
MASTER’S THESIS

Large scale 0-1 minimization problems
solved using dual subgradient schemes,
ergodic sequences and core problems

Carolin Juneberg

Department of Mathematics
CHALMERS UNIVERSITY OF TECHNOLOGY
GÖTEBORG UNIVERSITY
Göteborg Sweden 2001

Thesis for the Degree of Master of Science

Large scale 0-1 minimization problems
solved using dual subgradient schemes,
ergodic sequences and core problems

Carolin Juneberg

Department of Mathematics
Chalmers University of Technology and Göteborg University

SE-412 96 Göteborg, Sweden
Göteborg, March 2001

Matematiskt centrum
Göteborg 2001

Abstract

We present a heuristic algorithm for solving large scale 0-1 minimization
problems. The algorithm is based on Lagrangean relaxation of complicat-
ing side constraints together with subgradient optimization and an ergodic,
i.e. averaged, sequence of subproblem solutions. This sequence tends to-
wards a solution to the continuous relaxation of the original program. This
solution predicts optimal values for a (large) subset of the variables. The
remaining, unpredictable variables are included in a core problem which is
considerably smaller than the original one, and which is solved to optimality.

The algorithm was implemented in the C programming language together
with Cplex callable library. It is tested on large scale 0-1 minimization prob-
lems arising in airline crew scheduling. Our strategy has shown to work well
on many problems. For 50� of the test problems we found the optimal solu-
tion. The size of the core problems vary between 0.25� and 7.5� of the size
of the original problem. We have not been able to solve unicost problems.

Sammanfattning

Vi presenterar en heuristisk algoritm för att lösa storskaliga 0-1 minimiser-
ings problem. Algoritmen baseras på Lagrange relaxering av de besvärliga
bivillkoren tillsammans med subgradient optimering och en ergodisk sekvens
av subproblem lösningar. Sekvensen är en approximativ lösning till det ur-
sprungliga problemets kontinuerliga relaxering. Denna lösning förutsäger
optimala värden för en stor delmängd av variablerna. De kvarvarande,
oförutsägbara variablerna inkluderas i ett kärnproblem som är mycket min-
dre än ursprungsproblemet, och som löses till optimalitet.

Algoritmen implementerades i programmeringsspråket C tillsammans med
Cplex och vi har löst storskaliga 0-1 minimiserings problem som uppkom-
mer inom flygbesättningsoptimering. Vår strategi har visat sig fungera väl
på många problem. Till 50� av testproblemen fann vi optimallösningen.
Storleken på kärnproblemen varierar mellan 0.25� till 7.5� av ursprungsprob-
lemets storlek. Vi har inte lyckats lösa problem med lika kostnad.

Preface

The work presented in this report completes my studies in mathematics at
Göteborg University, leading to the degree Master of Science.

I would like to thank my supervisor Ann-Brith Strömberg at Chalmers Uni-
versity of Technology and Göteborg University for making this possible, and
for all the input and support through out the project.

Contents

1 Background 4

2 Methodology 5
2.1 Modelling the problem as an IP-problem 5
2.2 Lagrangean relaxation . 6
2.3 Lagrangean duality and subgradient optimization 7
2.4 An ergodic sequence of primal subproblem solutions 11

3 Application to airline crew scheduling 14
3.1 Solution procedure . 14
3.2 The algorithm . 14

4 Computational results 17
4.1 Problem reduction . 17
4.2 Parameter settings . 17
4.3 Discussion concerning tolerances 22
4.4 Core problems created from different LP solutions 25
4.5 Final results . 27

5 Conclusions 33

3

1 Background

Over the last thirty years there have been much research done in the field
of planning and scheduling crews. One reason may be that next to fuel costs
the crew costs are the largest direct operating costs of airlines [AHKW].
The problem involves many different parts and is therefore solved in sev-
eral steps; production of the timetable, allocation of aircraft to the flight
legs (a flight leg is a non-stop flight between two airports), construction of
pairings (a pairing is a sequence of flight legs for a crew) and the assignment
of pairings to crew members. One constructs legal pairings (often more than
a million) that satisfies (all) existing rules, such as governmental rules and
union agreements. A subset of all these pairings is chosen such that every
flight leg gets a crew and so that the total cost is minimized. Here, the op-
timization problem is modelled under the assumption that the set of legal
pairings is available.

A typical airline crew scheduling problem deals with about 50 to 2000 flight
legs and 10,000 to 1,000,000 possible pairings [Wed95]. Of course, this be-
comes a very large-scale integer programming problem and therefore is very
difficult to solve. Normally this complex problem is solved with advanced
software engineering. Companies like Carmen Systems AB, Resource Man-
agement AB and AD OPT Technologies Inc. develop and market sys-
tems to airlines for planning of aircrafts and flight crews. Our strategy is
to use a heuristic method based on Lagrangean relaxation of the set cov-
ering constraints, together with subgradient optimization for the resulting
Lagrangean dual problem and an ergodic, i.e. averaged, sequence of sub-
problem solutions. Through the ergodic sequence we will predict whether
a specific pairing is included in the optimal set of pairings or not. We then
get a smaller problem consisting of the pairings that we were not able to
make any predictions about. This smaller problem is called a core problem
and may be solved either exactly or approximately. In this work, we will
examine whether or not our choice of method is applicable in practice and
perform tests to compare the solution obtained with our method with the
optimal solution.

In Section 2 we present the method and the theory behind it. The method is
specialised for solving set covering problems arising in airline crew schedul-
ing in Section 3 and in Section 4 we describe the tests we have performed
and present the results. In the final section, Section 5, we draw conclusions.

4

2 Methodology

In Section 2.1, we model the crew scheduling problem as an integer op-
timization program and in Sections 2.2–2.4 we present the tools used for
finding solutions to this program.

2.1 Modelling the problem as an IP-problem

The crew scheduling problem consists of pairings. Pairings are work plans,
that is, possible sequences of flight legs for an unspecified crew member
starting and ending at the home base, satisfying all existing rules, such as
governmental rules and union agreements, for example the length of a duty
period. A subset of all these possible pairings is chosen such that every
flight gets a crew and such that the total cost is minimized. The optimization
problem is modelled under the assumption that the set of all legal pairings
is available. This gives the following mathematical formulation of the crew
scheduling problem.

Let n be the number of possible pairings and m the number of flight legs
that have to be covered. The variables xj are defined as:

xj �

�
�� if pairing j is in the solution�
�� otherwise�

j � �� � � � � n�

We let cj denote the cost associated with the choice of pairing j. One set
of constraints, the covering constraints, expresses that each flight leg must
be covered by at least bi crew members. For cockpit crew, typically, bi �
�. The reason for the inequality relation in the covering constraints are
the possibility of deadheading, that is, that a crew member is transported
passively as a passenger to the home base or to some other base for another
duty period. The parameters aij are defined as:

aij �

�
�� if pairing j is operating leg i�
�� otherwise�

i � �� � � � � m� j � �� � � � � n�

5

With the above defined parameters we have the following mathematical
model of the crew scheduling problem, called a set covering problem:

min
nX
j��

cjxj (SCP)

s.t.
nX
j��

aijxj � bi i � �� � � � � m

xj � f�� �g j � �� � � � � n�

This is a NP-complete optimization problem [Kar72] (a class of problems for
which no polynomial algorithm has been found), i.e., solving a NP-complete
problem with an optimal algorithm requires a considerable computational
effort. Therefore, a computationally effective or cheap heuristic algorithm
capable of producing high quality (that is, near-optimal) solutions is prefer-
able. The difficulties are due to the combination of covering constraints,
integrality requirements, and the size of the problem that is, m and n.

2.2 Lagrangean relaxation

We may view this linear integer optimization problem as a fairly easily solv-
able problem with a number of complicating side constraints. In order to
make simplifications we use the Lagrangean relaxation technique, but first
some definitions. A general model for an integer program may be defined
as:

z� � min cTx (IP)
s.t. Ax � b

x � X � Zn
� �XP �

where c � Rn, b � Rm, A � Rm�n and XP � Rn is a bounded polyhedron.
We assume that the set of feasible solutions to (IP) is nonempty; then the
set of optimal solutions, X�, is nonempty and bounded. We consider that
Ax � b are the complicating constraints. For the integer program (IP) the
linear programming relaxation is given by

z�LP � min cTx (LP)
s.t. Ax � b

x � XLP � Rn
� �XP �

6

That is, we have replaced the integrality constraint in (IP) by its continuous
relaxation. A well known relation [Geo74] between z� and z�LP is,

z�LP � z�� (1)

The Lagrangean relaxation technique associates a vector, � � Rm, to the
complicating constraints and bring them into the objective function. This
vector � can be interpreted as a penalty for not fulfilling the associated con-
straints. We define � � Rm �� R as the concave (and continuous) function,

���� �min
x�X

�cTx	 �T �b� Ax�
 � bT�	min
x�X

�c� AT�
Tx� (2)

Let x��� denote a solution to the inner minimization problem (2) at �. For
the special case (SCP) of (IP), (2) is easily solved by inspection, and x��� is
given by

xj��� �

�
�� if cj �

Pm

i�� �iaij � ��
�� otherwise�

j � �� � � � � n�

where � � ���� � � � � �m�
T . For all � � �, the solution, x���, yields a lower

bound, ����, on the optimal value z� of the original problem (IP) [Geo74]:

���� � cTx��� 	 �T �b� Ax���� � z�� � � �� (3)

Typically, a solution x��� to the Lagrangean subproblem (2) is infeasible in
the original problem.

A heuristic algorithm is an approximative method for solving problems.
Such a method may be designed in different ways for a problem, depending
on the solution desired. One purpose may be to quickly generate a feasible
solution (using a simple heuristic method) and another to generate a high-
quality (i.e., near-optimal) solution (using a more complicated heuristic pro-
cedure). We will use a simple heuristic procedure to convert a relaxed so-
lution x��� into a feasible solution for the original problem, see Section 3.2.
This modified primal feasible solution, xH , yields an upper bound, �z, on the
optimal solution to the original problem (IP):

z� � cTxH
def�
� �z� where xH is a feasible solution to (IP)�

2.3 Lagrangean duality and subgradient optimization

We are interested in finding the values of �i� i � �� � � � � m, that give the
maximum lower bound, ��. This maximization problem, the Lagrangean

7

dual program, is defined as

�� � max
��Rm

�

����� (LD)

It follows from (3) that �� � z� [Geo74]. Ideally, the optimal value of the
Lagrangean dual program is equal to the optimal value of the original prob-
lem, i.e., �� � z�, that is when (IP) is continuous. If the two programs, (IP)
and (LP), do not have equal optimal values then a duality gap, z� � �� � �,
is present. In our case a duality gap is present.

The relationship between �� and z�LP , is explained next.

Definition 1 The convex hull of a bounded polyhedron Y 	 Rn, denoted
conv(Y), is defined as

conv�Y � �

�
y � y �

kX
i��

�iy
i�

kX
i��

�i � �� �i � �� i � �� � � � � k

�
�

where yi� i � �� � � � � k� are the extreme points of Y .

We replace X in (IP) by its closed convex hull, conv(X). This gives the
convex program

z�CP � min cTx (CP)
s.t. Ax � b

x � conv�X�

Since conv�X�
 X , (CP) is a relaxation of (IP), and we have that

z�CP � z��

Since X 	 XLP , we have that conv�X� 	 conv�XLP � � XLP , implying
that (LP) is a relaxation of (CP), and we have that

z�LP � z�CP � (4)

According to [Geo74], we also have that

�� � z�CP �

The above results give us the following relations between z�, ��, z�CP and
z�LP :

z� � �� � z�CP � z�LP � (5)

8

In the case when conv�X� � XLP , the program (2) is said to have the inte-
grality property [Geo74], implying that the value of the optimal solution for
the Lagrangean dual program equals that of the linear programming relax-
ation, i.e., �� � z�LP ((4) and (5)). We expect to have integrality property.

The dual objective function, � � Rm �� R, is continuous, concave and piece-
wise linear [Fis81]. Thus, we have to search for the maximum of a concave
but not everywhere differentiable function over Rm

� . The optimality con-
ditions for the Lagrangean dual program may be formulated in terms of
subgradients.

Definition 2 A vector � � Rm is a subgradient of the concave function � at
� � Rm if it satisfies [Fis81]

���� � ���� 	 �T ��� ��� �� � Rm�

Following from (2) and Definition 2, a subgradient ����� to the dual objective
function � at �� is given by

����� � b� Ax�����

The Lagrangean dual program (LD) is solved by �� � � if and only if there
is a subgradient, ��, of � at �� such that [LL97]

�� � � and ����T �� � ��

For solving the Lagrangean dual program, i.e., to find optimal values �� of
the multipliers � we use subgradient optimization. The subgradient opti-
mization technique is an iterative procedure. Given an initial value, �� � �,
a sequence f�sg of iterates is generated by the method

�s��i � max f�si 	 	s �bi � Aix
s�� �z �

�s
i

� �g� i � �� � � � � m� s � �� �� � � � � (6)

where Ai denotes row i of A, xs � x��s� is a solution to the Lagrangean
subproblem (2) at �s and 	s � � is the step length, all at iteration s �
�� �� � � � . If xs � x��s� then the step direction �s � b � Axs is a subgradient
of the function � at �s. By

�zs � min
r������ �s

zHr and zs � max
r������ �s

���r�� s � �� �� � � � �

we will denote the best upper and lower bounds, respectively, on z� found
at iteration s.

9

It is useful to adjust the subgradients, by projection onto the binding con-
straints, if they do not contribute to the update of the multipliers � in an ef-
fective manner, [Bea90], with theoretical convergence according to [LPS96].
The formula for the projection when the feasible set for (LD) is Rm

� is given
by

��sj �

�
�� if �sj � � and �sj � ��
�sj � otherwise�

j � �� � � � � n� (7)

The step length formula most successfully used in practice is, [Bea93], given
by

	s �

s��zs � ���s��

k �s k� � s � �� �� � � � � (8)

where
s � ���� �� ��
� � � �� � �� �� � �� s � �� �� � � � � is a parameter for
guaranteeing theoretical convergence of the sequence f�sg to an optimal
solution to (LD) [Pol69]. The classical approach is to choose,
� � � and
update
s according to

s�� �

�
 �
s� if zs�p � zs

s� otherwise�
s � q 	 �� � � � � (9)

where � ��� �� and p � f�� � � � � qg. We have employed the projection
formula (7), resulting in the step length formula,

�	s �

s��zs � ���s��

k��sk� � s � �� �� � � � � (10)

To choose the values of
s, we have followed the recommendation in [CFT99],
in order to obtain fast convergence to an optimal solution to (LD). The al-
gorithm [CFT99] uses an adaptive step length parameter with
� � ��� and
the following criterion for updating
s:

s�� �

��	
�

�

�

s� if �� � � � ���� � ��

�

�

s� if �� � � � ����� � ��

s� otherwise�

s � �� �� � � � � (11)

where

�� � min
r�s�p������ �s

���r� and � � max
r�s�p������ �s

���r��

10

For every p � �� subgradient iterations they compare the best and worst
lower bounds computed during the last p iterations. If these two values dif-
fer more than ��, the current value of
s is halved. If the two values are
less than ���� from each other, they multiply the current value of
s by ��.

The difference in convergence speed between the updating formulas (9)
and (11) is illustrated in Figure 1 for test problem 5.1, see Table 1.

0 500 1000 1500
220

225

230

235

240

245

250

255

Lo
w

er
 b

ou
nd

Iteration

___ New

...... Classical

Figure 1: Illustration of the iterative process in the subgradient method, for the classical
approach (9) with �� � � and the new approach (11) with �� � ���. In both cases the
subgradients are adjusted by projection (7). The lower bound progress towards the optimal
value for (LD). The dashed line represents z�

LP
.

One obvious way in which the subgradient procedure could be terminated
(but rarely the case, and we don’t expect that to be the case) is if we find that
the maximum lower bound equals the upper bound (obtained via a heuristic
method, Section 3.2). Then we have found an optimal solution. Another,
and more useful, way to terminate the procedure is after a prespecified num-
ber of iterations. The iteration (6), (7), (10) solves the dual program (LD)
in the limit, but an optimal solution to (IP) cannot be guaranteed to be ob-
tained from the Lagrangean subproblem; this has been referred to as the
non-coordinability phenomenon of linear programming [DJ79].

2.4 An ergodic sequence of primal subproblem solutions

We will utilize an ergodic sequence to find an optimal solution to (LP). This
sequence is easily constructed in the subgradient optimization procedure.

11

As mentioned above, there is no guarantee for finding an optimal solution
to (IP) when solving the Lagrangean dual program using the subgradient
optimization technique combined with some heuristic method for finding
feasible solutions. To get an optimal solution to (LP), an ergodic sequence,
consisting of weighted averages of the Lagrangean subproblem solutions,
may be utilized, see [LPS]. An ergodic sequence of the Lagrangean sub-
problem solutions is defined by

�xt � ���t

t��X
s��

	sx
s � �t �

t��X
s��

	s � t � �� �� � � � � (12)

Here, xs � x��s� is a solution to the Lagrangean subproblem (2) at �s and
	s is the step length. The value �xtj may be interpreted as the relative fre-
quency by which the optimal value of the variable xj is one in the sequence
of subproblem solved. The sequence f�xtg converges to the set of optimal
solutions to (LP) under the following conditions [LL97].

Theorem 3 If the step lengths in the dual subgradient procedure (6) applied
to the Lagrangean dual program (LD) satisfies the following conditions

	s � �� lim
s��

	s � ��
�X
s��

	s �� and
�X
s��

	�s �� (13)

and the sequence f�xtg is defined by formula (12), then

lim
t��

min
x�X�

LP

kx� �xtk � ��

An alternative ergodic sequence, with equal weights on all subproblem so-
lutions, is given by

�xt �
�

t

t��X
s��

xs � t � �� �� � � � � (14)

The sequence (14) converges in the same manner as the sequence (12),
given that the step lengths is chosen as a harmonic series

	s �
a

b 	 c � s�

where a� c � �� b � �.

Experience from numerical experiments conducted in [LL97] and [LPS99]

12

shows that a method with ergodic sequence f�xtg with equal weights per-
forms better than the ergodic sequence f�xtg with weights proportional to
the step lengths. The disadvantage of using (12) is that the initial poor solu-
tions are more sensitive for the weights chosen in that sequence, compared
to those of the sequence (14). Hence, we will use the ergodic sequence f�xtg.
A preferable procedure is to delay the start of computing the ergodic se-
quence f�xtg until the subproblem solutions xs have reached an acceptable
quality. Since the algorithm (6) is memoryless and we utilize the properties
in the limit of the sequence f�xtg, the delayed start of the averaging yields
no problems with the theoretical convergence.

13

3 Application to airline crew scheduling

We have used the algorithm described above for solving set covering prob-
lems arising in airline crew scheduling.

3.1 Solution procedure

Our strategy is to use a heuristic method for predicting optimal values for
a relatively large subset of the variables, xj , and then solve a smaller prob-
lem constituted by the remaining variables. This smaller problem is called
the core problem, and may be solved either exactly or approximately. In
the construction of the core problem feasibility has to be maintained. Our
hypothesis is that if the prediction is based on a solution to (LP) that is
good enough to produce a feasible and near-optimal solution to the original
problem (SCP). Our prediction is based on the primal ergodic iterates �xt

as follows. Assume that the subgradient procedure has terminated, at iter-
ation t, say. For appropriate values of �� and ��, if �xtj � � � ���� ���, then
fix xj to 1(0). The remaining variables (those xj for which �� � �xtj � �� ��)
are included in the core problem. If the core problem is feasible, then we
solve it, otherwise, we decrease the tolerances �� and �� and repeat. As an
alternative, the prediction could be based on near-optimal reduced costs.

3.2 The algorithm

By applying Lagrangean relaxation of the covering constraints, with multi-
pliers � � ���� ��� � � � � �m�

T , to (SCP), the Lagrangean subproblem (2) is
obtained. The Lagrangean dual program is solved by the subgradient opti-
mization algorithm, (6) and (7), and an ergodic sequence f�xtg of subprob-
lem solutions is simultaneously computed, using (14).

Some of the solutions will, typically, violate some of the relaxed covering
constraints. Therefore, in the subgradient optimization procedure, a heuris-
tic algorithm is included that will produce feasible solutions from infeasible
ones, as follows. For each row i which is uncovered (i.e.,

Pn

j�� aijx
s
j � �) set

xsk � � for column k corresponding to ck � minjfcjjaij � �g.

For the step lengths in the subgradient procedure (6) there are some al-
ternatives. One option is to choose them according to (8), in which case
theoretical convergence, f����g � ��, is given in [Pol69], and the practical
convergence is according to [HWC74]. Another option is to choose them

14

according to a modified harmonic series (a special case of (13)),

�	s �
M

b 	 s
� M � �� b � �� (15)

with theoretical convergence, f���s�g � �� and f�sg � ��, according to
Theorem 2.7 in [LPS96]. A final option, a special case of (13) and a gener-
alization of (15), is to choose

�

b	 s
� �	s � M

b 	 s
� M � � � �� b � �� (16)

with the same convergence properties as (15). In practice, we will choose
step lengths according to (10) until we start computing the ergodic sequence,
and then as a modified harmonic series (15), with b � � and, letting r be the
start iteration for computing the ergodic sequence, choosing M according
to

M �
r

��

rX
s�r��

�	s�

Our solution scheme is summarized as follows.

1. Initialize s � �, �z� � , z� � � and ��i � minj������ �nfcjjaij � �g
(i � �� � � � � m). Choose � � �.

2. Choose the number, t, of subgradient iterations to be performed, the
start iteration r for computation of the ergodic sequence, the lower
and upper tolerances, ��� �� � R�� � � �� 	 �� � �, and the maximal
relative difference � � � between z���� ��� and zs, where z���� ��� is
the value of the solution. Perform t subgradient iterations applied to
the Lagrangean dual program (LD), and apply the heuristic method
in each iteration in order to compute �zs and zs.

3. Fix the binary variables xj with values �xtj � � � �� to 1 and those xj
with values �xtj � �� to 0. If the number of variables fixed to 1 is larger
than the number of rows, then decrease the upper tolerance �� and
repeat step 3.

4. When creating the core, rows and columns are deleted from the orig-
inal problem. The remaining problem is the core. The core is con-
structed by deleting every column j that corresponds to a fixed vari-
able xj and for every variable xj fixed to 1 delete those rows i for
which aij � �. If the core problem is feasible, then solve it. Otherwise,
decrease the lower tolerance �� and repeat from step 3.

15

5. Construct a solution to the original problem from the values of the
fixed variables and those of the core problem.

6. Examine the solution to the original problem. If

a. z���� ��� � �zs, then decrease the upper tolerance �� and repeat from
step 3.

b. the solution is satisfactory, that is,

z���� ���� zs

zs
� �� (17)

then terminate the algorithm.

c. zs�� 	 �� � z���� ��� � �zs decrease the upper and lower tolerances,
�� and ��, and repeat from step 3.

16

4 Computational results

The computer implementation of the algorithm was made in the C program-
ming language together with the Cplex callable library, which provides an
integer programming solver, for solving the core problem. The existing C-
function scpreader() reads the data of a set covering problem from a
file and stores it in appropriate data structures. We have used test prob-
lems of different sizes and structures from Beasley’s OR-Library (denoted
x.x; where x denotes integer numbers, and they may be found on the Inter-
net, http://mscmga.ms.ic.ac.uk/jeb/jeb.html) and real life problems from the
Swedish Railway Company (denoted sjxx).

4.1 Problem reduction

By inspection of the problems one might find unnecessary information that
increases the size of the problems. Such information can be removed with-
out changing the solutions, in order to reduce the size of the problems. For
example there can be identical columns or rows dominating each other, i.e,
whenever a certain constraint is fulfilled some other constraints are fulfilled
too. We used the Cplex function Presolve to examine whether the problems
were as compact as possible, and made reductions where possible. For our
tests we then used the presolved problems.

4.2 Parameter settings

In the algorithm there are parameters to calibrate. We are aiming for a
small, easily solved core problem yielding a high quality solution for (SCP),
and for this we utilize an ergodic sequence with calibrated parameters, ��
and ��.

The size of the core problem and the quality of the solution is dependent
on the ergodic sequence and due to the fact that we can not make up for a
bad sequence afterwards, we started by calibrating the parameters concern-
ing the computation of the sequence, which involves the start iteration, r,
for computation of the the ergodic sequence and the total number of itera-
tions, t, to be made in the subgradient optimization scheme.

An optimal solution to the continuous relaxation (LP) corresponds to a
“perfect” ergodic sequence, since the ergodic sequence converges towards
an optimal solution to (LP) in the limit. Hence, we also solve (LP) to op-
timality, both with the simplex and the barrier algorithm (within Cplex).

17

0 100 200 300 400 500 600
0.015

0.02

0.025

0.03

0.035

0.04

0.045

0.05

Start iteration, r

D
is

ta
nc

e,
 d

(r
,t)

Figure 2: Illustration of the average dependence, for a.1-a.5 from Beasley’s OR-library with
the same size and density, between the start iteration r and the distance, dS�r� t� (solid line)
and dB�r� t� (dashdotted line). Here, t � ����.

Then, we use the euclidean distances between �xt�r�, the ergodic iterate
when the averaging is delayed r iterations, and an optimal solution to (LP)
from the Simplex algorithm, given by

dS�r� t� �
k�xt�r�� x�Sk�p

n
�

qPn

j�� j�xtj�r�� �x�S�jj�p
n

and the corresponding distance between �xt�r� and an optimal solution x�B
to (LP) from the Barrier method, given by

dB�r� t� �
k�xt�r�� x�Bk�p

n
�

qPn

j�� j�xtj�r�� �x�B�jj�p
n

�

as measures of the quality of the ergodic sequence solution �xt�r�. Using
these definitions, the maximum distance between the ergodic iterate and an
optimal solution to (LP) that may occur is 1, that is, � � dS�r� t� � � and
� � dB�r� t� � �. We are searching for parameter values t and r yielding
the minimum distance and then compute the best ergodic solution, �xt�r�.
We supposed that r and t depend on the size and density of the problem
and therefore, we decided to run totally t � ���� subgradient iterations and
then compare the distances dS�r� ����� and dB�r� ����� for different start it-
erations r.

In Figure 2 we can see that the very first subproblem solutions obtained in

18

Table 1: The start iterations, r, yielding the minimum distance dS�r� t� and dB�r� t� on the
test instances 4.1-4.10, 5.1-5.10 and 6.1-6.5 from Beasley’s OR-Library. Here, t � ����. Size
indicates rows � columns and Dens. means the density of the problem, i.e. the number of
nonzero elements in the matrix divided by the size of the matrix (m � n) times 100 (�).

Prob. Size Dens.
(�)

r dS�r� t� dB�r� t�

4.1 200x1000 2.00 33 0.083403 0.063239
4.2 200x1000 1.99 20 0.063829 0.063829
4.3 200x1000 1.99 15 0.051939 0.051939
4.4 200x1000 2.00 13 0.055333 0.031789
4.5 200x1000 1.97 11 0.060543 0.060543
4.6 200x1000 2.04 20 0.038648 0.029223
4.7 200x1000 1.96 13 0.078570 0.076400
4.8 200x1000 2.01 20 0.044870 0.044870
4.9 200x1000 1.98 19 0.024459 0.024459
4.10 200x1000 1.95 19 0.035153 0.026685
5.1 200x2000 2.00 42 0.026398 0.023990
5.2 200x2000 2.00 20 0.023075 0.020384
5.3 200x2000 2.00 20 0.029754 0.007230
5.4 200x2000 1.98 19 0.029289 0.022167
5.5 200x2000 1.96 17 0.012139 0.007406
5.6 200x2000 2.00 19 0.015556 0.015556
5.7 200x2000 2.01 20 0.017941 0.014610
5.8 200x2000 1.98 18 0.038800 0.024619
5.9 200x2000 1.97 22 0.049028 0.038823
5.10 200x2000 2.00 20 0.025838 0.009678
6.1 200x1000 4.92 22 0.044056 0.041091
6.2 200x1000 5.00 25 0.037343 0.035206
6.3 200x1000 4.96 25 0.028064 0.028064
6.4 200x1000 4.93 22 0.043020 0.041831
6.5 200x1000 4.97 25 0.019369 0.019369

19

the subgradient optimization scheme have a negative impact (given that x�S
and x�B always are considered as “the best optimal solutions”, if there are
more than one optimal solution, for our purpose) on the weighted averages,
giving a larger distance compared to when the computation of the ergodic
sequence is delayed, so that the initial poor subproblem solutions are not
included in the averaging sequence. On the other hand, if the computation
of the ergodic sequence is started too late, then there are too few iterations
left to produce enough many different relevant subproblem solutions. We
notice, in Figure 2 and Table 1, that �xt�r� is equally close or closer to x�B than
to x�S . Therefore, in the following we use only dB�r� t� as a measure of the
quality of the ergodic sequence.

Table 2: An average value of the start iteration, �r, and a safe interval for r, for the groups
of problems arising in Table 1.

Prob. Size Dens.
(�)

�r Safe interval

4.1-10 200x1000 2 18 50 � r � 350
5.1-10 200x2000 2 22 70 � r � 300
6.1-5 200x1000 5 24 80 � r � 300

Table 3: The start iteration r yielding the minimum distance dB�r� t� on the test instances
sj01-05. Here, t � ����. We consider 200 � r � 450 to be a safe interval for sj01-05.

Prob. Size Dens.
(�)

r dB�r� t�

sj01 434x45397 1.71 57 0.018120
sj02 429x38391 1.66 53 0.017460
sj03 434x44837 1.71 59 0.016881
sj04 429x38148 1.66 61 0.014299
sj05 434x43968 1.70 51 0.017500

We can find a “best” start iteration r, or at least an interval for r giving
satisfactory ergodic iterates. This interval represent a robust choice of the
start iteration r and it will include the plateau which can be seen in Figure 2,
since it is too risky to predict the initial dip. The “best” start iteration r for
respective problems are stated in Table 1. Since some problems have similar

20

properties, such as size and density, we group them together; as for exam-
ple problems 4.1-4.10. For such a group of problems we will use the same
parameter settings and get similar results. For these groups of problems, we
present both a start iteration �r, obtained as an average value of each prob-
lems individual “best” r, and a safe interval for r; see Table 2.

For the test instances a.1-a.5, b.1-b.5, c.1-c.5 and d.1-d.5 from Beasley’s OR-
Library we received results similar to those in Table 2, and believe that for
these seven groups of problems a robust interval for the start iteration, r, is
100 � r � 300.

Hence, our recommendation is to choose the start iteration r in the inter-
val

��� � r � ���� (18)

0 500 1000 1500 2000 2500 3000
0.03

0.035

0.04

0.045

0.05

0.055

0.06

Total number of iterations, t

D
is

ta
nc

e,
 d

B
(r

,t)

Figure 3: Illustration of the dependence between the total number of iterations, t, for the
computation of the ergodic sequence and the distance dB�r� t�, for test problems 6.1-6.5 (see
Table 1). Here r � �	.

Regarding the total number of subgradient iterations to run we decided,
that if the distance has not decreased more than a predefined tolerance, �,
in a prespecified number of iterations, � , we stop the subgradient procedure.
The stop iteration T ��� �� is defined as

T ��� �� � minft j dB�r� t� ��� dB�r� t� � �� t � �g� �� � � �� (19)

21

Table 4: The stop iteration, T ��� ��, for each group of problems computed according
to (19). Here, � � ��� and � � �����
.

Prob. Size Dens.
(�)

r T ��� �� dB�r� T �

4.1-10 200x1000 2 18 1600 0.0533
5.1-10 200x2000 2 22 2000 0.0184
6.1-5 200x1000 5 24 1600 0.0353
a.1-5 300x3000 2 21 1850 0.0202
b.1-5 300x3000 5 33 1550 0.0176
c.1-5 400x4000 2 23 1150 0.0225
d.1-5 400x4000 5 32 1100 0.0122

sj01-05 429x42148 1.69 56 2100 0.0172

We choose � � ��� and � � �����.

For each group of problems we computed the dependence between the stop
iteration, t, and the distance, dB�r� t�, and by applying the criterion (19) we
found the total number of iterations, T ��� ��, to run in the subgradient pro-
cedure (see Table 4).

Table 4 gives us an over-all interval for the total number of iterations to
run in the subgradient scheme, specifically

���� � T � ����� (20)

4.3 Discussion concerning tolerances

The size of the core problem, and the quality of the resulting solution, is de-
pendent of the choice of the upper and lower tolerance, �� and ��. Different
choices of tolerances will lead to different core problems and, thereby, dif-
ferent solutions. Therefore, we have to face the trade off between the size
of the core problem and the quality of its solution. The quality of the solu-
tion is measured according to (17). There are different advantages for the
respective choices, a small core problem will generate a feasible, probably
non-optimal, solution in a small amount of time (preferable when a solution
is needed quickly) and a larger core problem produces a solution of higher
quality with a considerable computational effort.

22

�

�

�
���

�
���

�
���

�
���

��

��

Infeasible core problem

obtained in the subgradient scheme

0.40.30.20.1

0.1

0.2

0.3

0.4

0.5

0.6

0.7%

0.6% 0.1%

0.2%

0.5%

B
0.0039

C
0.0058

0.0174
D

F
0.0449 0.0484

G

A

E3.6%

0.0310

3.7%

solution
Optimal

The solution value z���� ��� is worse than the upper bound

Figure 4: Illustration of the trade off between the size of the core problem and the quality
of the solution, depending on the choice of the upper and lower tolerance, for test problem
4.3.

Figure 4 is an illustration of the trade off between the size of the core prob-
lem and the quality of the solution, depending on the choice of the upper
and lower tolerances. Each box represents a solution value. The quality of
the solution, �z���� ��� � zs��zs, is written in the middle of each box. The
number in the upper right corner of each box is the size of the smallest
core problem, in percentage of the original problem size, yielding the cor-
responding solution value z���� ���. We can see that there are maximum
“feasible” values for both the upper and lower tolerances. If we fix too
many variables to zero, the core problem will become infeasible (for exam-

23

ple, if all variables in a row are put to zero it is impossible to cover that
row). If we fix too many variables to one, the solution value will become
worse than the upper bound obtained in the subgradient procedure. Box A
is the “optimal” box since we will obtain the optimal solution for all choices
of tolerances within this box. If we like to obtain the optimal solution we
have to choose �� and �� somewhere in the intervals defining the box A. The
smallest core problem that is possible to receive within the “optimal” box is
when the tolerances are corresponding to the upper right corner, the “op-
timal corner”, the upper/rightmost endpoints of the interval for box A. For
the problem in Figure 4, the size of the smallest core problem giving the op-
timal solution is 3.7� of the size of the original problem. Every problem has
it’s own “optimal” box. These boxes have different sizes and shapes. The
smallest core problem possible to construct still yielding a feasible solution
corresponds to the upper right corner in box G. For this case the size of the
smallest possible core problem is 0.1� of the size of the original problem.

For example, in Figure 4, more variables are fixed to zero in box B than
in box A. Since the solution value in box B is greater than in box A, at least
one variable that received the value one in the core problem solution in box
A, is fixed to zero in box B, and by that it is not included in the core problem
corresponding to box B. The solution in box B then has to select a “second
best” variable in the core (problem) to obtain a feasible solution, leading to
a higher solution value.

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Lower tolerance

U
pp

er
 to

le
ra

nc
e

Figure 5: A linear dependence between the upper and lower tolerance, decided by an aver-
age “optimal corner” for 25 test problems, ��� � ���� and ��� � ����.

24

In order to compare the quality of the solution and the size of the core
problem for different choices of tolerances we decide an average “optimal
corner” for 25 test problems. This average corresponds to �� � ���� and
�� � ����. We assume a linear dependence between the upper and lower
tolerance, see Figure 5, resulting in the function,

�� � ������ � ������ (21)

Given a lower tolerance, the above relationship (21) gives the upper toler-
ance.

4.4 Core problems created from different LP solutions

We generate core problems with different solutions to (LP); �xt, x�S and x�B
and then compare the size of the core with the quality of the solution.

0 5 10

0

0.05

0.1

0.15

0.2

0.25

Size of core problem, % of the size of the original problem

� 0

0 2 4 6

0

0.05

0.1

0.15

0.2

0.25

10/0

13/0

17/0

10/0

4/14

21/0

Quality of solution (x100)

� 0

Figure 6: The histograms illustrate the trade off between the size of the core problem and
the quality of its solution when the core problem is created from the ergodic iterate. On the
vertical axis is the lower tolerance. On the horizontal axis is the size of the core problem in
percentage of the size of the original problem and the quality of the solution, respectively.
Totally 25 test problems.

Figure 6 illustrates how the size of the core problem and the quality of its
solution vary with the tolerances when the core problem is created from the

25

ergodic iterate. We solve the core problem exactly using the integer pro-
gramming solver provided within Cplex.

For each choice of the lower tolerance in Figure 6, we have examined 25 test
problems. A small column at respective lower tolerance represents a result
for a test problem. For example, when the lower tolerance is �� � ��� one
test problem generates a core problem with a size that is 8� of the original
problem. When a column is twice as high as a small column, it means that
two test problems generated the same result. The numbers to the right at
the horizontal axis in the histograms denote the number of problems solved
to optimality/number of infeasible core problems with the corresponding
choices of tolerances. For example, when �� � ���� (and �� � ����), 14 out
of 25 test problems have an infeasible core problem and the optimal solu-
tion is found for 3 of the 11 feasible problems. If choosing the upper and
lower tolerance as �� � ��� and �� � ����, the optimal solution is found for
17 of the 25 test problems, no core problems are infeasible and the size of
the core problems are between 0.7� - 8.1� of the size of the original prob-
lem.

0 5 10

0

0.05

0.1

0.15

0.2

0.25

Size of core problem, % of the size of the original problem

� 0

0 2 4 6

0

0.05

0.1

0.15

0.2

0.25

13/0

15/0

Quality of solution (x100)

� 0

16/0

19/0

19/0

17/0

Figure 7: The trade off between the size of the core problem and the quality of its solu-
tion when the core problem is created from x�

B
. Totally 25 test problems. See Figure 6 for

notations.

26

0 5 10

0

0.05

0.1

0.15

0.2

0.25

Size of core problem, % of the size of the original problem

� 0

0 2 4 6

0

0.05

0.1

0.15

0.2

0.25

Quality of solution (x100)

� 0

17/0

17/0

17/0

17/0

16/0

15/0

Figure 8: The trade off between the size of the core problem and the quality of its solu-
tion when the core problem is created from x�

S
. Totally 25 test problems. See Figure 6 for

notations.

The corresponding results when creating the core problem from x�S and x�B
are slightly better than those from a core problem constructed from the er-
godic iterate; see Figure 6, 7 and 8. For example, when �� � ���� (and
�� � ����) the ergodic iterate generates the optimal solution for only 10
problems while x�S and x�B generate the optimal solution for 16 respective
15 problems.

4.5 Final results

We have solved 65 problems with our algorithm and for 34 problems we
found the optimal solution or the best solution known in the literature, see
Table 6, 8 and 10. The test were made with r � ���, t � ����, �� � ���� and
�� � ����.

In [CFT99] they present the results for four different algorithms. These
algorithms have been tested on the same problems as we have, that is, test
instances from Beasley’s OR Library. Two of these algorithms, a genetic al-
gorithm by Beasley and Chu and the algorithm presented in [CFT99], find

27

Table 5: Test data for problems 4.1-4.10, 5.1-5.10 and 6.1-6.5 from Beasley’s OR-library.

Prob. Size Dens. (�) z� z�LP ��� � �z� � z�LP ��z
�

4.1 200x1000 2 429 429.0 0.0
4.2 200x1000 2 512 512.0 0.0
4.3 200x1000 2 516 516.0 0.0
4.4 200x1000 2 494 494.0 0.0
4.5 200x1000 2 512 512.0 0.0
4.6 200x1000 2 560 557.3 0.5
4.7 200x1000 2 430 430.0 0.0
4.8 200x1000 2 492 488.7 0.7
4.9 200x1000 2 641 638.5 0.4
4.10 200x1000 2 514 513.5 0.1
5.1 200x2000 2 253 251.2 0.7
5.2 200x2000 2 302 299.8 0.7
5.3 200x2000 2 226 226.0 0.0
5.4 200x2000 2 242 240.5 0.6
5.5 200x2000 2 211 211.0 0.0
5.6 200x2000 2 213 212.5 0.2
5.7 200x2000 2 293 291.8 0.4
5.8 200x2000 2 288 287.0 0.3
5.9 200x2000 2 279 279.0 0.0
5.10 200x2000 2 265 265.0 0.0
6.1 200x1000 5 138 133.1 3.5
6.2 200x1000 5 146 140.5 3.8
6.3 200x1000 5 145 140.1 3.4
6.4 200x1000 5 131 129.0 1.5
6.5 200x1000 5 161 153.4 4.8

the optimal solution in almost every case. The other two algorithms, one
by Balas and Carrera and one by Beasley, find the optimal solution for 50�
and 30� of the problems, respectively.

The run times for respective problems are probably a bit unfair since our
implementation is not optimized in any way; it could probably be speeded
up a lot. Despite that, we may compare the run times for the test problems.
In Table 10 we notice the differences between the size of the core problems
and the impact that have on the run times; a small core problem yields a

28

shorter run time.

Table 6: The results when we solved 4.1-4.10, 5.1-5.10 and 6.1-6.5 from Beasley’s OR-
library with our algorithm (Size, the size of the core problem in percentage of the size of the
original problem and Time, the total run time in CPU-seconds).

Prob. z(��� ��) zt ��� � �z� � zt��z� Size (�) Time (s)
4.1 429 429.0 0.0 3.9 3.7
4.2 512 512.0 0.0 7.5 1.3
4.3 519 516.0 0.0 6.4 0.7
4.4 495 493.8 0.04 4.8 3.7
4.5 512 512.0 0.0 6.0 3.2
4.6 561 557.2 0.5 3.7 3.8
4.7 430 429.9 0.02 2.6 3.7
4.8 492 488.4 0.7 4.5 3.8
4.9 641 638.3 0.4 5.8 3.7
4.10 514 513.5 0.1 1.1 3.7
5.1 254 251.0 0.8 2.6 7.1
5.2 305 299.0 1.0 3.7 7.1
5.3 226 226.0 0.0 0.4 7.1
5.4 247 240.5 0.6 2.3 7.0
5.5 211 211.0 0.0 0.8 6.9
5.6 213 212.5 0.2 0.6 7.0
5.7 294 290.8 0.8 2.6 7.0
5.8 289 286.7 0.5 3.5 7.1
5.9 279 278.1 0.3 1.9 7.0
5.10 265 265.0 0.0 0.3 7.1
6.1 143 130.3 5.6 5.6 7.2
6.2 149 138.8 4.9 5.6 7.3
6.3 145 138.8 4.3 5.2 7.3
6.4 131 128.6 1.8 3.5 7.1
6.5 161 151.8 5.7 5.3 7.4

We have tested the algorithm on unicost problems. A unicost problem is a
problem where every pairing has equal cost, i.e. cj � c for all j, j � �� � � � � n,
where c is a constant value. Also, in the unicost problems we tested there

29

Table 7: Test data for problems a.1-a.5, b.1-b.5, c.1-c.5, d.1-d.5, e.1-e.5, f.1-f.5 and g.1-g.5
from Beasley’s OR-library. For the problems e.2 and g.1-g.5 z� and z�

LP
denotes the best

solution and the lower bound known in literature [CFT99], respectively.

Prob. Size Dens. (�) z� z�LP ��� � �z� � z�LP ��z
�

a.1 300x3000 2 253 246.8 2.5
a.2 300x3000 2 252 247.5 1.8
a.3 300x3000 2 232 228.0 1.7
a.4 300x3000 2 234 231.4 1.1
a.5 300x3000 2 236 234.9 0.5
b.1 300x3000 5 69 64.5 6.5
b.2 300x3000 5 76 69.3 8.8
b.3 300x3000 5 80 74.2 7.3
b.4 300x3000 5 79 71.2 9.9
b.5 300x3000 5 72 67.7 6.0
c.1 400x4000 2 227 223.8 1.4
c.2 400x4000 2 219 212.9 2.8
c.3 400x4000 2 243 234.6 3.5
c.4 400x4000 2 219 213.9 2.3
c.5 400x4000 2 215 211.6 1.6
d.1 400x4000 5 60 55.3 7.8
d.2 400x4000 5 66 59.4 10.0
d.3 400x4000 5 72 65.1 9.6
d.4 400x4000 5 62 55.9 9.8
d.5 400x4000 5 61 58.6 3.9
e.1 500x5000 10 29 21.4 26.2
e.2 500x5000 10 30 28 6.7
e.3 500x5000 10 27 20.5 24.1
e.4 500x5000 10 28 21.4 23.6
e.5 500x5000 10 28 21.3 23.9
f.1 500x5000 20 14 8.8 37.1
f.2 500x5000 20 15 10.0 33.3
f.3 500x5000 20 14 9.5 32.1
f.4 500x5000 20 14 8.5 39.3
f.5 500x5000 20 13 7.8 40.0
g.1 1000x10000 2 176 165 6.3
g.2 1000x10000 2 154 147 4.5
g.3 1000x10000 2 166 153 7.8
g.4 1000x10000 2 168 154 8.3
g.5 1000x10000 2 168 153 8.9

30

Table 8: The results when we solved problems a.1-a.5, b.1-b.5, c.1-c.5, d.1-d.5, e.1-e.5, f.1-f.5
and g.1-g.5 from Beasley’s OR-library with our algorithm.

Prob. z���� ��� zt ��� � �z� � zt��z� Size (�) Time (s)
a.1 255 244.9 3.2 3.2 15.2
a.2 252 246.8 2.1 3.1 14.7
a.3 233 227.5 1.9 3.1 14.6
a.4 236 229.7 1.8 2.0 14.3
a.5 239 233.4 1.1 1.9 14.4
b.1 70 62.3 9.7 2.1 30.5
b.2 76 68.1 10.4 2.3 31.2
b.3 81 72.4 9.5 2.0 30.2
b.4 81 68.9 12.8 2.3 31.4
b.5 74 66.0 8.3 2.1 30.5
c.1 228 222.6 1.9 2.6 24.5
c.2 221 211.8 3.3 2.8 25.3
c.3 244 233.5 3.9 2.9 25.7
c.4 220 213.0 2.7 2.6 24.3
c.5 216 210.8 2.0 2.6 24.0
d.1 61 53.8 10.3 2.0 54.4
d.2 66 57.5 12.9 2.0 54.9
d.3 73 61.2 15.0 2.0 53.5
d.4 65 53.5 13.7 2.0 61.8
d.5 61 57.6 5.6 1.7 52.4
e.1 29 18.4 36.6 1.1 161.5
e.2 30 18.7 37.7 2.8 18581.2
e.3 27 16.8 37.8 2.3 1124.5
e.4 28 17.5 37.5 2.3 936.6
e.5 28 18.7 33.2 1.1 159.9
f.1 14 6.7 52.1 2.3 1179.1
f.2 15 7.5 50.0 2.0 628.7
f.3 14 7.3 47.9 2.5 899.8
f.4 14 6.5 53.6 2.7 4418.7
f.5 13 6.1 53.1 2.4 1461.5
g.1 179 155.6 11.6 2.0 461.3
g.2 156 137.3 10.8 1.9 227.1
g.3 169 144.2 13.1 2.0 1989.4
g.4 172 144.5 14.0 1.9 1754.5
g.5 171 143.8 14.6 2.0 1309.4

31

where equally many ones in every column in A. This construction of the
problem results in that all variables are equally frequent in �xt; �xtj � k for
all j, j � �� � � � � n, where k is constant between zero and one. Therefore,
we are not able to make any predictions about any variable xj . Hence, the
core problem is equal the original problem and no improvement in size have
been made.

Table 9: Test data for h.1-h.5 from Beasley’s OR-library. Here, z� and z�
LP

denotes the best
solution and the lower bound known in literature [CFT99], respectively.

Prob. Size Dens. (�) z� z�LP ��� � �z� � z�LP ��z
�

h.1 1000x10000 5 63 52 17.5
h.2 1000x10000 5 63 52 17.5
h.3 1000x10000 5 59 48 18.6
h.4 1000x10000 5 58 47 19.0
h.5 1000x10000 5 55 46 16.4

Table 10: The results when we solved h.1-h.5 from Beasley’s OR-library with our algo-
rithm. Here, �� � ���� and �� � ����.

Prob. z���� ��� zt ��� � �z� � zt��z� Size (�) Time (s)
h.1 63 40.6 35.6 1.4 27456.8
h.2 63 41.1 34.8 1.5 163120.0
h.3 59 37.4 36.6 1.5 114418.4
h.4 58 36.8 36.6 1.3 83662.8
h.5 55 34.6 37.1 1.3 9037.5

The slow run time for h.1-h.5 in Table 10 indicates that the resulting core
problem is hard to solve with the optimizer even though the original prob-
lem is considerably reduced in size.

In some cases the lower bound generated with our algorithm, zt, is poor
compared with z�LP . That indicates that the step length we have chosen in
the subgradient procedure not are the most efficient.

32

5 Conclusions

The main conclusion is that this is a applicable method for solving large
scale 0-1 minimization problems, excluded unicost problems. Since there
are many parameters within the algorithm, for example the tolerances, the
start and stop iteration for computing the ergodic iterate and the step length
in the subgradient procedure, that need to be calibrated individually and
together we believe that the algorithm needs som further testing and devel-
opment to generate better results faster.

The ergodic iterate has shown to be almost as good to use as an optimal
solution to (LP) from the Simplex or the Barrier algorithm when predicting
whether a variable is included in the optimal solution or not.

Even though we seem to have reduced the original problem considerably
in size the resulting core problem still can be hard to solve with the opti-
mizer, and that have a impact on the run time.

33

References

[AHKW] E. Andersson, E. Housos, N. Kohl, and D. Wedelin. Crew pair-
ing optimization, pages 1–31. OR in Airline Industry. Kluwer
Academic Publishers, Boston.

[Bea90] J.E. Beasley. A Lagrangean heuristic for set covering problems.
Naval Research Logistics, 37:151–164, 1990.

[Bea93] J. E. Beasley. Lagrangean relaxation, pages 243–303. Mod-
ern Heuristic Techniques for Combinatorial Problems. Blackwell
Scientific Publications, Oxford, 1993.

[CFT97] A. Caprara, M. Fischetti, and P. Toth. Algorithms for rail-
way crew management. Mathematical Programming, 79:125–141,
1997.

[CFT99] A. Caprara, M. Fischetti, and P. Toth. A Heuristic method for the
set covering problem. Operations Research, 47:730–743, 1999.

[CNS98] S. Ceria, P. Nobili, and A. Sassano. A Lagrangian-based heuris-
tic for large-scale set covering problems. Mathematical Program-
ming, 81:215–228, 1998.

[DJ79] Y. M. I. Dirickx and L. P. Jennergren. Systems analysis by multi-
level methods. Wiley, Chichester, 1979.

[Fis81] M. L. Fisher. The Lagrangean relaxation method for solving inte-
ger programming problems. Management Science, 27:1–18, 1981.

[Geo74] A. M. Geoffrion. Lagrangean relaxation for integer program-
ming. Mathematical Programming Study, 2:82–114, 1974.

[HWC74] M. Held, P. Wolfe, and H. P. Crowder. Validation of subgradient
optimization. Mathematical Programming, 16:62–88, 1974.

[Kar72] R. M. Karp. Reducibility among combinatorial problems. Com-
plexity of Computer Computations. Plenum Press, New York,
1972.

[LL97] T. Larsson and Z. Liu. A Lagrangean relaxation scheme for
structured linear programs with application to multicommodity
network flow. Optimization, 40:247–284, 1997.

34

[LPS] T. Larsson, M. Patriksson, and A.-B. Strömberg. Ergodic primal
solutions from dual subgradient schemes in discrete optimiza-
tion.

[LPS96] T. Larsson, M. Patriksson, and A.-B. Strömberg. Conditional
subgradient optimization - Theory and applications. European
Journal of Operational Research, 88:382–403, 1996.

[LPS99] T. Larsson, M. Patriksson, and A.-B. Strömberg. Ergodic, primal
convergence in dual subgradient schemes for convex program-
ming. Mathematical Programming, 86:283–312, 1999.

[Pol69] B. T. Polyak. Minimization of unsmooth functionals. USSR Com-
putational Mathematics and Mathematical Physics, 9:14–29, 1969.

[Wed95] D. Wedelin. An Algorithm for large scale 0-1 integer program-
ming with application to airline crew scheduling. Annals of Op-
erations Research, 57:283–310, 1995.

35

