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A motivating example

Wind power turbine with 14 major
components

Crane is necessary for replacement of
failed components

Given failure of one component
(opportunity), decide if other
components should be replaced

The decision is based on:

Components’ life distributions (data)
Price of new component and
maintenance occasion cost
Remaining life of the turbine
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Deterministic component lives

T
i

a

For each component i ∈ N , choose the component life Ti such
that

P(t ≤ Ti ) = a,

for a small a.
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Deterministic component lives

cost: 2c1 + 3c2 + 3d
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Definition

Given lives Ti for
every component i ,
costs cit , d and
timehorizon T ,
minimize the
maintenance cost.

Solved by MILP
model introduced by
Dickman, Epstein and
Wilamowsky (1991).
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The variables

xit =

{
1 component i is replaced at time t,

0 otherwise.

zt =

{
1 maintenance performed at time t,

0 otherwise.
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The deterministic model

the objective function

minimize
∑
t∈T

(∑
i∈N

citxit + dzt

)
,

the constraints

xit ≤ zt OR
∑
i∈N

xit ≤ Nzt ? 2min!

l+Ti∑
t=l+1

xit ≥ 1, i ∈ N , l ∈ {0, . . . ,T − Ti},

xit ∈ {0, 1}, i ∈ N , t ∈ T ,

zt ∈ {0, 1}, t ∈ T .
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Small example

d=0

d=10

d=1000

time

time

time
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Properties

Complexity: NP-hard.

We can relax the integrality on xit .

If we fix zt , we can use greedy.
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NP, P and NPC.

NP: decision problems verifiable in polynomial time.
P: polynomially solvable problems (Ex. shortest path, LP,
assignment problem...).
NPC: If all problems in NP are polynomially reducible to
problem A, A is in NPC.

Example (set covering decision problem)

Given: A = {1, . . . , k}, S1, . . . ,S` ⊂ A.
Question: Is there cover of cardinality <= N?

Adam Wojciechowski The opportunistic maintenance problem



Introduction Complexity analysis Total unimodularity Greedy solves subproblem Discussion

NP-hard

NP-hard: A is NPC and A is polynomially reducible to B
⇒ B is NP-hard

Example (set covering optimization problem)

Given: A = {1, . . . , k}, S1, . . . ,S` ⊂ A.
Question: Which is the cover of smallest cardinality?
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The replacement problem is NP-hard.

Theorem

Set covering is polynomially reducible to the replacement problem.

Proof.

Consider the replacement problem with n = k, T = `,Ti = `,
d = 1, cit = 0 if i ∈ St and cit = 2 otherwise.

Show that a solution to this RP yield an optimal solution to
the SC, 10 min!

Each component will be replaced exactly once.

If i 6∈ St then xit = 0 since cit > d .

Optimal solution (x∗, z∗), then {St |zt = 1} yields a minimum
cardinality cover.
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Definition

A matrix A is TU if the determinant of each square submatrix is
equal to -1,0 or 1.

Example

The matrix

1 0 0
0 1 1
1 1 1

 is TU.

The matrix

1 1 0
1 0 1
0 1 1

 is not TU.

Theorem

If A is TU then (A, I ) is TU.

If A has consecutive ones property then it is TU.

If A is TU then AT is TU.
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Theorem

Consider x∗ = arg min{cT x |x ∈ Zn,Ax ≤ b}. If A is TU, b is
integral and the solution to the LP
x∗LP = arg min{cT x |x ∈ Rn,Ax ≤ b}, then x∗ = x∗LP .

Proof.

Constraint is equivalent to Ax + Is = b.

Optimal basis B is a submatrix of (A, I ).

Optimal solution (xB , xN) = (B−1b, 0).

Cramers rule B−1 = B∗

detB , B∗ product of elements in B.

B−1 is integral ⇒ B−1b is integral.
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Relax integrality on xit

Theorem

If zt is fixed and integral, then there exists an optimal LP solution
which yields integral values on xit .

Proof.

Prove this by considering the constraint matrix! 5min!

Consecutives one property on life constraints

xit ≤ zt yields identity matrix

The constraint matrix is TU
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Greedy

Theorem

If the costs depend monotonically on time (i.e. cit ≥ cit+1 or
cit ≤ cit+1 and the maintenance occasions are fixed (i.e. zt are
fixed), then a greedy algorithm yields and optimal maintenance
schedule.

Proof.

Which greedy algorithm? 2 minutes!
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Discussion

Which algorithm could use the TU property and the greedy
property?
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