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Subgradients of convex functions

Definition of a subgradient

Let ¢ : R" — R be a convex function.
A vector p € R" is a subgradient of ¢ at x € R" if

o(y) > e(x)+p'(y—x), yeR” (1)

@ The set of such vectors p defines the subdifferential of ¢ at x,
and is denoted Jy(x)

@ 0p(x) is the collection of “slopes” of the function ¢ at x

Properties of the subdifferential

For every x € R", Op(x) is a non-empty, convex, and compact set
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Subgradients of convex functions—illustration

Figur: Four possible slopes of the convex function ¢ at x
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Subdifferential of a convex function—illustration

Figur: The subdifferential of a convex function ¢ at x.
@ is indicated by level curves.

@ The convex function ¢ is differentiable at x if there exists
exactly one subgradient of ¢ at x which then equals the
gradient of ¢ at x, V(x)
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Differentiability of the Lagrangian dual function

@ Consider the problem
f* := infimum f(x), (2a)

subject to x € X, (2b)
gi(x) <0, i=1,...,m, (2¢)

and assume that
fand g,i =1,...,m, are continuous; (3a)

X is nonempty and compact. (3b)

The set of solutions to the Lagrangian subproblem

X(p) := argmin L(x, p)
xeX

is non-empty and compact for every pu € R™
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Subgradients and gradients of g

@ Suppose that (3) holds (f, g; continuous; X # (), compact)
in the problem (2):
f*=infy {f(x)|x€X; g(x)<0,i=1,....m}

@ The dual function q is finite, continuous, and concave on R™.
If its supremum over R'" is attained, then the optimal solution
set therefore is closed and convex

Theorem: subgradient of the dual function

Let p € R™. If x € X(u), then g(x) is a subgradient to g at p,
that is, g(x) € dq(w)

Let & € R™ be arbitrary. It follows that

q(R) = infimum L(y, &) < f(x) + ' g(x)

= F(x) + (2 — 1) "&(x) + 1 g(x)
= q(p) + (B — p) "g(x)
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Subgradients and gradients of g, cont'd

@ Recall the subgradient inequality (1) for a convex function ¢:
p is a subgradient of ¢ at x if

ey) >o(x)+p'(y—x), yeR”

@ The function ¢(x) +p' (y — x) is linear w.r.t. y and
underestimates ¢(y) over R”

@ Here, we have a concave function g and the reverse inequality:
g(x) is a subgradient (actually, supgradient) of g at w if
x € X(p) and

q() < q(p) + (b —p)'g(x), RER

@ The function q(p) + (2 — p) "g(x) is linear w.r.t. fu and
overestimates q(p) over R™
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Example — a concave function

Let h(x)=4—|x|] and hy(x) =4 — (x —2)?
Define the function h: R+ Ras  h(x) := min { h1(x), ha(x)}

= h(x) = 4 — x, 1<x<4,
Tl 4-(x—2)? x<1, x>4
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Example, cont'd — supdifferential of a concave function

@ h is non-differentiable at x = 1 and x = 4, since its graph has
non-unique supporting hyperplanes there

\éh(X) i—l},} l<x<4
4 —-2x}, x<1, x>4

o M=, Xt

[—4,-1], x=4

@ The subdifferential is either a singleton (at differentiable
points) or an interval (at non-differentiable points)
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The Lagrangian dual problem

o Let p € R™. Then, dg(p) = conv { g(x) | x € X(p) }

® Let o € R™. The dual function q is differentiable at p if and
only /f{g x) ‘ x € X(p } is a singleton set. Then,

Va(p) = g(x),

for every x € X(p)
@ Holds in particular if the Lagrangian subproblem has a unique
solution < The solution set X () is a singleton

True, e.g., when X is convex, f strictly convex on X, and g;
convex on X Vi (e.g., f quadratic, X polyhedral, g; linear)
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How do we write the subdifferential of h?

If h(x) := minj=1,.._m{hi(x)}, where each function h; is concave
and differentiable on R", then h is a concave function on R"

@ Define the set Z(x) C {1,..., m} by the active segments at x:

i€ Z(x) if h(x)= hi(x), .
{ i I(x) if h(x) < hi(x), Pe{l..,m}

@ Then, the subdifFerentiaI Oh(x) is the convex hull of the
gradients {Vh;(x) | i € Z(x)}:

Oh(x)=¢ &€= > NVA(x) | DY Ni=1; A\ >0,i € Z(x)

i€Z(x) i€Z(x)
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Optimality conditions for the dual problem

@ For a differentiable, concave function h it holds that

x* € argmax h(x) <= Vh(x*)=0"
xeR”

Theorem

Assume that h is concave on R". Then,

x* € argmax h(x) <= 0" € 0h(x")
xeR"

Proof
< Suppose that 0" € 9h(x*) = h(x) < h(x*) + (0") T (x — x*)
for all x € R, that is, h(x) < h(x*) for all x € R"
= Suppose that x* € argmax,cgn h(Xx) =
h(x) < h(x*) = h(x*) + (0") " (x — x*) for all x € R”, that is,
0" € Oh(x*)
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Optimality conditions for the dual problem, cont'd

@ The example: 0 € 0h(1) = x* =1
Generalization of the KKT conditions:

x" € argmax h(x) <= 9Jh(x*) N Nx(x*) # 0,
xeX

where Nx(x*) is the normal cone to X at x*, that is, the conical
hull of the active constraints’ normals at x*

Figur: An optimal solution x* A non-optimal solution x
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Optimality conditions for the dual problem, cont'd

@ The dual problem has only sign conditions g > 0™

@ Consider the dual problem

q" = maximize ()

o u* > 0™ is then optimal if and only if there exists a
subgradient g € dq(p™*) for which the following holds:

g<0", ugi=0i=1....m

@ Compare with a one-dimensional max-problem (h concave):

x* > 0isoptimal < A (x*)<0; x*-H(x*)=0
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A subgradient method for the dual problem

@ Subgradient methods extend gradient projection methods
from C! to general convex (or, concave) functions, generating
a sequence of dual vectors in R using a single subgradient in
each iteration

@ The simplest type of iteration has the form

ptt = Projgm [Mk + Oékgk}

= [Hk + Oékgk]+ (4)

m

_ <max {o (uk),-+0‘k(gk)i}) ’

i=1

where k is the iteration counter and gk € dq(u*) is an
arbitrary subgradient of g at u*
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A subgradient method for the dual problem, cont'd

o We often write gk = g(x¥), where x* € argmin,x L(x, )

@ Main difference to C! case: an arbitrary subgradient g¢ may
be a non-ascent direction!

= Cannot make line searches; must use predetermined step
lengths
@ Suppose that pk € R is not optimal in max >om q(p);
ie, q(pk) < gx.
Then, for every optimal solution u* € U*

k+1

[ — || < [l = | (5)

holds for every step length ay in the interval

2[q* — q(u¥)]
e (0 2 ) ©
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A subgradient method for the dual problem, cont'd

@ Why? Let g € 0q(z), and let U* be the set of optimal
solutions to max,>om q(p). Then,

UrC{peR™|g' (u—p)>0}.

In other words, g defines a half-space that contains the set of
optimal solutions.

@ The good news: If the step length ay is small enough we get
closer to the set of optimal solutions! [i.e., (6) — (5) ]
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Each (sub)gradient defines a halfspace that contains the
optimal set

Figur: g non-differentiable q differentiable

gc€dg(p) = U C{peR™|g'(p—p)=>0}
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Each (sub)gradient defines a halfspace that contains the

optimal set

9q(p)

Figur: The half-space defined by a subgradient g € q(u).
Note that this subgradient is not an ascent direction
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Polyak's step length rule

@ Choose the step length ay such that

2g* — k
a<ak<w—a, k=1,2,... (7)

R

@ 0 > 0 = step lengths o don't converge to 0 or to a too large
value

@ Bad news: Utilizes knowledge of the optimal value g*!

@ But: ¢* can be replaced by and approximation g, > g*
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The divergent series step length rule

@ Choose the step length ay such that

o
0, k=1,2,...; li =0; = 8
ap > U, ) & kl—>n;oak sz_:las +00 ()

@ Additional condition, added to ensure convergence to a point:

[ee]
Y al <400 (9)
s=1
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Convergence results

@ Suppose that f and g are continuous, X is compact,

Ix € X : g(x) < 0, and consider the problem
f*=inf {f(x) | x € X,g(x) <0} (10)

Let {u*} be generated by the method on p. 15, under the
Polyak step length rule (7), where o > 0 is small.
Then, {u*} — p* € U*

Let {u*} be generated by the method on p. 15, under the
divergent series step length rule (8).

Then, {q(n*)} — g*, and {disty-(u*)} — 0

Let {u*} be generated by the method on p. 15, under the
divergent series step length rule (8) and (9).
Then, {u*} — p* € U*
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Application to the Lagrangian dual problem

© Given pk > 07

@ Solve the Lagrangian subproblem: minyex L(x, u¥)

© Let an optimal solution to this subproblem be x* = x(u*)
Q Calculate a subgradient g(x*) € dq(u*)

@ Take a step ay > 0 in the direction of g(x¥) from u*,
according to a step length rule (see previous page)

@ !Set any negative components of this vector to 0 = p*t!

@ Let k:= k+1 and repeat from 2.

Euclidean projection onto RT
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Additional algorithms

@ We can choose the subgradient more carefully, to obtain
ascent directions.

@ Gather several subgradients at nearby points p* and solve
quadratic programming problems to find the best convex
combination of them (Bundle methods)

@ Pre-multiply the subgradient by some positive definite matrix
= methods similar to Newton methods
(Space dilation methods)

@ Pre-project the subgradient vector (onto the tangent cone of

RT) = step direction is a feasible direction
(Subgradient-projection methods)
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More to come ...

@ Discrete optimization: The size of the duality gap, and the
relation to the continuous relaxation

@ Convexification
@ Primal feasibility heuristics

@ Recovery of primal solutions by utilizing weighted averages of
subproblem solutions
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