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The Relaxation Theorem

Problem: find

f ∗ = infimum
x

f (x), (1a)

subject to x ∈ S , (1b)

where f : Rn 7→ R is a given function and S ⊆ R
n

A relaxation to (1a)–(1b) has the following form: find

f ∗R = infimum
x

fR(x), (2a)

subject to x ∈ SR , (2b)

where fR : Rn 7→ R is a function
such that

fR ≤ f on S
and

SR ⊇ S
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Relaxation example (maximization)

Binary knapsack problem:

z∗ = maximize
x∈{0,1}4

7x1 + 4x2 + 5x3 + 2x4

subject to 3x1 + 3x2 + 4x3 + 2x4 ≤ 5

Optimal solution: x∗ = (1, 0, 0, 1), z∗ = 9

Continuous relaxation:

z∗
LP

= maximize
x∈[0,1]4

7x1 + 4x2 + 5x3 + 2x4

subject to 3x1 + 3x2 + 4x3 + 2x4 ≤ 5

Optimal solution: x∗R = (1, 2
3 , 0, 0), z

∗

R = 9 2
3 > z∗

x∗R is not feasible in the binary problem
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The relaxation theorem

1 [relaxation] f ∗R ≤ f ∗

2 [infeasibility] If (2) is infeasible,
then so is (1)

3 [optimal relaxation]
If the problem (2) has an optimal solution
x∗R ∈ S for which it holds that

fR(x
∗
R) = f (x∗R)

then x∗R is an optimal
solution to (1) as well

Proof portion. For 3., note that
f (x∗R) = fR(x

∗
R) ≤ fR(x) ≤ f (x)

hold for all x ∈ S

4 / 23



Lagrangian relaxation, I

Consider the optimization problem:

f ∗ := infimum
x

f (x), (3a)

subject to x ∈ X , (3b)

gi (x) ≤ 0, i = 1, . . . ,m, (3c)

where f : Rn 7→ R and gi : R
n 7→ R (i = 1, 2, . . . ,m) are

given functions, and X ⊆ R
n

We assume that
−∞ < f ∗ < ∞ (4)

This means that

f is bounded from below
the problem (3) has at least one feasible solution
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Lagrangian relaxation, II

For a vector µ ∈ R
m, we define the Lagrange function

L : Rn × R
m 7→ R as

L(x,µ) = f (x) +
m
∑

i=1

µigi (x) = f (x) + µ
Tg(x)

We call the vector µ∗ ∈ R
m a Lagrange multiplier if

µ
∗ ≥ 0 and f ∗ = inf

x∈X
L(x,µ∗)

hold
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Lagrange multipliers and global optima

Theorem

Let µ∗ be a Lagrange multiplier. Then, x∗ is an optimal solution to

f ∗ = inf
{

f (x)
∣

∣ x ∈ X , gi (x) ≤ 0, i = 1, . . . ,m
}

if and only if it is feasible and

x∗ ∈ argmin
x∈X

L(x,µ∗) and µ∗
i gi (x

∗) = 0, i = 1, . . . ,m

Notice the resemblance with the KKT conditions:

If X = R
n and all functions are in C 1 then

“x∗ ∈ argminx∈X L(x,µ∗)” ⇔ first row of the KKT conditions

“µ∗

i gi(x
∗) = 0 for all i” ⇔ complementarity conditions

7 / 23



The Lagrangian dual problem associated with the
Lagrangian relaxation

The Lagrangian dual function is

q(µ) := infimum
x∈X

L(x,µ)

The Lagrangian dual problem is then defined as

q∗ := maximum
µ≥0m

q(µ) (5)

For some µ, q(µ) = −∞ is possible. If this is true for all
µ ≥ 0m then

q∗ = supremum
µ≥0m

q(µ) = −∞
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The Lagrangian dual problem, cont’d

The effective domain of q is Dq = { µ ∈ R
m | q(µ) > −∞}

Theorem

Dq is convex, and q is concave on Dq

Very good news: The Lagrangian dual problem is always
convex!

Maximize a concave function

Need still to show how a Lagrangian dual optimal solution can
be used to generate a primal optimal solution
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Weak Duality

Theorem

Let x and µ be feasible in

f ∗ = inf
{

f (x)
∣

∣ x ∈ X , gi (x) ≤ 0, i = 1, . . . ,m
}

and
q∗ = max

{

q(µ)
∣

∣ µ ≥ 0m
}

,

respectively. Then,
q(µ) ≤ f (x).

In particular,
q∗ ≤ f ∗.

If q(µ) = f (x), then the pair (x,µ) is optimal in the respective
problem and

q∗ = q(µ) = f (x) = f ∗.
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Weak Duality Theorem, cont’d

Weak duality is also a consequence of the Relaxation
Theorem: For any µ ≥ 0m, let

S = X ∩
{

x ∈ R
n
∣

∣ g(x) ≤ 0m
}

,

SR = X ,

fR = L(µ, ·)

Apply the Relaxation Theorem

Theorem

If q∗ = f ∗, there is no duality gap.

If there exists a Lagrange multiplier vector, then by the weak
duality theorem, there is no duality gap.
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Global optimality conditions

Theorem

The vector (x∗,µ∗) is a pair of an optimal primal solution and a
Lagrange multiplier if and only if

µ
∗ ≥ 0m, (Dual feasibility) (6a)

x∗ ∈ argmin
x∈X

L(x,µ∗), (Lagrangian optimality) (6b)

x∗ ∈ X , g(x∗) ≤ 0m, (Primal feasibility) (6c)

µ∗
i gi (x

∗) = 0, i = 1, . . . ,m (Complementary slackness) (6d)

If ∃(x∗,µ∗) that fulfil (6), then the duality gap is zero and
Lagrange multipliers exist 12 / 23



Saddle points

The vector (x∗,µ∗) is a pair of an optimal primal solution and
a Lagrange multiplier if and only if x∗ ∈ X, µ∗ ≥ 0m, and
(x∗,µ∗) is a saddle point of the Lagrangian function on
X × R

m
+, that is,

L(x∗,µ) ≤ L(x∗,µ∗) ≤ L(x,µ∗), (x,µ) ∈ X × R
m
+,

holds.

If ∃(x∗,µ∗), equivalent to the global optimality conditions,
the existence of Lagrange multipliers, and a zero duality gap
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Strong duality for convex programs, introduction

Convexity of the dual problem comes with very few
assumptions on the original, primal problem

The characterization of the primal–dual set of optimal
solutions is also quite easily established

To establish strong duality—sufficient conditions under which
there is no duality gap—takes much more

In particular—as with the KKT conditions—we need regularity
conditions (constraint qualifications) and separation theorems
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Strong duality theorem

Consider the problem (3), that is,

f ∗ = inf
{

f (x)
∣

∣ x ∈ X , gi (x) ≤ 0, i = 1, . . . ,m
}

,

where f : Rn 7→ R and gi (i = 1, . . . ,m) are convex and
X ⊆ R

n is a convex set

Introduce the following constraint qualification (CQ):

∃x ∈ X with g(x) < 0m (7)
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Strong duality theorem

Strong duality theorem

Suppose that −∞ < f ∗ < ∞, and that the CQ (7) holds for the
(convex) problem (3)

(a) There is no duality gap and there exists at least one Lagrange
multiplier µ∗. Moreover, the set of Lagrange multipliers is
bounded and convex

(b) If infimum in (3) is attained at some x∗, then the pair (x∗,µ∗)
satisfies the global optimality conditions (6)

(c) If the functions f and gi are in C 1 and X is open (for
example, X = R

n) then (6) equals the KKT conditions

If all constraints are linear the CQ (7) can be removed.
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Example I: An explicit, differentiable dual problem

Consider the problem to

minimize
x

f (x) := x21 + x22 ,

subject to x1 + x2 ≥ 4,

xj ≥ 0, j = 1, 2

Let
g(x) = −x1 − x2 + 4

and
X =

{

(x1, x2)
∣

∣ xj ≥ 0, j = 1, 2
}

= R
2
+
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Example I, cont’d

The Lagrangian dual function is

q(µ) = min
x∈X

L(x, µ) := f (x) + µ(−x1 − x2 + 4)

= 4µ +min
x≥0

{

x21 + x22 − µx1 − µx2
}

= 4µ +min
x1≥0

{

x21 − µx1
}

+min
x2≥0

{

x22 − µx2
}

, µ ≥ 0

For a fixed µ ≥ 0, the minimum is attained at
x1(µ) =

µ

2 , x2(µ) =
µ

2

Substituting this expression into q(µ) ⇒

q(µ) = f (x(µ)) + µ
(

− x1(µ)− x2(µ) + 4
)

= 4µ− µ
2

2

Note that q is strictly concave, and it is differentiable
everywhere (since f , g are differentiable and x(µ) is unique)
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Example I, cont’d

Recall the dual problem

q∗ = max
µ≥0

q(µ) = max
µ≥0

(

4µ−
µ2

2

)

We have that q′(µ) = 4− µ = 0 ⇐⇒ µ = 4.
As 4 ≥ 0, this is the optimum in the dual problem!

⇒ µ∗ = 4 and x∗ =
(

x1(µ
∗), x2(µ

∗)
)

T
= (2, 2)T

Also: f (x∗) = q(µ∗) = 8

Here, the dual function is differentiable. The optimum x∗ is
also unique and automatically given by x∗ = x(µ∗).
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Example II: Implicit non-differentiable dual problem

Consider the linear programming problem to

minimize
x

f (x) := −x1 − x2,

subject to 2x1 + 4x2 ≤ 3,

0 ≤ x1 ≤ 2,

0 ≤ x2 ≤ 1

The optimal solution is x∗ = (3/2, 0)T with f (x∗) = −3/2

x1

x2
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Example II: Lagrangian relax the first constraint

L(x, µ) = −x1 − x2 + µ(2x1 + 4x2 − 3);

q(µ) = −3µ+ min
0≤x1≤2

{

(−1 + 2µ)x1
}

+ min
0≤x2≤1

{

(−1 + 4µ)x2
}

=







−3 + 5µ, 0 ≤ µ ≤ 1/4, ⇔ x1(µ) = 2, x2(µ) = 1
−2 + µ, 1/4 ≤ µ ≤ 1/2, ⇔ x1(µ) = 2, x2(µ) = 0

− 3µ, 1/2 ≤ µ ⇔ x1(µ) = x2(µ) = 0

µ

µ∗ = 1
2 , q(µ

∗) = −3
2

q(µ)

1
2 1

−1

−2

−3
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Example II, cont’d

For linear (convex) programs strong duality holds, but how
obtain x∗ from µ∗?

q is non-differentiable at µ∗ ⇒ Utilize characterization in (6)

The subproblem solution set at µ∗ is
X (µ∗) =

{ (

2α
0

)

| 0 ≤ α ≤ 1
}

.

Among the subproblem solutions, we next have to find one
that is primal feasible as well as complementary

Primal feasibility means that 2 · 2α+ 4 · 0 ≤ 3 ⇐⇒ α ≤ 3/4

Complementarity means that
µ∗ · (2x∗1 + 4x∗2 − 3) = 0 ⇐⇒ α = 3/4, since µ∗ 6= 0.

Conclusion: the only primal vector x that satisfies the system
(6) together with the dual solution µ∗ = 1/2 is x∗ = (3/2, 0)T

Observe finally that f ∗ = q∗
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A theoretical argument for µ∗ = 1/2

Due to the global optimality conditions, the optimal solution
must in this convex case be among the subproblem solutions

Since x∗1 is not in one of the “corners” of X (0 < x∗1 < 2), the
value of µ∗ must be such that the cost term for x1 in L(x, µ∗)
is zero! That is, −1 + 2µ∗ = 0 ⇒ µ∗ = 1/2!

A non-coordinability phenomenon—a non-unique subproblem
solution means that the optimal solution is not obtained
automatically

In non-convex cases (e.g., integrality constraints) the optimal
solution may not be among the points in X (µ∗) (the set of
subproblem solutions at µ∗)

What do we do then??
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