk) ∈ X (µk) visited
At the end, solve an LP to find the best point in their convex
hull—also feasible in the original problem.
(The Dantzig–Wolfe (DW) decomposition method)

(2) Construct a primal sequence as a convex combination of the
points x(µk) ∈ X (µk) visited. We need not solve any extra
optimization problems, and virtually no extra memory is
needed (compare to DW)
On the other hand, DW converges finitely for LP problems,
which this technique does not. Read the paper by Larsson,
Patriksson, and Strömberg (1999)

(3) Introduce non-linear price functions for the constraints,
instead of the linear one given by Lagrangian relaxation
(Augmented Lagrangian methods)
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Linear integer optimization: The strength of the

Lagrangian relaxation, I

◮ Compare with a continuous (LP) relaxation:

vLP = min cTx ≤ v∗ = min cTx

s.t. Ax ≤ b s.t. Ax ≤ b

Dx ≤ d Dx ≤ d

x ∈ R
n
+ x ∈ Z

n
+

◮ Let X = {x1, x2, . . . , xK} be the set of points in
X = { x ∈ Z

n
+ | Ax ≤ b }
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Linear integer optimization: The strength of the

Lagrangian relaxation, II

◮ Lagrangian relax the constraints Dx ≤ d:

vL = max
µ≥0

(

min
x∈X

[
cTx + µ

T(Dx − d)
]
)

= max
µ≥0

(

min
k=1,...,K

[

cTxk + µ
T(Dxk − d)

])

[Picture of a piece-wise linear function of µ!]

= max
µ≥0,θ∈R

{

θ
∣
∣
∣θ − (Dxk − d)Tµ ≤ cTxk , k = 1, . . . ,K

}

[Picture including θ!]
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Linear integer optimization: The strength of the

Lagrangian relaxation, III

◮ Introduce (LP) dual variables yk . Continuing,

vL = max
µ≥0,θ∈R

{

θ

∣
∣
∣θ − (Dxk − d)Tµ ≤ cTxk , k = 1, . . . ,K

}

vL = min

K∑

k=1

(cTxk)yk = cT

K∑

k=1

xkyk

︸ ︷︷ ︸

∈convX

s.t.

K∑

k=1

yk = 1

K∑

k=1

(Dxk − d)yk ≤ 0 ⇐⇒ D

K∑

k=1

xkyk

︸ ︷︷ ︸

∈convX

≤ d

K∑

k=1

yk

︸ ︷︷ ︸

=1
yk ≥ 0, k = 1, . . . ,K

= vC := min
{
cTx |Dx ≤ d, x ∈ convX

}
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Linear integer optimization: The strength of the

Lagrangian relaxation, IV

◮ Hence, Lagrangian relaxation is a convexification!

◮ Generating primal solutions through, for example,
Dantzig–Wolfe decomposition, or the ergodic sequence
method (Larsson, Patriksson, and Strömberg, 1999), yields a
solution to a primal LP problem equivalent to the original IP
problem where, however, X is replaced by conv X .

◮ We conclude: v∗ ≥ vC = vL ≥ vLP .
C : convexification of X
L: Lagrangian dual
LP : Linear programming relaxation
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The strength of a Lagrangian dual problem, I

Since X ⊆ convX ⊆ XLP = { x ∈ R
n
+ | Ax ≤ b } we have that

v∗ ≥ vL ≥ vLP

Dx ≤ d

Ax ≤ b

If conv X = XLP ⇒ cL = vLP
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The strength of a Lagrangian dual problem, II

Since X ⊆ convX ⊆ XLP = { x ∈ R
n
+ | Ax ≤ b } we have that

v∗ ≥ vL ≥ vLP

Dx ≤ d

Ax ≤ b

If conv X = XLP ⇒ cL = vLP

Michael Patriksson Lagrangian duality for discrete optimization



The strength of a Lagrangian dual problem, III

Since X ⊆ convX ⊆ XLP = { x ∈ R
n
+ | Ax ≤ b } we have that

v∗ ≥ vL ≥ vLP

Dx ≤ d

Ax ≤ b

If conv X = XLP ⇒ cL = vLP
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Integrality property

◮ If min
x∈XLP

pTx = min
x∈convX

pTx, for all p ∈ R
n, that is, if the

Lagrangian subproblem has the integrality property, then
vL = vLP .

◮ Otherwise, vL is a better bound on v∗ than is vLP [vL ≥ vLP ]

◮ Integrality property ⇐⇒
︸︷︷︸

often

easy problem

◮ Easy subproblem “=⇒” Bad bounds

◮ Difficult subproblem “=⇒” Better bounds

=⇒ The subproblem should not be too easy to solve!
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The strength of the Lagrangian relaxation

An example, I

◮ Consider the generalized assignment problem (GAP):

min

m∑

i=1

n∑

j=1

cijxij

s.t.

m∑

i=1

xij = 1, j = 1, . . . , n (1)

n∑

j=1

aijxij ≤ bi , i = 1, . . . ,m (2)

xij ∈ {0, 1}, ∀i , j

[Draw a bipartite graph!]
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The strength of the Lagrangian relaxation

An example, II

(1) Every job j must be performed on exactly one machine

(2) The total work done on machine i must not exceed the
capacity of the machine.

◮ Lagrangian relax (1) =⇒ binary knapsack problem! (Difficult)
=⇒ v1

L

◮ Lagrangian relax (2) =⇒ Semi-assignment problem! (Easy!)
=⇒ v2

L ≤ v1
L

◮ We prefer the Lagrangian relaxation of (1), since this gives
much better bounds from the Lagrangian dual problem, and
knapsack problems are relatively easy
(as far as NP-complete problems go . . . )
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