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Benders’ decomposition for mixed-integer optimization

problems (Lasdon)

◮ Model:
minimum c⊤x+ f (y),

subject to Ax+ F(y) ≥ b,

x ≥ 0n, y ∈ S .

◮ The variables y are assumed to be “complicating” because:

◮ the set S may be complicated, like S ⊆ {0, 1}p

◮ f and/or F may be nonlinear

◮ the vector F(y) may cover every row

◮ The problem is assumed to be linear in x, possibly separable
(whence A is block-diagonal); “easy”
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Example

◮ Block-diagonal structure in x — Variables y in “every” row

◮ Continuous variables x — Binary constraints on y

◮ Linear in x — Nonlinear in y

min c⊤1 x1 + · · ·+ c⊤n xn + f (y)
s.t.A1x1 +F1(y)≥ b1

. . .
...

...
Anxn +Fn(y)≥ bn

x1, x2, · · · , xn ≥ 0

y ∈ {0, 1}p
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Typical application: Multi-stage stochastic programming

(optimization under uncertainty)

◮ Some parameters (constants, e.g., c, A, b) are uncertain

◮ Choose y (e.g., investment) such that an expected cost over
time is minimized

◮ Uncertain data is represented by future scenarios (ℓ ∈ L)

◮ Variables xℓ represent future activities

◮ y must be chosen before the outcome of the uncertain
parameters is known

◮ Choose y such that the expected value over scenarios ℓ ∈ L of
the future optimization w.r.t. xℓ (⇒ xℓ(y)) is minimized
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A two-stage stochastic program

min
∑

ℓ∈L

pℓ · c⊤ℓ xℓ + d⊤y

s.t. Aℓxℓ + Tℓy = bℓ, ℓ ∈ L
xℓ ≥ 0, ℓ ∈ L

y ∈ Y

◮ Solution idea: Temporarily fix y, solve the remaining problem
over x parameterized over y ⇒ solution x(y)
Utilize the problem structure to improve the guess of an
optimal value of y. Repeat

◮ Similar to minimizing a function η over two vectors, v and w:

inf
v,w

η(v,w) = inf
v

ξ(v), where ξ(v) = inf
w

η(v,w), v ∈ R
m

◮ In effect, we substitute the variable w by always minimizing
over it, and work with the remaining problem in v
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Benders’ decomposition

◮ Construct an approximation of this problem over v by utilizing
LP duality

◮ If the problem over y is also linear
◮ Cutting plane methods

◮ Benders’ decomposition is more general:

◮ Solves problems with positive duality gaps!

◮ Benders’ decomposition does not rely on the existence of
optimal Lagrange multipliers and strong duality
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Benders’ sub- and master problems

◮ The basic model revisited:

minimum c⊤x+ f (y),

subject to Ax+ F(y) ≥ b,

x ≥ 0n, y ∈ S .

◮ Which values of y are feasible?

◮ Choose y ∈ S such that the remaining problem in x is feasible

◮ I.e., choose y from the set

R :=
{

y ∈ S
∣

∣∃x ≥ 0n with Ax ≥ b− F(y)
}
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Benders’ sub- and master problems, cont.

◮ Apply Farkas’ Lemma to this system, or rather to the
equivalent system (with y fixed and slack variables s):

Ax− s = b− F(y)

x ≥ 0n, s ≥ 0m

◮ From Farkas’ Lemma: y ∈ R if and only if

A⊤u ≤ 0n, u ≥ 0m =⇒
[

b− F(y)
]⊤

u ≤ 0

◮ This means that y ∈ R if and only if [b− F(y)]⊤uri ≤ 0 holds
for every extreme direction uri , i = 1, . . . , nr of the polyhedral
cone C = {u ∈ R

m
+ | A⊤u ≤ 0n }

(using the representation theorem for a polyhedral cone)
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Benders’ subproblem

◮ Given y ∈ R , the optimal value in Benders’ subproblem is

minimum
x

c⊤x,

subject to Ax ≥ b− F(y),

x ≥ 0n.

◮ By LP duality, this is equivalent to

maximum
u

[b− F(y)]⊤u,

subject to A⊤u ≤ c,

u ≥ 0m,

provided that the primal problem has a finite solution
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Benders’ subproblem

◮ We prefer the dual formulation, since its constraints do not
depend on y

◮ Moreover, the extreme directions of the dual feasible set are
given by the vectors uri , i = 1, . . . , nr :
C = {u ∈ R

m
+ | A⊤u ≤ 0n }

◮ Let upi , i = 1, . . . , np , denote the extreme points of the set
{u ∈ R

m
+ | A⊤u ≤ c }
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The master problem (MP) of Benders’ algorithm

◮ The original model:

minimum c⊤x+ f (y),

subject to Ax+ F(y) ≥ b,

x ≥ 0n, y ∈ S

◮ This is equivalent to

min
y∈S

{

f (y)+min
x

{

c⊤x |Ax ≥ b−F(y); x ≥ 0n
}

}

= min
y∈R

{

f (y)+max
u

{

[b−F(y)]⊤u |A⊤u ≤ c; u ≥ 0m
}

}

= min
y∈R

{

f (y) + max
i=1,...np

{

[b− F(y)]⊤upi
}

}
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The master problem, continued

min
y∈R

{

f (y) + max
i=1,...np

{

[b− F(y)]⊤upi
}

}

= min
y,z

z

s.t. z ≥ f (y) + [b− F(y)]⊤upi , i = 1, . . . , np ,

y ∈ R ,

= min
y,z

z

s.t. z ≥ f (y) + [b− F(y)]⊤upi , i = 1, . . . , np ,

0 ≥ [b− F(y)]⊤uri , i = 1, . . . , nr ,

y ∈ S .
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The restricted master problem

◮ Suppose that only a subset of the constraints in the latter
problem is known

◮ This means that not all extreme points and directions for the
dual problem are known

◮ Let I1 ⊂ {1, . . . , np} and I2 ⊂ {1, . . . , nr}

◮ Replace “i = 1, . . . , np” by “i ∈ I1” and “i = 1, . . . , nr” by
“i ∈ I2” ⇒ restricted master problem:

min
y,z

z

s.t. z ≥ f (y) + [b− F(y)]⊤upi , i ∈ I1,

0 ≥ [b− F(y)]⊤uri , i ∈ I2,

y ∈ S .

◮ Since not all constraints are included, this yields a lower

bound on the optimal value of the original problem
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Restricted master problem, continued

◮ Suppose that (z0, y0) is a finite optimal solution to the
restricted master problem

◮ To check whether this is an optimal solution to the original
problem: check for the most violated constraint, which is

◮ either satisfied, ⇒ y0 is optimal
◮ or not, ⇒ include this new constraint, extending either the set

I1 or I2, and possibly improving the lower bound.
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Find new constraints of the master problem

◮ The search for a new constraint is done by solving the dual of
Benders’ subproblem at y = y0:

maximum
u

[b− F(y0)]⊤u,

subject to A⊤u ≤ c,

u ≥ 0m,

⇒ the solution is a new dual extreme point or dual extreme
direction, due to a “new” objective

◮ The solution u(y0) to this (dual) problem corresponds to a
feasible (primal) solution (x(y0), y0) to the original problem,
and therefore also an upper bound on the optimal value,
provided that it is finite
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Add new constraints to the master problem

◮ If the subproblem problem has an unbounded solution, then it
is unbounded along an extreme direction: [b− F(y0)]⊤uri > 0

◮ Add the constraint 0 ≥
[

b− F(y)
]⊤

ur
i to RMP (enlarge I2)

◮ Suppose instead that the optimal solution is finite:

◮ Let up
i be an optimal extreme point

◮ If z0 < f (y0) + [b− F(y0)]⊤up
i , add the constraint

z ≥ f (y) +
[

b− F(y)
]⊤

u
p
i to RMP (enlarge I1)

◮ If z0 ≥ f (y0) + [b− F(y0)]⊤upi then equality must hold
(“>” cannot happen—why?)

◮ We then have an optimal solution to the original problem and
terminate
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Convergence

◮ Suppose that the set S is closed and bounded and that f and
F are both continuous on S

◮ Then, provided that the computations are exact, we terminate
in a finite number of iterations with an optimal solution

◮ The proof is due to the finite number of constraints in the
complete master problem, that is, the number of extreme
points and directions in any polyhedron

◮ A numerical example of the use of Benders’ decomposition is
found in Lasdon (1970, Sections 7.3.3–7.3.5)
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Discussion

◮ Note the resemblance to the Dantzig–Wolfe algorithm! If f
and F are both linear, then they coincide: (the duals of) their
subproblems and RMP:s are identical

◮ Modern implementations of the DW and Benders’ algorithms
are inexact: at least their RMP:s are not solved exactly

◮ Their RMP:s are often restricted with an additional “box
constraint”, which forces the solution to the next RMP to be
fairly close to the previous one

◮ The effect is stability; otherwise, the sequence of solutions to
the RMP:s may “jump about” and convergence becomes slow

◮ This was observed quite early for the DW algorithm, which
can even be enriched with non-linear “penalty” terms in the
RMP to further stabilize convergence

◮ In any case, convergence holds also under these modifications,
except perhaps for the finiteness
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