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Subgradients of convex functions

Definition of a subgradient

Let ϕ : Rn 7→ R be a convex function.
A vector p ∈ R

n is a subgradient of ϕ at x ∈ R
n if

ϕ(y) ≥ ϕ(x) + p⊤(y − x), y ∈ R
n (1)

The set of such vectors p defines the subdifferential of ϕ at x,
and is denoted ∂ϕ(x)

∂ϕ(x) is the collection of “slopes” of the function ϕ at x

Properties of the subdifferential

For every x ∈ R
n, ∂ϕ(x) is a non-empty, convex, and compact set
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Subgradients of convex functions—illustration
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Figur: Four possible slopes of the convex function ϕ at x
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Subdifferential of a convex function—illustration
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Figur: The subdifferential of a convex function ϕ at x.
ϕ is indicated by level curves.

The convex function ϕ is differentiable at x if there exists
exactly one subgradient of ϕ at x which then equals the
gradient of ϕ at x, ∇ϕ(x)
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Differentiability of the Lagrangian dual function

Consider the problem

f ∗ := infimum
x

f (x), (2a)

subject to x ∈ X , (2b)

gi (x) ≤ 0, i = 1, . . . ,m, (2c)

and assume that

f and gi , i = 1, . . . ,m, are continuous; (3a)

X is nonempty and compact. (3b)

The set of solutions to the Lagrangian subproblem

X (µ) := argmin
x∈X

L(x,µ)

is non-empty and compact for every µ ∈ R
m
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Subgradients and gradients of q

Suppose that (3) holds (f , gi continuous; X 6= ∅, compact)
in the problem (2):
f ∗ = infx

{

f (x)
∣

∣ x ∈ X ; gi (x) ≤ 0, i = 1, . . . ,m
}

The dual function q is finite, continuous, and concave on R
m.

If its supremum over Rm
+ is attained, then the optimal solution

set therefore is closed and convex

Theorem: subgradient of the dual function

Let µ ∈ R
m. If x ∈ X (µ), then g(x) is a subgradient to q at µ,

that is, g(x) ∈ ∂q(µ)

Proof

Let µ̄ ∈ R
m be arbitrary. It follows that

q(µ̄) = infimum
y∈X

L(y, µ̄) ≤ f (x) + µ̄
⊤g(x)

= f (x) + (µ̄− µ)⊤g(x) + µ
⊤g(x)

= q(µ) + (µ̄− µ)⊤g(x)
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Subgradients and gradients of q, cont’d

Recall the subgradient inequality (1) for a convex function ϕ:
p is a subgradient of ϕ at x if

ϕ(y) ≥ ϕ(x) + p⊤(y − x), y ∈ R
n

The function ϕ(x) + p⊤(y − x) is linear w.r.t. y and
underestimates ϕ(y) over Rn

Here, we have a concave function q and the reverse inequality:
g(x) is a subgradient (actually, supgradient) of q at µ if
x ∈ X (µ) and

q(µ̄) ≤ q(µ) + (µ̄− µ)⊤g(x), µ̄ ∈ R
m

The function q(µ) + (µ̄− µ)⊤g(x) is linear w.r.t. µ̄ and
overestimates q(µ) over Rm
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Example — a concave function

Let h1(x) = 4− |x | and h2(x) = 4− (x − 2)2

Define the function h : R 7→ R as h(x) := min
{

h1(x), h2(x)
}

⇒ h(x) =

{

4− x , 1 ≤ x ≤ 4,
4− (x − 2)2, x ≤ 1, x ≥ 4
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Example, cont’d — supdifferential of a concave function

h is non-differentiable at x = 1 and x = 4, since its graph has
non-unique supporting hyperplanes there

∂h(x) =















{−1}, 1 < x < 4
{4− 2x}, x < 1, x > 4
[−1, 2] , x = 1
[−4,−1] , x = 4

x

∂h(x)

The subdifferential is either a singleton (at differentiable
points) or an interval (at non-differentiable points)
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The Lagrangian dual problem

Let µ ∈ R
m. Then, ∂q(µ) = conv

{

g(x)
∣

∣ x ∈ X (µ)
}

Let µ ∈ R
m. The dual function q is differentiable at µ if and

only if
{

g(x)
∣

∣ x ∈ X (µ)
}

is a singleton set. Then,

∇q(µ) = g(x),

for every x ∈ X (µ)

Holds in particular if the Lagrangian subproblem has a unique
solution ⇔ The solution set X (µ) is a singleton
True, e.g., when X is convex, f strictly convex on X , and gi
convex on X ∀i (e.g., f quadratic, X polyhedral, gi linear)
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How do we write the subdifferential of h?

Theorem

If h(x) := mini=1,...,m{hi (x)}, where each function hi is concave
and differentiable on R

n, then h is a concave function on R
n

Define the set I(x) ⊆ {1, . . . ,m} by the active segments at x:

{

i ∈ I(x) if h(x) = hi(x),
i 6∈ I(x) if h(x) < hi(x),

i ∈ {1, . . . ,m}

Then, the subdifferential ∂h(x) is the convex hull of the
gradients

{

∇hi (x)
∣

∣ i ∈ I(x)
}

:

∂h(x)=







ξ=
∑

i∈I(x)

λi∇hi(x)

∣

∣

∣

∣

∣

∣

∑

i∈I(x)

λi =1; λi ≥ 0, i ∈ I(x)






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Optimality conditions for the dual problem

For a differentiable, concave function h it holds that

x∗ ∈ argmax
x∈Rn

h(x) ⇐⇒ ∇h(x∗) = 0n

Theorem

Assume that h is concave on R
n. Then,

x∗ ∈ argmax
x∈Rn

h(x) ⇐⇒ 0n ∈ ∂h(x∗)

Proof

⇐ Suppose that 0n ∈ ∂h(x∗) =⇒ h(x) ≤ h(x∗) + (0n)⊤(x− x∗)
for all x ∈ R

n, that is, h(x) ≤ h(x∗) for all x ∈ R
n

⇒ Suppose that x∗ ∈ argmaxx∈Rn h(x) =⇒
h(x) ≤ h(x∗) = h(x∗) + (0n)⊤(x− x∗) for all x ∈ R

n, that is,
0n ∈ ∂h(x∗)
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Optimality conditions for the dual problem, cont’d

The example: 0 ∈ ∂h(1) =⇒ x∗ = 1

Generalization of the KKT conditions:

x∗ ∈ argmax
x∈X

h(x) ⇐⇒ ∂h(x∗) ∩ NX (x
∗) 6= ∅,

where NX (x
∗) is the normal cone to X at x∗, that is, the conical

hull of the active constraints’ normals at x∗

X

NX (x
∗)

∂h(x∗)x∗

X

NX (x)
∂h(x)

x

Figur: An optimal solution x∗ A non-optimal solution x
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Optimality conditions for the dual problem, cont’d

The dual problem has only sign conditions µ ≥ 0m

Consider the dual problem

q∗ = maximize
µ≥0m

q(µ)

µ
∗ ≥ 0m is then optimal if and only if there exists a

subgradient g ∈ ∂q(µ∗) for which the following holds:

g ≤ 0m; µ∗
i gi = 0, i = 1, . . . ,m

Compare with a one-dimensional max-problem (h concave):

x∗ ≥ 0 is optimal ⇔ h′(x∗) ≤ 0; x∗ · h′(x∗) = 0
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A subgradient method for the dual problem

Subgradient methods extend gradient projection methods
from C 1 to general convex (or, concave) functions, generating
a sequence of dual vectors in R

m
+ using a single subgradient in

each iteration

The simplest type of iteration has the form

µ
k+1 := projRm

+

[

µ
k + αkg

k
]

=
[

µ
k + αkg

k
]

+
(4)

=

(

max
{

0;
(

µ
k
)

i
+ αk

(

gk
)

i

}

)m

i=1

,

where k is the iteration counter and gk ∈ ∂q(µk) is an
arbitrary subgradient of q at µk
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A subgradient method for the dual problem, cont’d

We often write gk = g(xk), where xk ∈ argminx∈X L(x,µk)

Main difference to C 1 case: an arbitrary subgradient gk may
be a non-ascent direction!

⇒ Cannot make line searches; must use predetermined step
lengths αk

Suppose that µk ∈ R
m
+ is not optimal in maxµ≥0m q(µ);

i.e., q(µk) < q∗.
Then, for every optimal solution µ

∗ ∈ U∗

∥

∥µ
k+1 − µ

∗
∥

∥ <
∥

∥µ
k − µ

∗
∥

∥ (5)

holds for every step length αk in the interval

αk ∈

(

0,
2[q∗ − q(µk)]

‖gk‖2

)

(6)
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A subgradient method for the dual problem, cont’d

Why? Let g ∈ ∂q(µ̄), and let U∗ be the set of optimal
solutions to maxµ≥0m q(µ). Then,

U∗ ⊆
{

µ ∈ R
m
∣

∣ g⊤(µ− µ̄) ≥ 0
}

.

In other words, g defines a half-space that contains the set of
optimal solutions.

The good news: If the step length αk is small enough we get
closer to the set of optimal solutions! [i.e., (6) → (5) ]
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Each (sub)gradient defines a halfspace that contains the

optimal set

µ

µ̄

µ− µ̄

µ1

µ2

g

U∗

µ

µ̄

µ− µ̄

µ1

µ2

g

U∗

Figur: q non-differentiable q differentiable

g ∈ ∂q(µ̄) ⇒ U∗ ⊆
{

µ ∈ R
m
∣

∣ g⊤(µ− µ̄) ≥ 0
}
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Each (sub)gradient defines a halfspace that contains the

optimal set

1

2

3

4

5

q

g

µ

∂q(µ)

Figur: The half-space defined by a subgradient g ∈ q(µ).
Note that this subgradient is not an ascent direction
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Polyak’s step length rule

Choose the step length αk such that

σ ≤ αk ≤
2
[

q∗ − q(µk)
]

∥

∥gk
∥

∥

2 − σ, k = 1, 2, . . . (7)

σ > 0 ⇒ step lengths αk don’t converge to 0 or to a too large
value

Bad news: Utilizes knowledge of the optimal value q∗!

But: q∗ can be replaced by and approximation q̄k ≥ q∗
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The divergent series step length rule

Choose the step length αk such that

αk > 0, k = 1, 2, . . . ; lim
k→∞

αk = 0;

∞
∑

s=1

αs = +∞ (8)

Additional condition, added to ensure convergence to a point:

∞
∑

s=1

α2
s < +∞ (9)
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Convergence results

Suppose that f and g are continuous, X is compact,
∃x ∈ X : g(x) < 0, and consider the problem

f ∗ = inf
{

f (x)
∣

∣ x ∈ X ,g(x) ≤ 0
}

(10)

(a) Let {µk} be generated by the method on p. 15, under the
Polyak step length rule (7), where σ > 0 is small.
Then, {µk} → µ

∗ ∈ U∗

(b) Let {µk} be generated by the method on p. 15, under the
divergent series step length rule (8).
Then, {q(µk)} → q∗, and {distU∗(µk)} → 0

(c) Let {µk} be generated by the method on p. 15, under the
divergent series step length rule (8) and (9).
Then, {µk} → µ

∗ ∈ U∗
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Application to the Lagrangian dual problem

1 Given µ
k ≥ 0m

2 Solve the Lagrangian subproblem: minx∈X L(x,µk)

3 Let an optimal solution to this subproblem be xk = x(µk)

4 Calculate a subgradient g(xk) ∈ ∂q(µk)

5 Take a step αk > 0 in the direction of g(xk) from µ
k ,

according to a step length rule (see previous page)

6 1Set any negative components of this vector to 0 ⇒ µ
k+1

7 Let k := k + 1 and repeat from 2.

1Euclidean projection onto R
m

+
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Additional algorithms

We can choose the subgradient more carefully, to obtain
ascent directions.

Gather several subgradients at nearby points µk and solve
quadratic programming problems to find the best convex
combination of them (Bundle methods)

Pre-multiply the subgradient by some positive definite matrix
⇒ methods similar to Newton methods
(Space dilation methods)

Pre-project the subgradient vector (onto the tangent cone of
R
m
+) ⇒ step direction is a feasible direction

(Subgradient-projection methods)
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More to come ...

Discrete optimization: The size of the duality gap, and the
relation to the continuous relaxation

Convexification

Primal feasibility heuristics

Recovery of primal solutions by utilizing weighted averages of
subproblem solutions

25 / 25


