TMA521/MMA510 Optimization, project course Lecture 7 Cutting plane methods, column generation, and the Dantzig–Wolfe algorithm

Ann-Brith Strömberg

15 September 2010

A standard LP problem and its Lagrangian dual

$$\begin{aligned} \mathbf{v}_{LP} &= \min \quad \mathbf{c}^{\mathrm{T}} \mathbf{x}, \\ \text{subject to} \quad & \mathbf{A} \mathbf{x} \leq \mathbf{b}, \\ & \mathbf{D} \mathbf{x} \leq \mathbf{d}, \\ & \mathbf{x} \in \mathbb{R}^{n}_{+} \end{aligned}$$

• We suppose for now that the polyhedron $X := \{ \mathbf{x} \in \mathbb{R}^n_+ \mid \mathbf{A}\mathbf{x} \leq \mathbf{b} \}$ is bounded

• Let $P_X := {\mathbf{x}^1, \mathbf{x}^2, \dots, \mathbf{x}^K}$ be the set of extreme points in X

・ 同 ト ・ ヨ ト ・ ヨ ト …

The Lagrangian dual

The Lagrangian dual of the LP with respect to relaxing the constraints Dx ≤ d is

$$v_{LP} = v_L := \max \ q(\mu),$$

subject to $\mu \ge \mathbf{0},$

The Lagrangian dual function:

$$q(\boldsymbol{\mu}) := \min_{\mathbf{x} \in X} \left\{ \mathbf{c}^{\mathrm{T}} \mathbf{x} + \boldsymbol{\mu}^{\mathrm{T}} (\mathbf{D} \mathbf{x} - \mathbf{d}) \right\} = \min_{i \in P_X} \left\{ \mathbf{c}^{\mathrm{T}} \mathbf{x}^i + \boldsymbol{\mu}^{\mathrm{T}} (\mathbf{D} \mathbf{x}^i - \mathbf{d}) \right\}$$

- ► Solution set: $X(\mu) := \arg \min_{\mathbf{x} \in X} \left\{ \mathbf{c}^{\mathrm{T}} \mathbf{x} + \mu^{\mathrm{T}} (\mathbf{D} \mathbf{x} \mathbf{d}) \right\}$
- Equivalent statement:

$$q(\boldsymbol{\mu}) \leq \mathbf{c}^{\mathrm{T}} \mathbf{x}^{i} + \boldsymbol{\mu}^{\mathrm{T}} (\mathbf{D} \mathbf{x}^{i} - \mathbf{d}), \qquad i \in P_{X}, \quad \boldsymbol{\mu} \geq \mathbf{0}$$

・ 同 ト ・ ヨ ト ・ ヨ ト

$$\begin{split} \mathbf{v}_L &:= \max \ \mathbf{z}, \\ \text{subject to} \ \mathbf{z} \leq \mathbf{c}^{\mathrm{T}} \mathbf{x}^i + \boldsymbol{\mu}^{\mathrm{T}} (\mathbf{D} \mathbf{x}^i - \mathbf{d}), \qquad i \in P_X, \\ \boldsymbol{\mu} \geq \mathbf{0}. \end{split}$$

- If, at an optimal dual solution µ^{*}, the solution set X(µ^{*}) is a singleton, i.e., X(µ^{*}) = {x^{*}}, then x^{*} is optimal (and unique)
 thanks to strong duality
- This typically does not happen, unless an optimal solution x* happens to be an extreme point of X
- But x* can always be expressed as a convex combination of extreme points of X

- 4 回 5 - 4 三 5 - 4 三 5

A cutting plane method for the Lagrangian dual problem

Suppose only a subset of P_X is known, and consider the following relaxation of the Lagrangian dual problem:

$$\begin{array}{ll} \max \ z, & (1a) \\ \mathrm{s.t.} \ z \leq \mathbf{c}^{\mathrm{T}} \mathbf{x}^{i} + \boldsymbol{\mu}^{\mathrm{T}} (\mathbf{D} \mathbf{x}^{i} - \mathbf{d}), & i = 1, \dots, k, & (1b) \\ \boldsymbol{\mu} \geq \mathbf{0} & (1c) \end{array}$$

- Let (μ^k, z^k) be the solution to (1)
- It holds that $z^k \ge v_L$ for $k = 1, \ldots, K$
- How do we determine whether an optimal solution is found?
- And what IS the optimal solution when we find it?
- If z^k ≤ c^Txⁱ + (µ^k)^T(Dxⁱ − d) holds for all i ∈ P_X, then µ^k is optimal in the dual! Why?

Check optimality—generate new inequality

- How check optimality? Find the most violated constraint
- Solve the subproblem

$$q(\boldsymbol{\mu}^{k}) := \min_{\mathbf{x} \in X} \left\{ \mathbf{c}^{\mathrm{T}} \mathbf{x} + (\boldsymbol{\mu}^{k})^{\mathrm{T}} (\mathbf{D} \mathbf{x} - \mathbf{d}) \right\}$$
(2)
$$= \min_{i \in P_{X}} \left\{ \mathbf{c}^{\mathrm{T}} \mathbf{x}^{i} + (\boldsymbol{\mu}^{k})^{\mathrm{T}} (\mathbf{D} \mathbf{x}^{i} - \mathbf{d}) \right\}$$

▶ If $z^k \leq q(\mu^k)$ then μ^k is optimal in the dual

Otherwise, we have identified a constraint of the form

$$z \leq \mathbf{c}^{\mathrm{T}} \mathbf{x}^{k+1} + \boldsymbol{\mu}^{\mathrm{T}} (\mathbf{D} \mathbf{x}^{k+1} - \mathbf{d}),$$

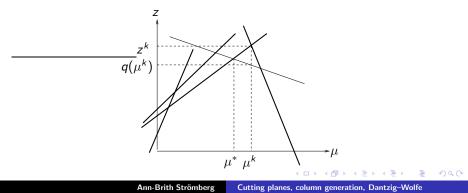
which is violated at $(\boldsymbol{\mu}^k, z^k)$ (i.e., it holds that $z^k > \mathbf{c}^{\mathrm{T}} \mathbf{x}^{k+1} + (\boldsymbol{\mu}^k)^{\mathrm{T}} (\mathbf{D} \mathbf{x}^{k+1} - \mathbf{d}))$ f

Add this inequality and re-solve the LP problem!

(4月) (4日) (日) (日)

Cutting plane algorithm

- We call this a *cutting plane* algorithm
- It is based on adding constraints to the dual problem in order to improve the solution, in the process of cutting off the previous point
- Consider the below picture. The thick lines correspond to the subset of k inequalities known at iteration k



Cutting plane algorithm

- ► Obviously, z^k ≥ q(µ^k) must hold, because of the possible lack of constraints.
- In this case, z^k > q(µ^k) holds, so in the next step when we evaluate q(µ^k) we can identify and add the last lacking inequality
- The resulting maximization will then yield the optimal solution µ* shown in the picture
- How do we generate an optimal primal solution from this scheme? Let us look at the dual of the problem (1) in this cutting plane algorithm

・ロト ・ 日 ・ ・ ヨ ・

Duality relations and the Dantzig–Wolfe algorithm

▶ We rewrite the problem (1)

$$\begin{array}{l} \underset{(z,\mu)}{\text{maximize } z,} \\ \text{subject to } z - \mu^{\mathrm{T}} (\mathsf{D} \mathsf{x}^{i} - \mathsf{d}) \leq \mathsf{c}^{\mathrm{T}} \mathsf{x}^{i}, \quad i = 1, \dots, k, \\ \mu \geq \mathbf{0} \end{array}$$

• With LP dual variables $\lambda_i \ge 0$ we obtain the LP dual:

$$\mathbf{v}^{k+1} = \min \min \sum_{i=1}^{k} (\mathbf{c}^{\mathrm{T}} \mathbf{x}^{i}) \lambda_{i},$$

subject to
$$\sum_{i=1}^{k} \lambda_{i} = 1,$$
$$-\sum_{i=1}^{k} (\mathbf{D} \mathbf{x}^{i} - \mathbf{d}) \lambda_{i} \ge \mathbf{0},$$
$$\lambda_{i} \ge \mathbf{0}, \quad \mathbf{a} = 1, \dots, k \ge 230$$

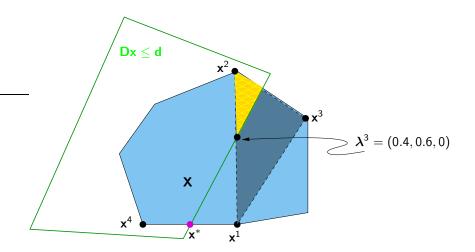
The linear programming dual rewritten

$$\boldsymbol{v}^{k+1} = \text{minimum } \mathbf{c}^{\mathrm{T}} \left(\sum_{i=1}^{k} \lambda_{i} \mathbf{x}^{i} \right), \qquad (3)$$

subject to
$$\sum_{i=1}^{k} \lambda_{i} = 1, \qquad \lambda_{i} \ge 0, \qquad i = 1, \dots, k,$$
$$\mathbf{D} \left(\sum_{i=1}^{k} \lambda_{i} \mathbf{x}^{i} \right) \le \mathbf{d}$$

Maximize c^Tx when x lies in the convex hull of the extreme points xⁱ found so far and fulfills the constraints that are Lagrangian relaxed

An illustration in x-space



- < ≣ >

- ∢ ≣ →

Э

The Dantzig-Wolfe algorithm

- The problem (3) is known as the restricted master problem (RMP) in the Dantzig–Wolfe algorithm
- In this algorithm, we have at hand a subset {1,...,k} of extreme points of X (and a dual vector µ^{k−1})
- Find a feasible solution to the original LP problem by solving the restricted master problem (3)
- ► Then generate an optimal dual solution µ^k to this restricted problem problem, corresponding to the constraints Dx ≤ d
- If and only if the vector xⁱ generated in the next subproblem
 (2) was already included, we have found the optimal solution to the problem

- * 同 * * ミ * * ミ *

Cutting plane applied to the Lagrangian dual

 \Leftrightarrow

Dantzig–Wolfe applied to the original LP

 \Leftrightarrow

Benders decomposition applied to the dual LP.

.

Column generation

► Consider an LP with very many variables: $c_j, x_j \in \mathbb{R}, \mathbf{a}_j, \mathbf{b} \in \mathbb{R}^m, m \ll n$

minimize
$$z = \sum_{j=1}^{n} c_j x_j$$

subject to $\sum_{j=1}^{n} \mathbf{a}_j x_j = \mathbf{b}$
 $x_j \ge 0, \qquad j = 1, \dots, n$

- The matrix $(\mathbf{a}_1, \ldots, \mathbf{a}_n)$ is too large to handle.
- ► Assume that m is relatively small ⇒ the basis matrix is not too large (m × m)

・ 同 ト ・ ヨ ト ・ ヨ ト

Basic feasible solutions

- B = {m elements from the set {1,...,n}} is a basis if the corresponding matrix B = (a_j)_{j∈B} has an inverse, B⁻¹
- A basic solution is given by x_B = B⁻¹b and x_j = 0, j ∉ B. It is feasible if x_B ≥ 0^m
- A better basic feasible solution can be found by computing reduced costs: c̄_j = c_j − c^T_BB⁻¹a_j for j ∉ B

• Let
$$\bar{c}_s = \min_{j \notin B} \bar{c}_j$$

- If $\bar{c}_s < 0 \implies$ a better solution is received if x_s enters the basis
- If $\bar{c}_s \ge 0 \Longrightarrow \mathbf{x}_B$ is an optimal basic solution

- Suppose the columns a_j are defined by a set
 S = {a_j | j = 1,..., n} being, e.g., solutions to a system of equations (extreme points, integer points, ...)
- ► The incoming column is then chosen by solving a subproblem $\bar{c}(\mathbf{a}') = \min_{\mathbf{a} \in S} \left\{ c - \mathbf{c}_B^{\mathrm{T}} \mathbf{B}^{-1} \mathbf{a} \right\}$
- \blacktriangleright a' is a column having the least reduced cost w.r.t. the basis B

▶ If
$$\bar{c}(\mathbf{a}') < 0$$
 let the column $\begin{pmatrix} c(\mathbf{a}') \\ \mathbf{a}' \end{pmatrix}$ enter the problem

・ 同 ト ・ ヨ ト ・ ヨ ト …

Supply: rolls of e.g. paper of length L

Demand: b_i roll pieces of length $\ell_i < L$, i = 1, ..., m

 Objective: minimize the number of rolls needed for producing the demanded pieces

・ 同 ト ・ ヨ ト ・ ヨ ト

First formulation

$$x_{k} = \begin{cases} 1 & \text{if roll } k \text{ is used} \\ 0 & \text{otherwise} \end{cases} \qquad y_{ik} = \begin{cases} 1 & \text{if piece } i \text{ is cut from roll } k \\ 0 & \text{otherwise} \end{cases}$$
$$\minimize \sum_{k=1}^{M} x_{k}$$
$$\text{subject to } \sum_{i=1}^{m} \ell_{i} y_{ik} \leq L x_{k}, \quad k = 1, \dots, M$$
$$\sum_{k=1}^{K} y_{ik} = b_{i}, \qquad i = 1, \dots, m$$
$$x_{k}, y_{ik} \text{ binary,} \quad i = 1, \dots, m, k = 1, \dots, M$$
The value of the LP-relaxation is $\frac{\sum_{i=1}^{m} \ell_{i} b_{i}}{L}$ which can be very bad if $\ell_{i} = \lfloor L/2 + 1 \rfloor$ for large L (large duality gap \Rightarrow potentially bad performance of IP solvers)

Second formulation

- Cut pattern: number *j* contains a_{ij} pieces of length ℓ_i
- ▶ **Feasible** pattern if $\sum_{i=1}^{m} \ell_i a_{ij} \leq L$, where $a_{ij} \geq 0$, integer
- Variables: x_j = number of times pattern j is used

$$\begin{array}{ll} \text{minimize} & \sum_{j=1}^n x_j \\ \text{subject to} & \sum_{j=1}^n a_{ij} x_j = b_i, \qquad i=1,\ldots,m \\ & x_j \geq 0, \text{ integer, } \qquad j=1,\ldots, \end{array}$$

- Bad news: n = total number of feasible cut patterns—huge integer
- Good news: the value of the LP relaxation is often very close to that of the optimal solution.
- \Rightarrow Relax integrality constraints, solve an LP instead of an ILP

п

Trivial: *m* unit columns (gives lots of waste) \Longrightarrow

minimize
$$\sum_{j=1}^{m} x_j$$

subject to $x_j = b_j, \quad j = 1, \dots, m$
 $x_j \ge 0, \quad j = 1, \dots, m$

- 4 回 2 - 4 □ 2 - 4 □

3

Generate better patterns using the dual variable values $\pi_i \Longrightarrow$ new column

$$1 - \max_{a_{ik}} \sum_{i=1}^{m} \pi_i a_{ik} \left[\text{minimize} \left(c_k - \underbrace{\mathbf{c}_B^{\mathrm{T}} \mathbf{B}^{-1}}_{\pi} \mathbf{a}_k \right) \right]$$

subject to
$$\sum_{i=1}^{m} \ell_i a_{ik} \leq L,$$
$$a_{ik} \geq 0, \text{ integer}, \qquad i = 1, \dots, m$$

Solution to this integer knapsack problem: new column \mathbf{a}_k

向下 イヨト イヨト