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A motivating example

A wind power turbine with fourteen
major components

A crane is required for the replacement
of failed components

Failure of a component ⇒ opportunity
for replacement of other components

⇒ Decide whether some other
components should also be replaced,
based on

the components’ life distributions
(historical and condition data)
the price of new components
the maintenance occasion (crane)
cost
the remaining life of the turbine
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Deterministic component lives

a

t
T
i

For each component i ∈ N , choose the component’s life Ti such
that

P(t ≤ Ti ) = a,

for a small value of a ∈ (0, 1).
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The opportunistic replacement problem

cost: 2c1 + 3c2 + 3d
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Definition

Given:

the life Ti of each
component i

costs ci for replacem.
of component i

costs d for each
maintenace occasion

the time horizon T

Minimize the total
maintenance cost

Modelled as a MILP by
Dickman, Epstein &
Wilamowsky, 1991
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The opportunistic replacement problem

Sets

Time steps: T = {1, . . . ,T}
Components: N = {1, . . . ,N}

Variables

xit =

{
1, if component i is to be replaced at time t,

0, otherwise,
i ∈ N , t ∈ T ,

zt =

{
1, if maintenance is to be performed at time t,

0, otherwise,
t ∈ T .
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The opportunistic replacement problem

Objective function:

min
∑
t∈T

(∑
i∈N

citxit + dzt

)
,

Constraints:

xit ≤ zt OR
∑
i∈N

xit ≤ Nzt ? 2min!

`+Ti∑
t=`+1

xit ≥ 1, ` ∈ {0, . . . ,T − Ti}, i ∈ N ,

xit ∈ {0, 1}, t ∈ T , i ∈ N ,

zt ∈ {0, 1}, t ∈ T .
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Small example

d=0

d=10

d=1000

time

time

time
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Theoretical properties

Complexity: NP-hard.

The integrality requirement on xit can be relaxed

If the values of zt are fixed, the resulting optimization problem
in the variables xit can be solved using the greedy algorithm

See Almgren et al. (2012): “The opportunistic replacement
problem: theoretical analyses and numerical tests”
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NP, P, NPC, and NP-hard

NP: decision problems verifiable in polynomial time

P: polynomially solvable problems (e.g. shortest path, LP,
assignment problem, MST (matroid), matroid intersection)

NPC: If all problems in NP are polynomially reducible to
problem A, then A is in NPC

NP-hard: If A is NPC and A is polynomially reducible to B
then B is NP-hard
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NP, P and NPC

Example (set covering decision problem)

Given: K = {1, . . . , k}, S1, . . . ,Sm ⊂ K
Question: Is there a cover of cardinality ≤ M?
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NP-hard

NP-hard: If A is NPC and A is polynomially reducible to B
⇒ then B is NP-hard

Example (set covering optimization problem)

Given: K = {1, . . . , k}, S1, . . . ,Sm ⊂ K.
Question: Which is the cover of lowest cardinality?
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The opportunistic replacement problem is NP-hard

Theorem

Set covering is polynomially reducible to the opportunistic
replacement problem

Proof.

Consider the opportunistic replacement problem with
N = k , T = m, Ti = m, d = 1, and
cit = 0 if i ∈ St and cit = 2 otherwise

Show that a solution to this ORP yields an optimal solution to
the SC, 10 min!

Each component will be replaced exactly once

If i 6∈ St then xit = 0 since cit > d

Optimal solution (x∗, z∗), then {St | zt = 1} yields a minimum
cardinality cover

Details in the article by Almgren et al. (2012)
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Total unimodularity

Definition

A matrix A is TU if the determinant of each square submatrix of A
is equal to -1,0 or 1.

Example

The matrix

1 0 0
0 1 1
1 1 1

 is TU but

1 1 0
1 0 1
0 1 1

 is not TU

Theorem

If A is TU then (A, I ) is TU.

If A has the “consecutive ones property” then A is TU

If A describes a network flow then A is TU

If A is TU then AT is TU
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Theorem

Consider x∗ ∈ arg min{cTx | x ∈ Zn,Ax ≤ b}
If A is TU, b is integral and a solution to the LP-relaxation is
x∗LP ∈ arg min{cTx |x ∈ Rn,Ax ≤ b} then cTx∗ = cTx∗LP

Proof.

Constraint is equivalent to Ax + Is = b

Optimal basis B is a submatrix of (A, I )

Optimal solution (xB , xN) = (B−1b, 0)

Cramers rule B−1 = B∗

detB , B∗ product of elements in B

B−1 is integral ⇒ B−1b is integral
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ORP: Relax integrality on xit

Theorem

If the values of zt are fixed and integral, then there exists an
optimal LP solution to the remaining problem with integral values
on xit

Proof.

Prove this by considering the constraint matrix! 5min!

Consecutives one property on life constraints

xit ≤ zt yields the identity matrix

⇒ The constraint matrix is TU
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Greedy

Theorem

If the costs depend monotonically on time (i.e., cit ≥ ci ,t+1 or
cit ≤ ci ,t+1 and the maintenance occasions are fixed (i.e., zt are
fixed), then a greedy algorithm yields and optimal maintenance
schedule

Proof.

Which greedy algorithm? 2 minutes!
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Discussion

Which algorithm could use the TU property and the greedy
property?
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