
TMA521/MMA511

Large Scale Optimization
Lecture 1

Introduction: simple/difficult problems, matroid
problems

Ann-Brith Strömberg
Professor of Mathematical Optimization

2018–01–16

Ann-Brith Strömberg Simple/difficult problems

TMA521/MMA511 Optimization, project course

◮ Examiner & lecturer
Ann-Brith Strömberg (room L2087, anstr@chalmers.se)

◮ Schedule

◮ 12 lectures

◮ 2 workshops (mandatory presence)

◮ 2–4 student presentations (mandatory presence)

◮ Course homepage
www.math.chalmers.se/Math/Grundutb/CTH/tma521/1718/

◮ Two projects

◮ Lagrangian relaxation for a VLSI design problem (Matlab)

◮ Column generation applied to a real production scheduling
problem (AMPL/Cplex, Matlab)

Ann-Brith Strömberg Simple/difficult problems

Requirements for passing the course and examination

1. You must take active part in the two scheduled workshops,
and in the two course projects.

2. The findings of your projects are to be presented in the form
of written reports as well as orally during seminars

3. Each group must also act as opponents/discussants on
another group’s projects, and each student must take active
part in all of these activities

4. Define project groups in PingPong

5. All handing in of programs and reports is made in PingPong:
“TMA521/MMA511 Large-Scale optimization Spring 18”

6. Project groups consist of two (or, if necessary, one) persons

7. To reach a mark higher than “pass” (i.e., 3 or G) you can
take an oral exam, based on the lecture material of the course
and on the projects. Most of the topics to discuss during such
an exam are gathered in the study material (to appear on the
homepage)

Ann-Brith Strömberg Simple/difficult problems

Course literature

◮ Optimization Theory for Large Systems, by L.S. Lasdon,
Dover Publications 2002, ISBN: 9780486419992.

◮ Material on Lagrangean duality is also found in the book An

Introduction to Continuous Optimization by N. Andréasson,
A. Evgrafov, M. Patriksson, E. Gustavsson, Z. Nedělková,
K.C. Sou, and M. Önnheim. Studentlitteratur (2016).
Available at Cremona.

◮ Articles and book chapters (hand-outs/links on the course
homepage)

◮ Lecture notes (published on the homepage)

Ann-Brith Strömberg Simple/difficult problems

Aim

◮ Purpose of the course: provide an overview of the most
important principles for the efficient solution of practical
large-scale optimization problems, from modelling to method
implementation.

◮ Starting with a series of lectures, the course work is then
gradually concentrated on project work, in which the
knowledge gained is applied to efficiently solve some relevant
large-scale optimization problems

Ann-Brith Strömberg Simple/difficult problems

Learning outcome

◮ After completion of this course, the student should

◮ be able to independently analyze and suggest modelling and
method principles for a variety of practical large-scale
optimization problems, and

◮ have suffient knowledge to utilize these principles successfully
in practice through the use of optimization software tools.

Ann-Brith Strömberg Simple/difficult problems

Content

◮ Most large scale optimization problems have inherent
structures that can be exploited to solve them efficiently

◮ The course deals with some principles through which large
scale optimization problems can be attacked

◮ Techniques: decomposition–coordination. Based on convexity
theory and duality.

◮ Three practical moments:

◮ An exercise on modelling and solution of a design problem
(Wednesday, January 24)

◮ Two project assignments, where large scale optimization
problems are solved using duality theory and techniques
presented during the lectures

Ann-Brith Strömberg Simple/difficult problems

Content, cont’d.

◮ Problems: Complexity, unimodularity, convexity, minimal
spanning trees, knapsack problems, location problems,
generalized assignment, travelling salesperson problems,
network design, set covering problems

◮ Principles: Decomposition & coordination, restriction,
projection, variable fixing, neighbourhood, Lagrange
relaxation, coordinating master problem

◮ Methods: Cutting planes, Lagrangian heuristics, column
generation, Dantzig-Wolfe decomposition, Benders
decomposition, local search, modern tree search methods

Ann-Brith Strömberg Simple/difficult problems

Topics: Turn difficult problems into sequences of simpler

ones using decomposition and coordination

Prerequisites

◮ Linear Programming (LP), [Mixed] Integer Linear
programming ([M]ILP), NonLinear Programming (NLP),

Decomposition methods covered

◮ Lagrangian relaxation (for MILP, NLP)

◮ Dantzig–Wolfe decomposition (for LP)

◮ Column generation (for LP, MILP, NLP)

◮ Benders decomposition (for MILP, NLP)

◮ Heuristics (for ILP)

◮ Branch & Bound (for MILP, non-convex NLP)

◮ Greedy algorithms (for ILP, NLP)

◮ Subgradient optimization (for convex NLP, Lagrangian duals)

Ann-Brith Strömberg Simple/difficult problems

Important properties of simple problems

◮ What we here call simple problems can be solved in
polynomial time with respect to the problem size (i.e.,
numbers of variables, constraints, ...)

◮ For simple problems, there exist polynomial algorithms

preferably with a small largest exponent

◮ E.g., sorting an array of n elements can be done in time
proportional to at most (i.e., worst case performance)

◮ n2 operations (bubble sort)

◮ n log n operations (heapsort, quicksort)

Ann-Brith Strömberg Simple/difficult problems

Examples of simple problems

◮ Network flow problems (see Wolsey):

◮ Shortest paths

◮ Maximum flows

◮ Minimum cost (single-commodity) network flows

◮ The transportation problem

◮ The assignment problem

◮ Maximum cardinality matching

◮ Problems over simple matroids (see Lawler)

◮ Linear programming (see Andréasson et al.)

Ann-Brith Strömberg Simple/difficult problems

Polynomial time solvable problems

Ann-Brith Strömberg Simple/difficult problems

Example: Shortest path

1

2 5

6

7

4

3

Find the shortest path from node 1 to node 7

di = length of edge i

d1=2

d2=2

d3=1

d4=9

d5=3d6=2

d7=5

d8=4

d9=2

d10=8

1

2 5

6

7

4

3

i

d1=2

d2=2

d3=1

d4=9

d5=3d6=2

d7=5

d8=4

d9=2

d10=8

Shortest path from node 1 to node 7

Total length: 12

Ann-Brith Strömberg Simple/difficult problems

Example: Maximum flow

1

2 5

6

7

4

3

Find the maximum flow from node 1 to node 7

ki = flow capacity of arc i (min kapac: 0)

k1=6

k2=2

k3=4

k4=4

k5=3k6=2

k7=1

k8=1

k9=2

k10=6

1

2 5

6

7

4

3

Maximum flow from node 1 to node 7

xi = optimal flow through arc i (≥ 0)

x1=6

x2=1

x3=3

x4=3

x5=3x6=0

x7=1

x8=1

x9=2

x10=5

1

2 5

6

7

4

3

Minimum cut separating nodes 1 and 7

ki − xi = residual flow capacity on arc i

k1−x1=0

k2−x2=1

k3−x3=1

k4−x4=1

k5−x5=0k6−x6=2

k7−x7=0

k8−x8=0

k9−x9=0

k10−x10=1

Ann-Brith Strömberg Simple/difficult problems

Matroids and the greedy algorithm (Lawler)

◮ Greedy algorithm
◮ Create a “complete solution” by iteratively choosing the best

alternative
◮ Never regret a previous choice

◮ Which problems can be solved using such a simple method?

◮ Problems whose feasible sets can be described by matroids

Ann-Brith Strömberg Simple/difficult problems

Matroids and independent sets

◮ Given a finite set E and a family F of subsets of E :
If I ∈ F and I ′ ⊆ I imply I ′ ∈ F , then the elements of F
are called independent

◮ A matroid M = (E ,F) is a structure in which E is a finite set
of elements and F is a family of subsets of E , such that

1. ∅ ∈ F and all proper subsets of a set I in F are in F

2. If Ip and Ip+1 are sets in F with |Ip| = p and |Ip+1| = p + 1,
then ∃ an element e ∈ Ip+1 \ Ip such that Ip ∪ {e} ∈ F

◮ Let M = (E ,F) be a matroid and A ⊆ E :
If I and I ′ are maximal independent subsets of A, then
|I| = |I ′|

Ann-Brith Strömberg Simple/difficult problems

Example I: Matric matroids

◮ E = a set of column vectors in R
n

◮ F = the set of linearly independent subsets of vectors in E .

◮ Let n = 3 and E = [e1, . . . , e5] =

1 0 2 1 0
0 1 1 0 0
3 2 0 0 1

◮ We have:

◮ {e1, e2, e3} ∈ F and {e2, e3} ∈ F but

◮ {e1, e2, e3, e5} 6∈ F and {e1, e4, e5} 6∈ F

Ann-Brith Strömberg Simple/difficult problems

Example II: Graphic matroids

◮ E = {e1, e2, e3, e4, e5, e6, e7} = the set of edges in an
undirected graph

◮ F = the set of all cycle-free subsets of edges in E

e1

e1e1

e1

e2e2e2

e2e2

e2

e3

e3

e3

e4e4

e4

e4

e5

e5

e5
e6

e6

e7e7

e7e7

e7

E = {e1, . . . , e7}

◮ {e1, e2, e4, e7} ∈ F , {e2, e4, e7} ∈ F , {e2, e3, e5} 6∈ F ,
{e1, e2, e3, e7} ∈ F , {e1, e4, e5, e6, e7} 6∈ F , {e2} ∈ F

Ann-Brith Strömberg Simple/difficult problems

Matroids and the greedy algorithm applied to Example II

◮ Let w(e) be the cost of element e ∈ E .
Problem: Find the element I ∈ F of maximal cardinality such
that the total cost is at minimum/maximum

◮ Example II, continued: w(E) = (7, 4, 2, 15, 6, 3, 2)

77

4

22

15

6

33

22

An element I ∈ F of maximal

cardinality with minimum total cost

Ann-Brith Strömberg Simple/difficult problems

The greedy algorithm for minimization problems

1. A = ∅.

2. Sort the elements of E in increasing order with respect to
w(e).

3. Take the first element e ∈ E in the list. If A ∪ {e} is still
independent =⇒ let A := A∪ {e}.

4. Repeat from step 3. with the next element—until either the
list is empty, or A possesses the maximal cardinality.

Which are the special cases of this algorithm for Examples I and II?

Ann-Brith Strömberg Simple/difficult problems

Example I: Linearly independent vectors—matric matroids

◮ Let

A =

1 0 2 0 1
0 −1 −1 1 1
3 2 8 1 4
2 1 5 0 2

,

w
T =

(

10 9 8 4 1
)

.

◮ Choose the maximal independent set with the maximum
weight

◮ Can this technique solve linear programming problems?

Ann-Brith Strömberg Simple/difficult problems

Example II: minimum spanning trees (MST)—graphic

matroids

◮ The maximal cycle-free set of links in an undirected graph is a
spanning tree

◮ In a graph G = (N , E), a spanning tree has |N | − 1 links

◮ Classic greedy algorithm—Kruskal’s algorithm has complexity
O(|E| · log(|E|)). The main complexity lies in the sorting itself

◮ Prim’s algorithm builds the spanning tree through graph
search techniques, from node to node; complexity O(|N |2).

3

4

2

1

6

3

5

Ann-Brith Strömberg Simple/difficult problems

Example III: continuous knapsack problem (in fact not a

matroid problem)

◮ Continuous relaxation of the 0/1-knapsack problem (BKP).
Assume: cj ≥ 0, aj > 0, j = 1, . . . , n; b ≥ 0

maximize f (x) :=

n
∑

j=1

cjxj ,

subject to

n
∑

j=1

ajxj ≤ b,

0 ≤ xj ≤ 1, j = 1, . . . , n.

◮ Greedy algorithm:

1. Sort cj/aj in descending order
2. Set the variables x̄j := 1 until the knapsack is full
3. One variable may become fractional and the rest zero

Ann-Brith Strömberg Simple/difficult problems

Discussion

◮ Discuss with each other for a few minutes:

◮ Use linear programming duality to show that the greedy
algorithm correctly solves the continuous knapsack problem

Ann-Brith Strömberg Simple/difficult problems

Ann-Brith Strömberg Simple/difficult problems

Example III, continued

Linear programming dual:

minimize bu +
n

∑

j=1

wj ,

subject to aju + wj ≥ cj , j = 1, . . . , n,
u ≥ 0,

wj ≥ 0, j = 1, . . . , n

Hint: Apply complementarity slackness

Ann-Brith Strömberg Simple/difficult problems

Example III, continued: Binary knapsack problem

◮ Rounding down the fractional variable value yields a feasible
solution to (BKP)

◮ Is it also optimal in (BKP)?

maximize f (x) := 2x1 + c x2,

subject to x1 + c x2 ≤ c , (c ∈ Z+)

x1, x2 ∈ {0, 1},

◮ If c ≥ 2 then x
∗ = (0, 1)T and f ∗ = c .

◮ The greedy algorithm, plus rounding, always yields
x̄ = (1, 0)T, with f (x̄) = 2

◮ This solution is arbitrarily bad (when c is large)

Ann-Brith Strömberg Simple/difficult problems

Example IV: The traveling salesperson problem (TSP)

The greedy algorithm for the TSP:

1. Start in node 1

2. Go to the nearest node which is not yet visited

3. Repeat step 2 until no nodes are left

4. Return to node 1; the tour is closed

◮ Greedy solution

Not optimal whenever c > 4.

c

1

1

11
2

2

2 2 2

3

4 5
c

1

1

11
2

2

2 2 2

3

4 5

Optimal solution for c ≥ 4

Ann-Brith Strömberg Simple/difficult problems

Example V: the shortest path problem (SPP)

◮ The greedy algorithm constructs a path that uses – locally –
the cheapest link to reach a new node. Optimal?

◮ Greedy solution

Not optimal whenever c > 9

c

s t

1

1

2

55

c

s t

1

1

2

55

Optimal solution for c ≥ 9

Ann-Brith Strömberg Simple/difficult problems

Example VI: Semi-matching

maximize f (x) :=
m
∑

i=1

n
∑

j=1

wijxij ,

subject to

n
∑

j=1

xij ≤ 1, i = 1, . . . ,m,

xij ∈ {0, 1}, i = 1, . . . ,m, j = 1, . . . , n.

◮ Semi-assignment
Replace maximum =⇒ minimum; “≤” =⇒ “=”; let m = n

◮ Algorithm
For each i :

1. choose the best (lowest) wij

2. Set xij = 1 for that j , and xij = 0 for every other j

Ann-Brith Strömberg Simple/difficult problems

Matroid types

◮ Graph matroid: F = the set of forests in a graph G = (N , E).
Example problem: MST

◮ Partition matroid: Consider a partition of E into m sets
B1, . . . ,Bm and let di (i = 1, . . . ,m) be non-negative integers.
Let

F = { I | I ⊆ E ; |I ∩ Bi | ≤ di , i = 1, . . . ,m }.

Example problem: semi-matching in bipartite graphs.

◮ Matrix matroid: S = (E ,F), where E is a set of column
vectors and F is the set of subsets of E with linearly
independent vectors.

◮ Observe: The above matroids can be expressed as matrix
matroids!

Ann-Brith Strömberg Simple/difficult problems

Problems over matroid intersections

◮ Given two matroids M = (E ,P) and N = (E ,R), find the
maximum cardinality set in P ∩R

◮ Example 1: maximum-cardinality matching in a bipartite graph
is the intersection of two partition matroids (with di = 1).
Draw illustration!

◮ The intersection of two matroids can not generally be solved
by using the greedy algorithm

◮ There exist polynomial algorithms for them, though

◮ Examples: bipartite matching and assignment problems can be
solved as maximum flow problems, which are polynomially
solvable

Ann-Brith Strömberg Simple/difficult problems

Problems over matroid intersections, cont.

◮ Example 2: The traveling salesperson problem (TSP) is the
intersection of three matroids:

◮ one graph matroid
◮ two partition matroids

(formulation on next page: assignment + tree constraints)

◮ TSP is not solvable in polynomial time.

◮ Conclusion (not proven here):
◮ Matroid problems are extremely easy to solve (greedy works)
◮ Two-matroid problems are polynomially solvable
◮ Three-matroid problems are very difficult (exponential solution

time)

◮ The TSP—different mathematical formulations give rise to
different algorithms when Lagrangean relaxed or otherwise
decomposed

Ann-Brith Strömberg Simple/difficult problems

TSP: Assignment formulation for directed graphs

minimize

n
∑

i=1

n
∑

j=1

cijxij

subject to

n
∑

j=1

xij = 1, i ∈ N , (1)

n
∑

i=1

xij = 1, j ∈ N , (2)

∑n
i=1

∑n
j=1 xij = n, (3)

∑

i∈S

∑

j∈S

xij ≤ |S| − 1, S ⊂ N , (4)

xij ∈ {0, 1}, i , j ∈ N .

◮ (1)–(2): assignment; (3): sum of (1) (redundant); (4):
cycle-free

◮ Relax (3)–(4) ⇒ Assignment

◮ Relax (1)–(2) ⇒ 1-MST

Ann-Brith Strömberg Simple/difficult problems

TSP in undirected graphs: Node valence formulation

minimize
n

∑

i=1

n
∑

j=1

cijxij

subject to
n

∑

j=1

xij = 2, i ∈ N , (1)

∑n
i=1

∑n
j=1 xij = n, (2)

∑

(i ,j)∈(S,N\S)

xij ≥ 1, S ⊂ N , (3)

xij ∈ {0, 1}, i , j ∈ N .

◮ (1): valence = 2; (2): sum of (1); (3): cycle-free (alt. version)

◮ Hamiltonian cycle = spanning tree + one link ⇒ every node
receives valence = 2

◮ Relax (1), except for node s ⇒ 1-tree relaxation.

◮ Relax (3) ⇒ 2-matching.

Ann-Brith Strömberg Simple/difficult problems

