Optimization of Schedules of a Multitask Production Cell

Karin Thörnblad

September 2011

UNIVERSITY OF GOTHENBURG

- Part of Volvo Group
- Develops and produces aircraft and rocket engine components
- About 3000 employees

Parts processed in the Multi Task Cell

~ 8 compressor rear frames for different aero engines and gas turbines. About 30 different jobs are processed in the Multi Task Cell.

The Multitask Production Cell

VOLVO AERO

9510KT, Karin Thörnblad

Automatic deburring cell Robot deburring

FINDER - P. 20:30

VOLVO AERO

9510KT, Karin Thörnblad

The routing of a part

Every production order follows a routing in the planning system

One **job** in the multitask cell \leftrightarrow 3-5 route operations

_____ \$\$..

Job processed elsewhere

The queue of parts

Problem decomposition

9510KT, Karin Thörnblad

$k \in \tilde{\mathcal{K}}$, set of resources \tilde{a}_k , first time when resource k is available

$j \in \mathcal{J}$, set of jobs $\tilde{r}_{j}^{\mathtt{m}}$, release dates d_i , due dates $\lambda_{jk} = \begin{cases} 1, & \text{if job } j \text{ can be processed on resource } k, \\ 0, & \text{otherwise.} \end{cases}$ \tilde{p}_i machining processing time of job j. j q

$(j,q) \in \mathcal{Q}$, set of pairs of subsequent jobs for the same physical part,

 \tilde{v}_{jq}^{pm} planned lead time between job j and job q

Time-indexed formulation

Decision variables

$$x_{jku} = \begin{cases} 1, & \text{if job } j \text{ is scheduled on } k \text{ at time } u \\ 0, & \text{otherwise.} \end{cases}$$

Binaries:

$$\mathcal{J}||\mathcal{K}||\mathcal{T}|$$

Test case No 3 (20 jobs): 9300

Time variables

 $s_j = t_j + \tilde{p}_j + \tilde{p}_j^{pm}$ the completion time of job j $h_j = \max\{s_j - \tilde{d}_j; 0\}$, i.e. the tardiness of job j

Time-indexed formulation with nail variables

Minimize	$\sum_{j \in \mathcal{J}} (As_j + Bh_j),$			
subject to	$\sum_{k \in \tilde{\mathcal{K}}} \sum_{u \in \mathcal{T}} x_{jku} = 1,$	$j \in \mathcal{J},$		
	$\sum_{u\in\mathcal{T}} x_{jku} \leq \lambda_{jk},$	$j \in \mathcal{J}, k \in \tilde{\mathcal{K}},$		
$\sum_{j\in \mathcal{J} \ \nu=}$	$\sum_{i=(u-\tilde{p}_{j}+1)_{+}}^{u} x_{jk\nu} \le 1,$	$k \in \tilde{\mathcal{K}}, u = 0, \dots, T,$		
$\sum_{k \in \tilde{\mathcal{K}}} \left(\sum_{\mu=0}^{u} x_{j\mu} \right)$	$_{x\mu} - \sum_{\nu=0}^{u+\tilde{v}_{jq}^{pm}} x_{qk\nu} \ge 0,$	$(j,q) \in \mathcal{Q}, u = 0, \dots, T - \tilde{v}_{jq}^{pm},$		
	$x_{jku} = 0,$	$(j,q) \in \mathcal{Q}, \ k \in \tilde{\mathcal{K}}, \ u = T - \tilde{v}_{jq}^{\text{pm}}, \dots, T,$		
$\sum_{k\in \tilde{\mathcal{K}}} \sum_{u}$	$\sum_{\in \mathcal{T}} u x_{jku} + \tilde{p}_j^{pm} = s_j,$	$j \in \mathcal{J},$		
$h_j \ge \max\{s_j - \tilde{d}_j; 0\}, j \in \mathcal{J},$				
	$x_{jku} = 0,$	$j \in \mathcal{J}, \ k \in \tilde{\mathcal{K}}, \ u = 0, \dots, \max\{\tilde{r}_j^{\mathtt{m}}; \tilde{a}_k\},\$		
	$x_{jku} \in \{0,1\},$	$j \in \mathcal{J}, \ k \in \tilde{\mathcal{K}}, \ u \in \mathcal{T}.$		

A planned lead time $v_{jq}\,$ has to elapse between jobs on the same part

$$\sum_{k \in \tilde{\mathcal{K}}} \left(\sum_{\mu=0}^{u} x_{jk\mu} - \sum_{\nu=0}^{u+\tilde{v}_{jq}^{\mathsf{pm}}} x_{qk\nu} \right) \ge 0, \qquad (j,q) \in \mathcal{Q}, u = 0, \dots, T - \tilde{v}_{jq}^{\mathsf{pm}}, \\ x_{jku} = 0, \qquad (j,q) \in \mathcal{Q}, k \in \tilde{\mathcal{K}}, u = T - \tilde{v}_{jq}^{\mathsf{pm}}, \dots, T,$$

VOLVO AERO

9510KT, Karin Thörnblad

Time-indexed formulation with nail variables

Minimize

 $\sum_{j \in \mathcal{J}} (As_j + Bh_j),$ subject to $\sum \sum x_{jku} = 1$, $k \in \tilde{\mathcal{K}} \ u \in \mathcal{T}$ $\sum_{u \in \mathcal{T}} x_{jku} \leq \lambda_{jk},$ $\sum_{u \in \mathcal{T}} x_{jk\nu} \leq 1,$

 $x_{jku} = 0,$

 $x_{jku} \in \{0,1\},$

$$\sum_{k \in \tilde{\mathcal{K}}} \left(\sum_{\mu=0}^{u} x_{jk\mu} - \sum_{\nu=0}^{u+\tilde{v}_{jq}^{pm}} x_{qk\nu} \right) \ge 0,$$

The starting time of job j
$$x_{jku} = 0,$$
$$\sum_{k \in \tilde{\mathcal{K}}} \sum_{u \in \mathcal{T}} u x_{jku} + \tilde{p}_{j}^{pm} = s_{j},$$

Objective: Minimize the weighted sum of completion times and tardiness.

One job is scheduled only once

Each job can only be assigned to an allowed resource k

Only one job at a time can be processed on resource k

Planned lead time between jobs on same part

Definition of completion time

 $h_i \ge \max\{s_i - \tilde{d}_i; 0\},$ Definition of tardiness

$$j \in \mathcal{J}, \ k \in \tilde{\mathcal{K}}, \ u = 0, \dots, \max\{\tilde{r}_j^{\mathtt{m}}, \tilde{a}_k\}$$

Job *i* cannot start in resource *k* before the job's release date or before k is available

The engineer's model (with continuous time variables)

$$z_{jk} = \begin{cases} 1, & \text{if job } j \text{ is scheduled on } k \\ 0, & \text{otherwise.} \end{cases}$$
$$y_{jqk} = \begin{cases} 1, & \text{if job } j \text{ is processed before job } q \text{ on } k \\ 0, & \text{otherwise.} \end{cases}$$

Binaries:
$$|\mathcal{J}||\mathcal{K}| + |\mathcal{J}||\mathcal{J}||\mathcal{K}|$$
 Test case No 3 (20 jobs): 2100

Time variables

$$t_j = \text{starting time}$$

 $s_j = t_j + p_j + p_j^{\text{pm}}$ completion time of job
 $h_j = \max\{0, s_j - d_j\}$ tardiness of job j

VOLVO AERO

1

The engineer's model

Minimize

subject to

$$\begin{split} \sum_{j \in J} (As_j + Bh_j), & \text{weights (A=B=1)} \\ \sum_{k \in \tilde{\mathcal{K}}} z_{jk} &= 1, & j \in \mathcal{J}, \\ z_{jk} &\leq \lambda_{jk}, & j \in \mathcal{J}, \ k \in \tilde{\mathcal{K}}, \\ y_{jqk} + y_{qjk} \leq z_{jk}, & j, q \in \mathcal{J}, \ j \neq q, \ k \in \tilde{\mathcal{K}}, \\ y_{jqk} + y_{qjk} + 1 \geq z_{jk} + z_{qk}, & j, q \in \mathcal{J}, \ j \neq q, \ k \in \tilde{\mathcal{K}}, \\ t_j + p_j - t_q \leq M(1 - y_{jqk}), & j, q \in \mathcal{J}, \ j \neq q, \ k \in \tilde{\mathcal{K}}, \\ t_j \geq a_k z_{jk}, & j \in \mathcal{J}, \\ t_q \geq s_j + v_{jq}^{\text{m}}, & j \in \mathcal{J}, \\ s_j - t_j = p_j + p_j^{\text{pm}}, & j \in \mathcal{J}, \\ h_j \geq \max\{s_j - d_j; 0\}, & j \in \mathcal{J}. \end{split}$$

The engineer's model

Minimize

subject to

$$\begin{split} &\sum_{j \in J} (As_j + Bh_j), & \text{Objective: Minimize the weighted sum of completion times and tardiness.} \\ &\sum_{j \in J} z_{jk} = 1, & \text{One job is scheduled only once} \\ &\sum_{k \in \tilde{\mathcal{K}}} z_{jk} \leq \lambda_{jk}, & \text{One job is scheduled only once} \\ &\sum_{k \in \tilde{\mathcal{K}}} z_{jk} \leq \lambda_{jk}, & \text{One job is scheduled only once} \\ &y_{jqk} + y_{qjk} \leq z_{jk}, & \text{Only one job at a time can be} \\ &y_{jqk} + y_{qjk} + 1 \geq z_{jk} + z_{qk}, & \text{Only one job at a time can be} \\ &t_j + p_j - t_q \leq M(1 - y_{jqk}) \\ &\text{Big number} \quad t_j \geq r_j^m, & t_j \geq a_k z_{jk}, & t_q \geq s_j + v_{jq}^m, & t_q \geq s_j + v_{jq}^m, & \text{Sj} - t_j = p_j + p_j^{\text{pm}}, & \text{Definition of completion time} \\ &h_j \geq \max\{s_j - d_j; 0\}, & \text{Definition of tardiness} \\ \end{split}$$

Comparison between the precedence constraints for the set ${\cal Q}$

$$\sum_{k \in \tilde{\mathcal{K}}} \left(\sum_{\mu=0}^{u} x_{jk\mu} - \sum_{\nu=0}^{u+\tilde{v}_{jq}^{pm}} x_{qk\nu} \right) \ge 0, \qquad t_q \ge s_j + v_{jq}^{m},$$

$$\sum_{k \in \tilde{\mathcal{K}}} \left(\sum_{\mu=0}^{u} x_{jk\mu} - \sum_{\nu=0}^{u+\tilde{v}_{jq}} x_{qk\nu} \right) \ge 0, \qquad t_q \ge s_j + v_{jq}^{m},$$
Constraints: $|\mathcal{Q}| |\mathcal{T}| \qquad |\mathcal{Q}|$
Test case No 3: 372 4

Comparison between the constraints for only one job at a time

$$\sum_{j \in \mathcal{J}} \sum_{\nu = (u - \tilde{p}_j + 1)_+}^{u} x_{jk\nu} \leq 1, \qquad \qquad y_{jqk} + y_{qjk} \leq z_{jk}, \\ y_{jqk} + y_{qjk} + 1 \geq z_{jk} + z_{qk}, \\ t_j + p_j - t_q \leq M(1 - y_{jqk}),$$

9510KT, Karin Thörnblad

Symmetric constraints versus ordering constraints (the engineer's model)

These two constraints regulates the ordering of the jobs in resource k

The ordering constraints can be replaced by constraints symmetric to "the big *M*-constraints":

$$y_{jqk} + y_{qjk} \le z_{jk}, \qquad t_q + p_q - t_j \le M(y_{jqk}), \\ t_{j} + p_j - t_q \le M(1 - y_{jqk}),$$

- The symmetric constraints are common in text books since the ordering constraints are special for problems with multiple machines.
- Computational tests indicate that the model with ordering constraints has **shorter computation times** than a model using the symmetric big *M*-constraints.

What is the size of a realistic scenario?45 jobsNumber of storage locations without fixture:30Number of parts arriving during the coming shift:15

Real production scenarios

- 6 real scenarios based on real production data extracted from the Volvo Aero ERP-system during the autumn of 2010
- The jobs were ordered according to increasing release dates
- From each scenario test instances were created with 5,10,15,..., 70 of the first jobs in the sorted list of jobs (i.e. the queue of jobs)

Realistic release dates

The release date from the ERP system may be negative (i.e. in the past). Therefore a realistic estimate on the part arrival time at the multitask cell is calculated using the knowledge of the part's actual position at time t_0 . The release date is then calculated by the formula Standard queue time

 $r_i = \max \{ realistic estimate; ERP release date - 0.8 v_i \}$

If order checked-in: $r_i = 0$

Postprocessing with real "undiscrete" data

Mean differences between optimal objective values after postprocessing of data

Mean computation times

Evolution of computation times

Comparison between different models' CPU times (seconds)

Th	ne feasibili	ty model	different weights for different setup stations	
М	inimize $\sum_{j \in \mathcal{J}} \left(\mathcal{I}_{j} \right)$	$As_j - \varepsilon t_{1j} + Bh_j + \sum_{i \in \mathcal{N}_j} \sum_{k \in \mathcal{K}} \omega_k z_{ijk}$),	
su	bject to	$\sum_{k \in \mathcal{K}} z_{ijk} = 1,$	$i \in \mathcal{N}_j, \ j \in \mathcal{J},$	
		$z_{ijk} \le \lambda_{ijk},$	$i \in \mathcal{N}_j, \ j \in \mathcal{J}, \ k \in \mathcal{K},$	
		$y_{ijpqk} + y_{pqijk} \le z_{ijk},$	$i \in \mathcal{N}_j, \ p \in \mathcal{N}_q, \ j, q \in \mathcal{J},$ $(i, j) \neq (p, q), \ k \in \mathcal{K},$	
	y_{ijpo}	$q_k + y_{pqijk} + 1 \ge z_{ijk} + z_{pqk},$	$i \in \mathcal{N}_j, \ p \in \mathcal{N}_q, \ j, q \in \mathcal{J}, (i, j) \neq (p, q), \ k \in \mathcal{K},$	
	$t_{ij} + p_{ij} -$	$M(1 - y_{ijpqk}) \le t_{pq},$	$i \in \mathcal{N}_j, \ p \in \mathcal{N}_q, \ j, q \in \mathcal{J},$ $(i, j) \neq (p, q), \ k \in \mathcal{K}$	
		$t_{ij} + p_{ij} + w \le t_{i+1,j},$	$(i,j) \neq (p,q), \ n \in \mathcal{N},$ $i \in \mathcal{N}_j \setminus \{n_j\}, \ j \in \mathcal{J},$	
		$t_{1j} \ge r_j,$	$j \in \mathcal{J},$	
		$t_{ij} \ge a_k z_{ijk},$	$j \in \mathcal{J}, \ k \in \mathcal{K},$	
		$t_{1q} \ge s_j + v_{jq},$	$(j,q) \in \mathcal{Q},$	
	Fixed to solution from	$\mathbf{n} s_j - t_{n_j j} = p_{n_j j},$	$j \in \mathcal{J},$	
	machining problem	$h_j \ge \max\{s_j - d_j; 0\},\$	$j \in \mathcal{J},$	
		$t_{ij} \ge 0,$	$i \in \mathcal{N}_j, \ j \in \mathcal{J},$	
		$y_{2j2qk} = y_{jqk}^{\mathtt{m}},$	$j,q\in\mathcal{J},\ k\in\overset{\sim}{\mathcal{K}},$	
		$z_{2jk} = z_{jk}^{\mathtt{m}},$	$j \in \mathcal{J}, \ k \in \mathcal{K}.$	
where u^m and z^m are the solutions obtained from the machining problem				

where y_{jqk}^m and z_{jk}^m are the solutions obtained from the machining problem.

Current detail planning of the multitask cell

Manual planning based on

- Earliest Due Date (EDD) priority list
- · Other priorities based on the current logistical situation
- The FIFO priority rule (First In First Out) is used in other parts of the factory
- SPT (shortest processing time) is a priority rule known to produce good schedules

The deburring and set-up stations are scheduled by the use of the feasibility model.

EDD, FIFO and SPT versus mathematical optimization

21 scenarios with real production data Collected during April – August 2010

VOLVO AERO

9510KT, Karin Thörnblad

Work load variation

The variation in number of jobs checked-in indicate how the work load has varied during the period.

Mean differences between completion times and tardiness results

The schedules resulting from the use of the priority rules are compared to the optimal values found by the time-indexed model with ℓ =1h in sequence with the feasibility model. (22% higher tardiness)

Shortsighted scheduling

No knowledge about which jobs are on the way to the multitask cell (or further down in the priority list)

Looking into the future...

The optimization model takes all jobs in the queue into account

Looking into the future...

An optimal schedule versus a schedule created using the EDD rule

9510KT, Karin Thörnblad

Coping with reality

As soon as the production schedule is optimized – something changes!

Expected events

- New parts in the queue
- · Variances in the planned lead time

Unexpected events

- Machine breakdown
- Operator sick
- Part with non-conformance leaves queue
- etc.

Future research

- Compare results to more sophisticated scheduling algorithms
- Make a pilot test of using the schedules in the multitask cell
- Constraint programming
- Lagrangian relaxation to get better lower bounds
- Column generation
- Find stronger formulations of the problem
- Robust optimization
- More realistic model: fixtures, personnel etc.
- Find better objective functions
- Develop a time-indexed formulation for the feasibility problem

More tests

More theory

Better model

Questions and comments?

Karin Thörnblad, industrial PhD student, karin.thornblad@volvo.com

VOLVO A FRO

Financial support from Volvo Aero, The Swedish Research Council, NFFP (Swedish National Aeronautics Research Programme)