Introduction	Complexity analysis	Total unimodularity	Greedy solves subproblem $^{\circ}$	Discussion

The opportunistic maintenance problem

Adam Wojciechowski

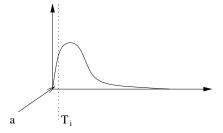
2011-09-27

Introduction	Complexity analysis	Total unimodularity	Greedy solves subproblem	Discussion

- 2 Complexity analysis
- 3 Total unimodularity
- Greedy solves subproblem

Introduction ••••••	Complexity analysis	Total unimodularity	Greedy solves subproblem O	Discussion
A motiva	ating example			

- Wind power turbine with 14 major components
- Crane is necessary for replacement of failed components
- Given failure of one component (opportunity), decide if other components should be replaced
- The decision is based on:
 - Components' life distributions (data)
 - Price of new component and maintenance occasion cost
 - Remaining life of the turbine

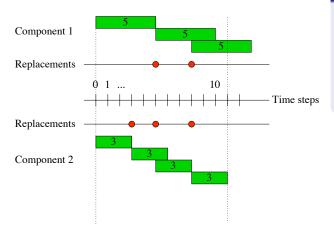


For each component $i \in \mathcal{N}$, choose the component life \mathcal{T}_i such that

$$P(t \leq T_i) = a,$$

for a small a.

cost: $2c_1 + 3c_2 + 3d$



Definition

Given lives T_i for every component i, costs c_{it} , d and timehorizon T, minimize the maintenance cost.

Solved by MILP model introduced by Dickman, Epstein and Wilamowsky (1991).

Introduction	Complexity analysis	Total unimodularity	Greedy solves subproblem O	Discussion
The varia	bles			

$$x_{it} = \begin{cases} 1 & \text{component } i \text{ is replaced at time } t, \\ 0 & \text{otherwise.} \end{cases}$$

$$z_t = \begin{cases} 1 & \text{maintenance performed at time } t, \\ 0 & \text{otherwise.} \end{cases}$$

Introduction	Complexity analysis	Total unimodularity 000	Greedy solves subproblem O	Discussion
The dete	rministic mod	el		

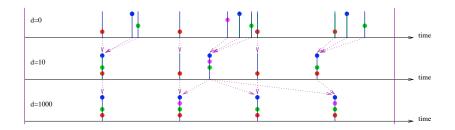
the objective function

minimize
$$\sum_{t\in\mathcal{T}}\left(\sum_{i\in\mathcal{N}}c_{it}x_{it}+dz_t\right)$$
,

the constraints

$$\begin{array}{rcl} x_{it} \leq z_t & OR & \sum_{i \in \mathcal{N}} x_{it} \leq Nz_t \ ? \ 2min! \\ & \sum_{t=l+1}^{l+T_i} x_{it} & \geq & 1, \quad i \in \mathcal{N}, l \in \{0, \ldots, T-T_i\}, \\ & x_{it} & \in & \{0, 1\}, \quad i \in \mathcal{N}, t \in \mathcal{T}, \\ & z_t & \in & \{0, 1\}, \quad t \in \mathcal{T}. \end{array}$$

Introduction ○○○○○●○	Complexity analysis	Total unimodularity	Greedy solves subproblem O	Discussion
Small exa	mple			



Introduction ○○○○○●	Complexity analysis	Total unimodularity	Greedy solves subproblem O	Discussion
Propertie	S			

- Complexity: NP-hard.
- We can relax the integrality on x_{it} .
- If we fix z_t , we can use greedy.

Introduction	Complexity analysis ●○○	Total unimodularity	Greedy solves subproblem O	Discussion
NP, P an	d NPC.			

- NP: decision problems verifiable in polynomial time.
- P: polynomially solvable problems (Ex. shortest path, LP, assignment problem...).
- NPC: If all problems in NP are polynomially reducible to problem A, A is in NPC.

Example (set covering decision problem)

Given:
$$A = \{1, \ldots, k\}, S_1, \ldots, S_\ell \subset A$$
.

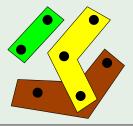
Question: Is there cover of cardinality $\leq N$?

Introduction	Complexity analysis ○●○	Total unimodularity	Greedy solves subproblem O	Discussion
NP-hard				

NP-hard: A is NPC and A is polynomially reducible to B \Rightarrow B is NP-hard

Example (set covering optimization problem)

Given: A = {1,..., k}, S₁,..., S_ℓ ⊂ A.
Question: Which is the cover of smallest cardinality?



Introduction	Complexity analysis ○○●	Total unimodularity 000	Greedy solves subproblem O	Discussion

The replacement problem is NP-hard.

Theorem

Set covering is polynomially reducible to the replacement problem.

Proof.

- Consider the replacement problem with n = k, $T = \ell$, $T_i = \ell$, d = 1, $c_{it} = 0$ if $i \in S_t$ and $c_{it} = 2$ otherwise.
- Show that a solution to this RP yield an optimal solution to the SC, 10 min!

Introduction	Complexity analysis	Total unimodularity ●೦೦	Greedy solves subproblem O	Discussion
Defini	tion			
	rix A is TU if the to -1,0 or 1.	determinant of e	ach square submatrix	is
Exam	ole			
The m	$ \text{natrix} \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix} $	is TU.		
The m	$ \text{natrix} \begin{pmatrix} 1 & 1 & 0 \\ 1 & 0 & 1 \\ 0 & 1 & 1 \end{pmatrix} $	is not TU.		

- If A is TU then (A, I) is TU.
- If A has consecutive ones property then it is TU.
- If A is TU then A^T is TU.

Introduction	Complexity analysis	Total unimodularity	Greedy solves subproblem	Discussion
		000		

Consider $x^* = \arg \min\{c^T x | x \in \mathbb{Z}^n, Ax \le b\}$. If A is TU, b is integral and the solution to the LP $x_{LP}^* = \arg \min\{c^T x | x \in \mathbb{R}^n, Ax \le b\}$, then $x^* = x_{LP}^*$.

Proof.

- Constraint is equivalent to Ax + Is = b.
- Optimal basis B is a submatrix of (A, I).
- Optimal solution $(x_B, x_N) = (B^{-1}b, 0)$.
- Cramers rule $B^{-1} = \frac{B^*}{detB}$, B^* product of elements in B.
- B^{-1} is integral $\Rightarrow B^{-1}b$ is integral.

Introduction	Complexity analysis	Total unimodularity ○○●	Greedy solves subproblem O	Discussion
Relax int	egrality on x_{ii}	+		

If z_t is fixed and integral, then there exists an optimal LP solution which yields integral values on x_{it} .

Proof.

• Prove this by considering the constraint matrix! 5min!

Introduction	Complexity analysis	Total unimodularity 000	Greedy solves subproblem ●	Discussio
Greedy				

If the costs depend monotonically on time (i.e. $c_{it} \ge c_{it+1}$ or $c_{it} \le c_{it+1}$ and the maintenance occasions are fixed (i.e. z_t are fixed), then a greedy algorithm yields and optimal maintenance schedule.

Proof.

Which greedy algorithm? 2 minutes!

Introduction	Complexity analysis	Total unimodularity 000	Greedy solves subproblem O	Discussion		
Discussion						

Which algorithm could use the TU property and the greedy property?