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The Relaxation Theorem

@ Problem: find
f* = infimum f(x), (1a)
X
subject to x € S, (1b)

where f : R” — R is a given function and S C R”
@ A relaxation to (1a)—(1b) has the following form: find

fp = infimum  fg(x), (2a)
subject to  x € Sg, (2b)
where fg : R" — R is a function
such that I
frR<fonS$S //;;
and T 1
SO S ‘ |
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Relaxation example (maximization)

@ Binary knapsack problem:

z" = maximize 7x1 + 4x> + 5x3 + 2x4
xe{0,1}4

subjectto 3x1 +3x +4x3+2x4 < 5
s Optimal solution: x* = (1,0,0,1), z* =9
@ Continuous relaxation:
z{p = maximize 7x3 + 4x2 + 5x3 + 2x4
x€[0,1]*
subjectto 3x1 +3x +4x3+2x4 < 5

s Optimal solution: xjz = (1, 2,0,0), z; = 93 > z*
® XJ, is not feasible in the binary problem
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The relaxation theorem

O [relaxation] fs < f*

@ [infeasibility]  If (2) is infeasible, e
then so is (1)

© [optimal relaxation]
If the problem (2) has an optimal solution
Xk € S for which it holds that
falxi) = F(x)
then xy, is an optimal I
solution to (1) as well i -

@ Proof portion. For 3., note that \//pr

f(xk) = fr(xg) < fr(x) < f(x) f——
hold for all x € S “
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Lagrangian relaxation, |

@ Consider the optimization problem:
f* = infimum f(x), (3a)
X
subject to x € X, (3b)
gi(x) <0, i=1,....,m (3¢

where f :R"— Rand gi: R"— R (i=1,2,...,m) are
given functions, and X C R”

@ We assume that
—o00 < f* < o0 (4)

This means that

o f is bounded from below
o the problem (3) has at least one feasible solution
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Lagrangian relaxation, Il

@ For a vector p € R™, we define the Lagrange function
L:R"xR™— R as

L(x, ) = f(x) + Z pigi(x) = f(x) + prg(x)

@ We call the vector u* € R™ a Lagrange multiplier if
*>0 d f*=inf L *
B> an Jnf L(x,p7)

hold
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Lagrange multipliers and global optima

Let p* be a Lagrange multiplier. Then, x* is an optimal solution to

f*=inf{f(x)| xe X, gi(x)<0,i=1,....m}
if and only if it is feasible and

x* € argmin L(x,p*) and puigi(x*)=0,i=1,....m
xeX

@ Notice the resemblance with the KKT conditions:

o If X =R" and all functions are in C! then
“x* € arg mingex L(x, pu*)" < first row of the KKT conditions

[T

e “ufgi(x*) =0 for all /" < complementarity conditions
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The Lagrangian dual problem associated with the

Lagrangian relaxation

@ The Lagrangian dual function is
q(p) := infimum L(x, p)

® The Lagrangian dual problem is then defined as

Y= i 5
q" 1= maximum q(p) (5)
@ For some p, g(p) = —oo is possible. If this is true for all
p > 0™ then
g" = supremum q(p) = —oo

p>0m
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The Lagrangian dual problem, cont'd

@ The effective domain of qis Dg={ p € R™| q(pn) > —o0 }

Dq is convex, and g is concave on D,

@ Very good news: The Lagrangian dual problem is always
convex!

@ Maximize a concave function

@ Need still to show how a Lagrangian dual optimal solution can
be used to generate a primal optimal solution
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Weak Duality

Let x and p be feasible in

f*=inf {f(x) | x € X,gi(x) <0,i=1,...,m}

and
q* = max { q(p) | p > 07},
respectively. Then,
q(p) < f(x).
In particular,
g <

If () = f(x), then the pair (x, ) is optimal in the respective
problem and
q" = a(u) = F(x) = F°.
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Weak Duality Theorem, cont'd

@ Weak duality is also a consequence of the Relaxation
Theorem: For any p > 07, let

S=Xn{xeR"|gx)<07},
Sk =X,
fR:L(p’v')

Apply the Relaxation Theorem

o If g" = f*, there is no duality gap.

o If there exists a Lagrange multiplier vector, then by the weak
duality theorem, there is no duality gap.
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Global optimality conditions

The vector (x*, u*) is a pair of an optimal primal solution and a
Lagrange multiplier if and only if

p* > 0" (Dual feasibility)
X" € arg mi)rg L(x,pu*), (Lagrangian optimality)
LSS
x* € X, g(x*) <0™, (Primal feasibility)

wuigi(x*)=0, i=1,...,m (Complementary slackness)

(6a)

(6b)

(6c)

(6d)

o If 3(x*, u*) that fulfil (6), then the duality gap is zero and

Lagrange multipliers exist
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Saddle points

@ The vector (x*, u*) is a pair of an optimal primal solution and
a Lagrange multiplier if and only if x* € X, p* > 0™, and
(x*, u*) is a saddle point of the Lagrangian function on
X x R, that is,

L(x, ) < L, %) < Lixop®), (%) € X x R,

holds.

o If 3(x*, u*), equivalent to the global optimality conditions,
the existence of Lagrange multipliers, and a zero duality gap
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Strong duality for convex programs, introduction

@ Convexity of the dual problem comes with very few
assumptions on the original, primal problem

@ The characterization of the primal—dual set of optimal
solutions is also quite easily established

@ To establish strong duality—sufficient conditions under which
there is no duality gap—takes much more

@ In particular—as with the KKT conditions—we need regularity
conditions (constraint qualifications) and separation theorems
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Strong duality theorem

@ Consider the problem (3), that is,
f* :inf{f(x) | x e X,gi(x) <0,i = 1,...,m},

where f : R" — R and g; (i =1,..., m) are convex and
X C R" is a convex set

@ Introduce the following constraint qualification (CQ):

Ixe X with g(x) <0” (7)
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Strong duality theorem

Strong duality theorem
Suppose that —oo < f* < 0o, and that the CQ (7) holds for the
(convex) problem (3)

(a) There is no duality gap and there exists at least one Lagrange
multiplier p*. Moreover, the set of Lagrange multipliers is
bounded and convex

(b) If infimum in (3) is attained at some x*, then the pair (x*, pu*)
satisfies the global optimality conditions (6)

(c) If the functions f and g; are in C* and X is open (for
example, X = R") then (6) equals the KKT conditions

If all constraints are linear the CQ (7) can be removed.
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Example |: An explicit, differentiable dual problem

@ Consider the problem to
.. 2 2
minimize f(x) 1= x{ + x5,
X
subject to x3 + xo > 4,
xj >0, j=12

@ Let
gx)=—x1—xx+ 4

and
X={(a)|x>0j=12} =R}
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Example I, cont'd

@ The Lagrangian dual function is

q(u) = min L(x, u) = £(x) + p(—x1 — x2 +4)

= 4,u+m>i{)1 {3 +x3 — pxa — pxa}
Xz

:4;;—1—)1(1;1;% {Xlz—,uxl}—i—giz% {Xzz—pxz}, uw=>0

@ For a fixed p > 0, the minimum is attained at

xa(p) =50(m) =4

@ Substituting this expression into q(u) =
2
q(p) = F(x(1) + p( — x1(p) — x2(p) +4) = 4p — &

@ Note that q is strictly concave, and it is differentiable
everywhere (since f, g are differentiable and x(u) is unique)
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Example I, cont'd

@ Recall the dual problem

12
q" = maxq(p) = max (4n - 7)

@ We have that ¢'(u) =4 —p=0<= u =4
As 4 > 0, this is the optimum in the dual problem!

= p*=4and x* = (a(u?), ()’ = (2,2)7
e Also: f(x*) = q(p*) =8

@ Here, the dual function is differentiable. The optimum x* is
also unique and automatically given by x* = x(p*).
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Example II: Implicit non-differentiable dual problem

@ Consider the linear programming problem to

minimize f(x):= —x3 — xp,
X

subject to 2x1 + 4xp < 3,
0 < X1 < 27
0 S X2 S 1

@ The optimal solution is x* = (3/2,0)T with f(x*) = —3/2

X2

X1
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Example II: Lagrangian relax the first constraint

L(x, p) =

—x1 — x2 + p(2x1 + 4x2 — 3);

q(p) = —3u+og&1%2 {(-1+ 2u)X1}+Og)1éI%1 {(-1+4u)x}

-3+ 54,
= _2+ M,
- 3/~L’

0<pu<1/4,

4

1/4<pu<1/2,

1/2<p

.

4

xa(p) = 2,0(n) =1
xi(p) = 2,x(p) =0
x1(p) = x2(p) =0
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Example Il, cont'd

For linear (convex) programs strong duality holds, but how
obtain x* from p*?

q is non-differentiable at p* = Utilize characterization in (6)

The subproblem solution set at p* is
Xp)={(5)0<a<1}.

Among the subproblem solutions, we next have to find one
that is primal feasible as well as complementary

Primal feasibility means that 2-2a+4-0 <3 <= a < 3/4

Complementarity means that
- (2xf 4+ 4x5 — 3) = 0 <= a = 3/4, since pu* # 0.

Conclusion: the only primal vector x that satisfies the system
(6) together with the dual solution p* = 1/2 is x* = (3/2,0)T

Observe finally that f* = g*
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A theoretical argument for p* = 1/2

@ Due to the global optimality conditions, the optimal solution
must in this convex case be among the subproblem solutions

@ Since xj is not in one of the “corners” of X (0 < xj < 2), the
value of p* must be such that the cost term for x; in L(x, u*)
is zero! Thatis, —1+2u* =0= p* =1/2!

@ A non-coordinability phenomenon—a non-unique subproblem
solution means that the optimal solution is not obtained
automatically

@ In non-convex cases (e.g., integrality constraints) the optimal
solution may not be among the points in X(u*) (the set of
subproblem solutions at u*)

@ What do we do then??
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