TMA521/MMA511 Large Scale Optimization Lecture 15 Benders' decomposition

Ann-Brith Strömberg

21 February 2018

Benders' decomposition for mixed-integer optimization problems (Lasdon)

Model:

► The variables **y** are assumed to be "complicating" because:

- the set S may be complicated, like $S \subseteq \{0,1\}^p$
- f and/or F may be nonlinear
- the vector $\mathbf{F}(\mathbf{y})$ may cover every row
- The problem is assumed to be *linear* in x, possibly separable (whence A is block-diagonal); "easy"

- ► Block-diagonal structure in **x** Variables **y** in "every" row
- Continuous variables x Binary constraints on y

Linear in x — Nonlinear in y

$$\min \mathbf{c}_1^\top \mathbf{x}_1 + \dots + \mathbf{c}_n^\top \mathbf{x}_n + f(\mathbf{y}) \\ \text{s.t. } \mathbf{A}_1 \mathbf{x}_1 + \mathbf{F}_1(\mathbf{y}) \ge \mathbf{b}_1 \\ \ddots \qquad \vdots \qquad \vdots \\ \mathbf{A}_n \mathbf{x}_n + \mathbf{F}_n(\mathbf{y}) \ge \mathbf{b}_n \\ \mathbf{x}_1, \mathbf{x}_2, \cdots, \mathbf{x}_n \qquad \ge \mathbf{0} \\ \mathbf{y} \in \{0, 1\}^p$$

回 と く ヨ と く ヨ と …

3

Typical application: Multi-stage stochastic programming (optimization under uncertainty)

- Some parameters (constants, e.g., c, A, b) are uncertain
- Choose y (e.g., investment) such that an *expected* cost over time is minimized
- Uncertain data is represented by future scenarios ($\ell \in \mathcal{L}$)
- Variables \mathbf{x}_{ℓ} represent future activities
- y must be chosen before the outcome of the uncertain parameters is known
- ► Choose y such that the expected value over scenarios ℓ ∈ ℒ of the future optimization w.r.t. x_ℓ (⇒ x_ℓ(y)) is minimized

→ 同 → → 目 → → 目 →

A two-stage stochastic program

- Solution idea: Temporarily fix y, solve the remaining problem over x parameterized over y ⇒ solution x(y) Utilize the problem structure to improve the guess of an optimal value of y. Repeat
- Similar to minimizing a function η over two vectors, **v** and **w**:

$$\inf_{\mathbf{v},\mathbf{w}} \eta(\mathbf{v},\mathbf{w}) = \inf_{\mathbf{v}} \xi(\mathbf{v}), \text{ where } \xi(\mathbf{v}) = \inf_{\mathbf{w}} \eta(\mathbf{v},\mathbf{w}), \mathbf{v} \in \mathbb{R}^{m}$$

In effect, we substitute the variable w by always minimizing over it, and work with the remaining problem in v

- Construct an approximation of this problem over v by utilizing LP duality
- If the problem over y is also linear
 - Cutting plane methods
- Benders' decomposition is more general:
 - Solves problems with positive duality gaps!
- Benders' decomposition does *not* rely on the existence of optimal Lagrange multipliers and strong duality

The basic model revisited:

- Which values of y are feasible?
- Choose $\mathbf{y} \in S$ such that the remaining problem in \mathbf{x} is feasible
- I.e., choose y from the set

$$R := \left\{ \left. \mathbf{y} \in S \, \right| \, \exists \mathbf{x} \geq \mathbf{0}^n \text{ with } \mathbf{A} \mathbf{x} \geq \mathbf{b} - \mathbf{F}(\mathbf{y}) \,
ight\}$$

Benders' sub- and master problems, cont.

 Apply Farkas' Lemma to this system, or rather to the equivalent system (with y fixed and slack variables s):

$$egin{array}{lll} \mathbf{A}\mathbf{x}-\mathbf{s}=\mathbf{b}-\mathbf{F}(\mathbf{y})\ \mathbf{x}\geq\mathbf{0}^n, & \mathbf{s}\geq\mathbf{0}^m \end{array}$$

From Farkas' Lemma: $\mathbf{y} \in R$ if and only if

$$\mathbf{A}^{\top}\mathbf{u} \leq \mathbf{0}^{n}, \ \mathbf{u} \geq \mathbf{0}^{m} \implies [\mathbf{b} - \mathbf{F}(\mathbf{y})]^{\top}\mathbf{u} \leq 0$$

This means that y ∈ R if and only if [b − F(y)]^Tu^r_i ≤ 0 holds for every extreme direction u^r_i, i = 1,..., n_r of the polyhedral cone C = { u ∈ ℝ^m₊ | A^Tu ≤ 0ⁿ }

(using the representation theorem for a polyhedral cone)

< 注→ < 注→

Benders' subproblem

• Given $\mathbf{y} \in R$, the optimal value in *Benders' subproblem* is

$$\begin{array}{l} \underset{\mathbf{x}}{\operatorname{minimum}} \ \mathbf{c}^{\top}\mathbf{x}, \\ \text{subject to } \ \mathbf{A}\mathbf{x} \geq \mathbf{b} - \mathbf{F}(\mathbf{y}), \\ \mathbf{x} \geq \mathbf{0}^{n}. \end{array}$$

By LP duality, this is equivalent to

$$\begin{split} \underset{\mathbf{u}}{\operatorname{maximum}} & [\mathbf{b} - \mathbf{F}(\mathbf{y})]^\top \mathbf{u}, \\ \text{subject to } & \mathbf{A}^\top \mathbf{u} \leq \mathbf{c}, \\ & \mathbf{u} \geq \mathbf{0}^m, \end{split}$$

provided that the primal problem has a *finite* solution

通 と く ヨ と く ヨ と

- We prefer the dual formulation, since its constraints do not depend on y
- Moreover, the extreme directions of the dual feasible set are given by the vectors u^r_i, i = 1,..., n_r:
 C = { u ∈ ℝ^m₊ | A[⊤]u ≤ 0ⁿ }
- ▶ Let \mathbf{u}_i^p , $i = 1, ..., n_p$, denote the *extreme points* of the set { $\mathbf{u} \in \mathbb{R}^m_+ \mid \mathbf{A}^\top \mathbf{u} \leq \mathbf{c}$ }

The master problem (MP) of Benders' algorithm

The original model:

$$\begin{array}{ll} \text{minimum } \mathbf{c}^\top \mathbf{x} + f(\mathbf{y}), \\ \text{subject to } \mathbf{A}\mathbf{x} + \mathbf{F}(\mathbf{y}) \geq \mathbf{b}, \\ \mathbf{x} \geq \mathbf{0}^n, \quad \mathbf{y} \in S \end{array}$$

This is equivalent to

$$\min_{\mathbf{y}\in S} \left\{ f(\mathbf{y}) + \min_{\mathbf{x}} \left\{ \mathbf{c}^{\top}\mathbf{x} \mid \mathbf{A}\mathbf{x} \geq \mathbf{b} - \mathbf{F}(\mathbf{y}); \mathbf{x} \geq \mathbf{0}^{n} \right\} \right\}$$

$$= \min_{\mathbf{y} \in R} \left\{ f(\mathbf{y}) + \max_{\mathbf{u}} \left\{ \left[\mathbf{b} - \mathbf{F}(\mathbf{y}) \right]^\top \mathbf{u} \mid \mathbf{A}^\top \mathbf{u} \le \mathbf{c}; \ \mathbf{u} \ge \mathbf{0}^m \right\} \right\}$$

$$= \min_{\mathbf{y} \in R} \left\{ f(\mathbf{y}) + \max_{i=1,\dots,n_p} \left\{ \left[\mathbf{b} - \mathbf{F}(\mathbf{y}) \right]^\top \mathbf{u}_i^p \right\} \right\}$$

★ 문 ► ★ 문 ►

The master problem, continued

$$\min_{\mathbf{y}\in R} \left\{ f(\mathbf{y}) + \max_{i=1,\dots,n_p} \left\{ \left[\mathbf{b} - \mathbf{F}(\mathbf{y}) \right]^\top \mathbf{u}_i^p \right\} \right\}$$

$$= \min_{\mathbf{y}, z} z$$

s.t. $z \ge f(\mathbf{y}) + [\mathbf{b} - \mathbf{F}(\mathbf{y})]^\top \mathbf{u}_i^p, \quad i = 1, \dots, n_p,$
 $\mathbf{y} \in R,$

$$= \min_{\mathbf{y}, z} z$$

s.t. $z \ge f(\mathbf{y}) + [\mathbf{b} - \mathbf{F}(\mathbf{y})]^\top \mathbf{u}_i^p, \quad i = 1, \dots, n_p,$
 $0 \ge [\mathbf{b} - \mathbf{F}(\mathbf{y})]^\top \mathbf{u}_i^r, \qquad i = 1, \dots, n_r,$
 $\mathbf{y} \in S.$

æ

The restricted master problem

- Suppose that only a subset of the constraints in the latter problem is known
- This means that not all extreme points and directions for the dual problem are known
- Let $I_1 \subset \{1, \ldots, n_p\}$ and $I_2 \subset \{1, \ldots, n_r\}$
- ▶ Replace " $i = 1, ..., n_p$ " by " $i \in I_1$ " and " $i = 1, ..., n_r$ " by " $i \in I_2$ " ⇒ restricted master problem:

$$\begin{split} \min_{\mathbf{y}, z} & z \\ \text{s.t. } z \geq f(\mathbf{y}) + [\mathbf{b} - \mathbf{F}(\mathbf{y})]^\top \mathbf{u}_i^p, \quad i \in I_1, \\ & 0 \geq [\mathbf{b} - \mathbf{F}(\mathbf{y})]^\top \mathbf{u}_i^r, \qquad i \in I_2, \\ & \mathbf{y} \in S. \end{split}$$

 Since not all constraints are included, this yields a *lower* bound on the optimal value of the original problem

- ► Suppose that (z⁰, y⁰) is a finite optimal solution to the restricted master problem
- To check whether this is an optimal solution to the original problem: check for the most violated constraint, which is
 - either satisfied, \Rightarrow **y**⁰ is optimal
 - or not, \Rightarrow include this new constraint, extending either the set l_1 or l_2 , and possibly improving the lower bound.

Find new constraints of the master problem

The search for a new constraint is done by solving the dual of Benders' subproblem at y = y⁰:

$$\begin{array}{ll} \underset{\mathbf{u}}{\operatorname{maximum}} & [\mathbf{b} - \mathbf{F}(\mathbf{y}^0)]^\top \mathbf{u}, \\ \text{subject to } & \mathbf{A}^\top \mathbf{u} \leq \mathbf{c}, \\ & \mathbf{u} \geq \mathbf{0}^m, \end{array}$$

 \Rightarrow the solution is a new dual extreme point or dual extreme direction, due to a "new" objective

The solution u(y⁰) to this (dual) problem corresponds to a *feasible* (primal) solution (x(y⁰), y⁰) to the original problem, and therefore also an *upper bound* on the optimal value, provided that it is finite

Add new constraints to the master problem

If the subproblem problem has an unbounded solution, then it is unbounded along an extreme direction: [b − F(y⁰)]^Tu^r_i > 0

• Add the constraint
$$0 \ge [\mathbf{b} - \mathbf{F}(\mathbf{y})]^\top \mathbf{u}_i^r$$
 to RMP (enlarge l_2)

Suppose instead that the optimal solution is finite:

► Let
$$\mathbf{u}_i^p$$
 be an optimal extreme point
► If $z^0 < f(\mathbf{y}^0) + [\mathbf{b} - \mathbf{F}(\mathbf{y}^0)]^\top \mathbf{u}_i^p$, add the constraint
 $z \ge f(\mathbf{y}) + [\mathbf{b} - \mathbf{F}(\mathbf{y})]^\top \mathbf{u}_i^p$ to RMP (enlarge l_1)

- ► If $z^0 \ge f(\mathbf{y}^0) + [\mathbf{b} \mathbf{F}(\mathbf{y}^0)]^\top \mathbf{u}_i^p$ then equality must hold (">" cannot happen—why?)
 - We then have an optimal solution to the original problem and terminate

通 とう きょう うちょう

- Suppose that the set S is closed and bounded and that f and
 F are both continuous on S
- Then, provided that the computations are exact, we terminate in a finite number of iterations with an optimal solution
- The proof is due to the finite number of constraints in the complete master problem, that is, the number of extreme points and directions in any polyhedron
- A numerical example of the use of Benders' decomposition is found in Lasdon (1970, Sections 7.3.3–7.3.5)

Discussion

- Note the resemblance to the Dantzig–Wolfe algorithm! If f and F are both linear, then they coincide: (the duals of) their subproblems and RMP:s are identical
- Modern implementations of the DW and Benders' algorithms are inexact: at least their RMP:s are not solved exactly
- Their RMP:s are often restricted with an additional "box constraint", which forces the solution to the next RMP to be fairly close to the previous one
- The effect is stability; otherwise, the sequence of solutions to the RMP:s may "jump about" and convergence becomes slow
- This was observed quite early for the DW algorithm, which can even be enriched with non-linear "penalty" terms in the RMP to further stabilize convergence
- In any case, convergence holds also under these modifications, except perhaps for the finiteness