Lecture 3 Lagrangian duality, part II: Algorithms for the Lagrangian dual problem

Ann-Brith Strömberg

2018-01-19

(日) (圖) (E) (E) (E)

Definition of a subgradient

Let $\varphi : \mathbb{R}^n \mapsto \mathbb{R}$ be a convex function. A vector $\mathbf{p} \in \mathbb{R}^n$ is a *subgradient* of φ at $\mathbf{x} \in \mathbb{R}^n$ if

$$\varphi(\mathbf{y}) \ge \varphi(\mathbf{x}) + \mathbf{p}^{\top}(\mathbf{y} - \mathbf{x}), \qquad \mathbf{y} \in \mathbb{R}^n$$
 (1)

- The set of such vectors **p** defines the *subdifferential* of φ at **x**, and is denoted $\partial \varphi(\mathbf{x})$
- $\partial \varphi(\mathbf{x})$ is the collection of "slopes" of the function φ at \mathbf{x}

Properties of the subdifferential

For every $\mathbf{x} \in \mathbb{R}^n$, $\partial \varphi(\mathbf{x})$ is a non-empty, convex, and compact set

Subgradients of convex functions—illustration

Figur: Four possible slopes of the convex function φ at x

◆□▶ ◆圖▶ ◆臣▶ ◆臣▶ ─ 臣

Subdifferential of a convex function—illustration

Figur: The subdifferential of a convex function φ at **x**. φ is indicated by level curves.

 The convex function φ is differentiable at x if there exists exactly one subgradient of φ at x which then equals the gradient of φ at x, ∇φ(x)

Differentiability of the Lagrangian dual function

• Consider the problem

$$f^* := \inf_{\mathbf{x}} f(\mathbf{x}), \tag{2a}$$

subject to
$$\mathbf{x} \in X$$
, (2b)

$$g_i(\mathbf{x}) \leq 0, \qquad i = 1, \dots, m,$$
 (2c)

and assume that

$$f$$
 and $g_i, i = 1, ..., m$, are continuous; (3a)
X is nonempty and compact. (3b)

The set of solutions to the Lagrangian subproblem

 $X(\mu) := \operatorname*{argmin}_{\mathbf{x} \in X} L(\mathbf{x}, \mu)$

is non-empty and compact for every $oldsymbol{\mu} \in \mathbb{R}^m$

Subgradients and gradients of q

• Suppose that (3) holds (f, g_i continuous; $X \neq \emptyset$, compact) in the problem (2):

$$f^* = \inf_{\mathbf{x}} \left\{ f(\mathbf{x}) \mid \mathbf{x} \in X; \ g_i(\mathbf{x}) \leq 0, \ i = 1, \dots, m \right\}$$

The dual function q is *finite*, *continuous*, and *concave* on ℝ^m.
 If its supremum over ℝ^m₊ is attained, then the optimal solution set therefore is closed and convex

Theorem: subgradient of the dual function

Let $\mu \in \mathbb{R}^m$. If $\mathbf{x} \in X(\mu)$, then $\mathbf{g}(\mathbf{x})$ is a subgradient to q at μ , that is, $\mathbf{g}(\mathbf{x}) \in \partial q(\mu)$

Proof

Let $ar{m{\mu}} \in \mathbb{R}^m$ be arbitrary. It follows that

$$egin{aligned} q(ar{m{\mu}}) &= \operatornamewithlimits{infimum}_{m{y}\in X} \ L(m{y},ar{m{\mu}}) \leq f(m{x}) + ar{m{\mu}}^{ op}m{g}(m{x}) \ &= f(m{x}) + (ar{m{\mu}} - m{\mu})^{ op}m{g}(m{x}) + m{\mu}^{ op}m{g}(m{x}) \ &= q(m{\mu}) + (ar{m{\mu}} - m{\mu})^{ op}m{g}(m{x}) \end{aligned}$$

Subgradients and gradients of q, cont'd

Recall the subgradient inequality (1) for a convex function φ:
 p is a subgradient of φ at x if

$$arphi(\mathbf{y}) \geq arphi(\mathbf{x}) + \mathbf{p}^{ op}(\mathbf{y} - \mathbf{x}), \qquad \mathbf{y} \in \mathbb{R}^n$$

- The function φ(x) + p^T(y − x) is linear w.r.t. y and underestimates φ(y) over ℝⁿ
- Here, we have a *concave* function q and the reverse inequality: g(x) is a subgradient (actually, supgradient) of q at μ if $x \in X(\mu)$ and

$$q(oldsymbol{ar{\mu}}) \leq q(oldsymbol{\mu}) + (oldsymbol{ar{\mu}} - oldsymbol{\mu})^{ op} \mathbf{g}(\mathbf{x}), \qquad oldsymbol{ar{\mu}} \in \mathbb{R}^m$$

• The function $q(\mu) + (\bar{\mu} - \mu)^{\top} \mathbf{g}(\mathbf{x})$ is linear w.r.t. $\bar{\mu}$ and overestimates $q(\mu)$ over \mathbb{R}^m

Let
$$h_1(x) = 4 - |x|$$
 and $h_2(x) = 4 - (x - 2)^2$

Define the function $h : \mathbb{R} \mapsto \mathbb{R}$ as $h(x) := \min \{h_1(x), h_2(x)\}$

$$\Rightarrow h(x) = \begin{cases} 4-x, & 1 \le x \le 4, \\ 4-(x-2)^2, & x \le 1, & x \ge 4 \end{cases}$$

Example, cont'd — supdifferential of a concave function

 h is non-differentiable at x = 1 and x = 4, since its graph has non-unique supporting hyperplanes there

• The subdifferential is either a singleton (at differentiable points) or an interval (at non-differentiable points)

The Lagrangian dual problem

• Let
$$\mu \in \mathbb{R}^m$$
. Then, $\partial q(\mu) = \operatorname{conv} ig\{ \, \mathbf{g}(\mathsf{x}) \ \big| \ \mathsf{x} \in X(\mu) \, ig\}$

Let μ ∈ ℝ^m. The dual function q is differentiable at μ if and only if { g(x) | x ∈ X(μ) } is a singleton set. Then,

$$abla q(oldsymbol{\mu}) = \mathbf{g}(\mathbf{x}),$$

for every $\mathbf{x} \in X(\boldsymbol{\mu})$

Holds in particular if the Lagrangian subproblem has a unique solution ⇔ The solution set X(µ) is a singleton True, e.g., when X is convex, f strictly convex on X, and g_i convex on X ∀i (e.g., f quadratic, X polyhedral, g_i linear)

How do we write the subdifferential of h?

Theorem

If $h(\mathbf{x}) := \min_{i=1,...,m} \{h_i(\mathbf{x})\}$, where each function h_i is concave and differentiable on \mathbb{R}^n , then h is a concave function on \mathbb{R}^n

• Define the set $\mathcal{I}(\mathbf{x}) \subseteq \{1, \dots, m\}$ by the *active* segments at \mathbf{x} :

$$\begin{cases} i \in \mathcal{I}(\mathbf{x}) & \text{if } h(\mathbf{x}) = h_i(\mathbf{x}), \\ i \notin \mathcal{I}(\mathbf{x}) & \text{if } h(\mathbf{x}) < h_i(\mathbf{x}), \end{cases} \quad i \in \{1, \dots, m\}$$

Then, the subdifferential ∂h(x) is the convex hull of the gradients {∇h_i(x) | i ∈ I(x)}:

$$\partial h(\mathbf{x}) = \left\{ \left. \xi = \sum_{i \in \mathcal{I}(\mathbf{x})} \lambda_i \nabla h_i(\mathbf{x}) \right| \sum_{i \in \mathcal{I}(\mathbf{x})} \lambda_i = 1; \ \lambda_i \ge 0, i \in \mathcal{I}(\mathbf{x}) \right\}$$

イロト イポト イヨト イヨト 三日

Optimality conditions for the dual problem

• For a differentiable, concave function h it holds that

$$\mathbf{x}^* \in \operatorname*{argmax}_{\mathbf{x} \in \mathbb{R}^n} h(\mathbf{x}) \iff \nabla h(\mathbf{x}^*) = \mathbf{0}^n$$

Theorem

Assume that h is concave on \mathbb{R}^n . Then,

$$\mathbf{x}^* \in \operatorname*{argmax}_{\mathbf{x} \in \mathbb{R}^n} h(\mathbf{x}) \quad \Longleftrightarrow \quad \mathbf{0}^n \in \partial h(\mathbf{x}^*)$$

Proof

- $\Leftrightarrow \text{ Suppose that } \mathbf{0}^n \in \partial h(\mathbf{x}^*) \Longrightarrow h(\mathbf{x}) \leq h(\mathbf{x}^*) + (\mathbf{0}^n)^\top (\mathbf{x} \mathbf{x}^*)$ for all $\mathbf{x} \in \mathbb{R}^n$, that is, $h(\mathbf{x}) \leq h(\mathbf{x}^*)$ for all $\mathbf{x} \in \mathbb{R}^n$
- $\Rightarrow \text{ Suppose that } \mathbf{x}^* \in \operatorname{argmax}_{\mathbf{x} \in \mathbb{R}^n} h(\mathbf{x}) \Longrightarrow \\ h(\mathbf{x}) \leq h(\mathbf{x}^*) = h(\mathbf{x}^*) + (\mathbf{0}^n)^\top (\mathbf{x} \mathbf{x}^*) \text{ for all } \mathbf{x} \in \mathbb{R}^n, \text{ that is,} \\ \mathbf{0}^n \in \partial h(\mathbf{x}^*)$

Optimality conditions for the dual problem, cont'd

• The example: $0 \in \partial h(1) \Longrightarrow x^* = 1$

Generalization of the KKT conditions:

 $\mathbf{x}^* \in \operatorname*{argmax}_{\mathbf{x} \in X} h(\mathbf{x}) \iff \partial h(\mathbf{x}^*) \cap N_X(\mathbf{x}^*) \neq \emptyset,$

where $N_X(\mathbf{x}^*)$ is the normal cone to X at \mathbf{x}^* , that is, the conical hull of the active constraints' normals at \mathbf{x}^*

Figur: An optimal solution **x**^{*}

A non-optimal solution **x** > = oa@ 13/25

Optimality conditions for the dual problem, cont'd

- The dual problem has only sign conditions ${oldsymbol \mu} \geq {oldsymbol 0}^m$
- Consider the dual problem

$$q^* = \operatorname*{maximize}_{oldsymbol{\mu} \geq oldsymbol{0}^m} q(oldsymbol{\mu})$$

μ^{*} ≥ 0^m is then optimal *if and only if* there exists a subgradient g ∈ ∂q(μ^{*}) for which the following holds:

$$\mathbf{g} \leq \mathbf{0}^{m}; \quad \mu_{i}^{*}g_{i} = 0, \ i = 1, \dots, m$$

• Compare with a one-dimensional max-problem (h concave):

$$x^* \ge 0$$
 is optimal \Leftrightarrow $h'(x^*) \le 0$; $x^* \cdot h'(x^*) = 0$

A subgradient method for the dual problem

- Subgradient methods extend gradient projection methods from C¹ to general convex (or, concave) functions, generating a sequence of dual vectors in R^m₊ using a single subgradient in each iteration
- The simplest type of iteration has the form

$$\boldsymbol{\mu}^{k+1} := \operatorname{proj}_{\mathbb{R}_{+}^{m}} [\boldsymbol{\mu}^{k} + \alpha_{k} \mathbf{g}^{k}]$$

$$= [\boldsymbol{\mu}^{k} + \alpha_{k} \mathbf{g}^{k}]_{+} \qquad (4)$$

$$= \left(\max \left\{ 0; \ (\boldsymbol{\mu}^{k})_{i} + \alpha_{k} (\mathbf{g}^{k})_{i} \right\} \right)_{i=1}^{m},$$

where k is the iteration counter and $\mathbf{g}^k \in \partial q(\mu^k)$ is an arbitrary subgradient of q at μ^k

A subgradient method for the dual problem, cont'd

- We often write $\mathbf{g}^k = \mathbf{g}(\mathbf{x}^k)$, where $\mathbf{x}^k \in \operatorname{argmin}_{\mathbf{x} \in X} L(\mathbf{x}, \boldsymbol{\mu}^k)$
- Main difference to C¹ case: an arbitrary subgradient **g**^k may be a non-ascent direction!
- \Rightarrow Cannot make line searches; must use predetermined step lengths α_k
 - Suppose that µ^k ∈ ℝ^m₊ is not optimal in maxµ≥0^m q(µ);
 i.e., q(µ^k) < q*.
 Then, for every optimal solution µ^{*} ∈ U^{*}

$$\|\mu^{k+1} - \mu^*\| < \|\mu^k - \mu^*\|$$
 (5)

holds for every step length α_k in the interval

$$\alpha_k \in \left(0, \frac{2[q^* - q(\boldsymbol{\mu}^k)]}{\|\mathbf{g}^k\|^2}\right)$$
(6)

イロト イポト イヨト イヨト 三日

A subgradient method for the dual problem, cont'd

Why? Let g ∈ ∂q(μ
), and let U* be the set of optimal solutions to max_{μ≥0^m} q(μ). Then,

$$U^* \subseteq \big\{ \, \boldsymbol{\mu} \in \mathbb{R}^m \ \big| \ \mathbf{g}^\top (\boldsymbol{\mu} - \bar{\boldsymbol{\mu}}) \geq \mathbf{0} \, \big\}.$$

In other words, ${\bf g}$ defines a half-space that contains the set of optimal solutions.

The good news: If the step length α_k is small enough we get closer to the set of optimal solutions! [i.e., (6) → (5)]

Each (sub)gradient defines a halfspace that contains the optimal set

▶ ▲ 볼 ▶ ▲ 볼 ▶ 볼 ∽ Q ↔ 18/25

Each (sub)gradient defines a halfspace that contains the optimal set

Figur: The half-space defined by a subgradient $\mathbf{g} \in q(\mu)$. Note that this subgradient is *not an ascent direction*

Polyak's step length rule

• Choose the step length α_k such that

$$\sigma \le \alpha_k \le \frac{2\left[q^* - q(\boldsymbol{\mu}^k)\right]}{\left\|\boldsymbol{g}^k\right\|^2} - \sigma, \qquad k = 1, 2, \dots$$
(7)

- $\sigma > 0 \Rightarrow$ step lengths α_k don't converge to 0 or to a too large value
- Bad news: Utilizes knowledge of the optimal value q*!
- But: q^* can be replaced by and approximation $ar{q}_k \geq q^*$

The divergent series step length rule

• Choose the step length α_k such that

$$\alpha_k > 0, \ k = 1, 2, \dots; \quad \lim_{k \to \infty} \alpha_k = 0; \quad \sum_{s=1}^{\infty} \alpha_s = +\infty$$
 (8)

Additional condition, added to ensure convergence to a point:

$$\sum_{s=1}^{\infty} \alpha_s^2 < +\infty \tag{9}$$

(日) (圖) (E) (E) (E)

Convergence results

• Suppose that f and g are continuous, X is compact, $\exists x \in X : g(x) < 0$, and consider the problem

$$f^* = \inf \left\{ f(\mathbf{x}) \mid \mathbf{x} \in X, \mathbf{g}(\mathbf{x}) \le \mathbf{0} \right\}$$
(10)

- (a) Let $\{\mu^k\}$ be generated by the method on p. 15, under the Polyak step length rule (7), where $\sigma > 0$ is small. Then, $\{\mu^k\} \rightarrow \mu^* \in U^*$
- (b) Let $\{\mu^k\}$ be generated by the method on p. 15, under the divergent series step length rule (8). Then, $\{q(\mu^k)\} \rightarrow q^*$, and $\{\text{dist}_{U^*}(\mu^k)\} \rightarrow 0$
- (c) Let $\{\mu^k\}$ be generated by the method on p. 15, under the divergent series step length rule (8) and (9). Then, $\{\mu^k\} \rightarrow \mu^* \in U^*$

Application to the Lagrangian dual problem

() Given
$$oldsymbol{\mu}^k \geq oldsymbol{0}^m$$

Solve the Lagrangian subproblem: $\min_{\mathbf{x}\in X} L(\mathbf{x}, \boldsymbol{\mu}^k)$

③ Let an optimal solution to this subproblem be $\mathbf{x}^k = \mathbf{x}(\boldsymbol{\mu}^k)$

- Calculate a subgradient $\mathbf{g}(\mathbf{x}^k) \in \partial q(\mu^k)$
- Take a step α_k > 0 in the direction of g(x^k) from μ^k, according to a step length rule (see previous page)
- ${igside}$ ^ 1Set any negative components of this vector to 0 \Rightarrow μ^{k+1}

2 Let
$$k := k + 1$$
 and repeat from 2

¹Euclidean projection onto \mathbb{R}^m_+

Additional algorithms

- We can choose the subgradient more carefully, to obtain *ascent* directions.
- Gather several subgradients at nearby points μ^k and solve quadratic programming problems to find the best convex combination of them (*Bundle methods*)
- Pre-multiply the subgradient by some positive definite matrix
 ⇒ methods similar to Newton methods
 (Space dilation methods)

• Discrete optimization: The size of the duality gap, and the relation to the continuous relaxation

Convexification

- Primal feasibility heuristics
- Recovery of primal solutions by utilizing weighted averages of subproblem solutions