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A convex optimization problem1

Assumptions

The functions f : Rn 7→ R and gi : Rn 7→ R,
i ∈ I := {1, . . . ,m}, are convex and (possibly) nonsmooth
(i.e., nondifferentiable)
X ⊂ Rn is convex and compact
The set X is simple ⇐⇒ easily solved subproblems
Nonempty feasible set:

{
x ∈ X

∣∣ gi (x) ≤ 0, i ∈ I
}
6= ∅

⇒ A convex optimization problem

f ∗ := min f (x), (1a)

subject to gi (x) ≤ 0, i ∈ I, (1b)

x ∈ X (1c)

Solution set: X ∗ := argmin
{
f (x)

∣∣ gi (x) ≤ 0, i ∈ I; x ∈ X
}

1Larsson, Patriksson, Strömberg (1999): Ergodic, primal convergence in dual
subgradient schemes for convex programming, Math. Program. 86:283–312
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Lagrangian dual problem

Relax the constraints (1b) ⇒ Lagrange function:

L(x,u) = f (x) + uTg(x), (x,u) ∈ Rn × Rm

g(x) = [gi (x)]i∈I , x ∈ Rn; u = [ui ]i∈I
For any u ∈ Rm

+, L(·,u) is convex on Rn.

Concave dual objective function:

θ(u) := min
x∈X

{
f (x) + uTg(x)

}
, u ∈ Rm (2)

Solution set to the subproblem at u ∈ Rm:

X (u) :=
{
x ∈ X

∣∣ f (x) + uTg(x) ≤ θ(u)
}
6= ∅ (3)

The Lagrange dual to the program (1):

θ∗ := maxu≥0 θ(u) (4)

Solution set to the dual: U∗ := argmax
{
θ(u)

∣∣u ≥ 0
}
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Subdifferential of the Lagrangian dual function

Weak duality

θ(u) ≤ f (x) holds whenever u ≥ 0, x ∈ X , and g(x) ≤ 0

The subdifferential of the concave function θ at u ∈ Rm:

∂θ(u) =
{
γ ∈ Rm

∣∣ θ(v) ≤ θ(u) + γT (v − u), v ∈ Rm
}

the elements of which are called subgradients

Proposition: Subdifferential of the dual objective function

For each u ∈ Rm,

∂θ(u) = { g(x) | x ∈ X (u) }

θ is differentiable at u ⇐⇒ each gi is constant on X (u), in which
case ∇θ(u) = g(x) for any x ∈ X (u). a

aProposition 1 in Larsson, Patriksson, Strömberg (1999)
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Optimality conditions

The normal cone to the set Rm
+ at u ∈ Rm

+ :

NRm
+

(u) =
{
ν ∈ Rm

−
∣∣ νiui = 0, i ∈ I

}
Proposition: Optimality conditions for the Lagrangian dual

u ∈ U∗ ⇐⇒ ∃ γ ∈ ∂θ(u) such that γ ≤ 0 and uTγ = 0
Equivalently: ∂θ(u) ∩ NRm

+
(u) 6= ∅

Assumption: Slater constraint qualification

{x ∈ X | g(x) < 0} 6= ∅ (5)

Proposition: Primal–dual optimality conditions

Suppose that Assumption (5) holds and let u ∈ U∗.
x ∈ X ∗ ⇐⇒ x ∈ X (u), g(x) ≤ 0, and uTg(x) = 0. a

aProposition 3 in Larsson, Patriksson, Strömberg (1999)
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Optimal primal set

Under Assumption (5), the solution set to the primal
program (1) may be expressed as

X ∗ =
{
x ∈ X (u)

∣∣∣ g(x) ≤ 0, uTg(x) = 0
}
, (6)

irrespective of the choice u ∈ U∗

The primal–dual optimality conditions may be expressed as

x ∈ X ∗ and u ∈ U∗ ⇐⇒ g(x) ∈ ∂θ(u) ∩ NRm
+

(u) (7)

At a dual solution u ∈ U∗, the subproblem solution set X (u)
is typically not a singleton

⇒ The dual objective function is nonsmooth (nondifferentiable)
on the optimal set U∗

⇒ A subgradient that can be used to verify the optimality of
such a solution is not directly available.
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Subgradient optimization applied to the Lagrange dual (4)

Choose a starting solution u0 ≥ 0 and compute iterates ut

according to the formula2

ut+
1
2 = ut + αtg(xt), ut+1 =

[
ut+

1
2
]
+
, t = 0, 1, . . . (8)

xt ∈ X (ut); a solution to the subproblem (3) at ut

⇒ g(xt) ∈ ∂θ(ut); a subgradient of θ at ut

αt is the step length chosen at iteration t

[·]+ := ([·]+)i∈I denotes the Euclidean projection onto Rm
+

(i.e., the component-wise projection onto R+)

2The method (9) in Larsson, Patriksson, Strömberg (1999)
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Convergence for divergent series steplengths

Proposition

Apply the method (8) to the program (4), with the step lengths αt

fulfilling the divergent series conditions

αt > 0, ∀t, {αt} → 0, lim
t→∞

t−1∑
s=0

αs =∞, (9a)

and

lim
t→∞

t−1∑
s=0

α2
s <∞. (9b)

Then, {ut} → u∞ ∈ U∗ and {θ(ut)} → θ∗. a

aProposition 4 in Larsson, Patriksson, Strömberg (1999)
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Ergodic sequence of subproblem solutions

A sequence {At} of cumulative step lengths:

At =
∑t−1

s=0 αs , t = 1, 2, . . . . (10)

Ergodic sequence {xt} of subproblem solutions, xs , computed
by the method (8)–(9) applied to (4), is defined as the
weighted average

xt = A−1t

t−1∑
s=0

αsx
s (11)

Each xt is a convex combination of the subproblem solutions
found up to iteration t

Theorem: xt converges to the solution set

Suppose that Assumption (5) holds. Apply the method (8)–(9) to
the program (4). Then, {dist (xt ,X ∗)} → 0. a

aTheorem 1 in Larsson, Patriksson, Strömberg (1999)
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Convergence to the solution set

A measure of the distances from xt (solid line) and xt (dashed
line) to the set X ∗

Iterations t on the horizontal axis
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Improved convergence results3

An ergodic primal sequence defined as

xt :=
t−1∑
s=0

µtsx
s , t = 1, 2, . . . (12a)

where
t−1∑
s=0

µts = 1, µts ≥ 0, s = 0, . . . , t − 1 (12b)

Definition

γts := µts/αs , s = 0, . . . , t − 1, t = 1, 2, . . .

and

∆γtmax := max
s∈{1,...,t−1}

{γts − γts−1}

3Gustavsson, Patriksson, Strömberg (2015): Primal convergence from dual
subgradient methods for convex optimization, Math. Program. 150(2):365–390
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Assumptions on the relations between the steplengths and
the convexity weights

A1: γts ≥ γts−1, s = 1, . . . , t − 1, t = 2, 3, . . .

A2: ∆γtmax → 0 as t →∞, and

A3: γt0 → 0 as t →∞ and, for some Γ > 0, γtt−1 ≤ Γ for all t

Theorem: optimality of xt in the limit

Apply the method (8) to the program (4) with step lengths αt

such that {ut} → u∞, and generate the sequence {xt} as in (12).
Under the assumption (5), if the steplengths αt and the convexity
weights µts fulfill A1–A3, then it holds that a

u∞ ∈ U∗ and dist (xt ,X ∗)→ 0

aTheorem 1 in Gustavsson, Patriksson, Strömberg (2015)
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Special cases

Definition: The sk -rule

Let k ≥ 0. The sk -rule creates an ergodic sequence by choosing
convexity weights according to a

µts =
(s + 1)k∑t−1
`=0(`+ 1)k

, s = 0, . . . , t − 1, t = 1, 2, . . .

aDefinition 1 in Gustavsson, Patriksson, Strömberg (2015)

The effect (for k > 0) is that later subproblem solutions
receive larger weights ⇒ faster convergence to the primal
solution set
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Fig. 1  Illustration of the convexity weights, µt , when t  = 10, for the sk -rule when k  =  0, 1, 2, 10 
respectively 
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Performance of the different rules

τ on the horizontal axis
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Fig. 2  Performance profiles of the methods for the 56 test instances (28 instances, each with the BPR 
congestion function (21) and the Kleinrock delay function (22), respectively). The graphs illustrate the 
proportion of the instances which each of the methods solved within τ  times the number of iterations 
required by the method which solved each corresponding instance within the least number of iterations 
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Extension to mixed binary linear optimization problems

A methodology for utilizing the ergodic sequences of
subproblem solutions in the context of mixed binary linear
optimization is described in the master’s thesis:

Recovery of primal solutions from dual subgradient methods
for mixed binary linear programming; a branch-and-bound
approach, by Pauline Aldenvik and Mirjam Schierscher,
University of Gothenburg (2015)
https://gupea.ub.gu.se/handle/2077/40726
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Extension to mixed binary linear optimization problems

Assume that the functions f and gi , i ∈ I, are linear and that
the set X := { x ∈ Bn |Dx ≥ d } is (mixed) binary

The problem (1) can then be expressed as

z∗ := min c>x, (13a)

subject to Ax ≥ b, (13b)

x ∈ X (13c)

When relaxing the constraints (13b) the Lagrangian dual
function is defined as

q(u) := b>u + min
x∈X

{(
c− A>u

)>
x

}
(14)

The Lagrangian dual problem:

q∗ := max
u≥0

q(u) (15)
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Extension to mixed binary linear optimization problems

Weak duality: q∗ ≤ z∗

Strong duality does not hold in general, i.e., q∗ < z∗

The convexified version of (13) is defined as

z∗conv := min c>x, (16a)

subject to Ax ≥ b, (16b)

x ∈ conv X (16c)

The set of optimal solutions to (16): X ∗conv
Strong duality: q∗ = z∗conv

Convergence in the convexified version

The ergodic sequence {x̄t} of subproblem solutions converges to
the optimal set of the convexified version (16): {x̄t} → X ∗conv

a

aTheorem 3 in Aldenvik, Schierscher (2015)
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A partition of the variables from an optimal binary solution

Let J0 ⊂ {1, . . . , n} and J1 ⊂ {1, . . . , n} denote the subsets
of the variables xj , j ∈ {1, . . . , n}, which possess the value 0
and 1, respectively, in every optimal solution to the
convexified version (16).

Define Jf := {1, . . . , n} \ (J0 ∪ J1), corresponding to the
variables xj , j ∈ {1, . . . , n}, having a fractional optimal value
in some optimal solution to (16).

For each j ∈ {1, . . . , n}, the following relations hold:

j ∈ J0 =⇒ {x̄ tj } → 0

j ∈ J1 =⇒ {x̄ tj } → 1

Consequently, if {x̄ tj } has an accumulation point in (0, 1),
then j ∈ Jf.
We let the set Jf define the core of the problems (16) and
(13) by fixing the rest of the variables to either 0 or 1
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Solving (13) approximately using core problems

1 Choose values for the parameters τ ∈ Z+ and ε1, ε2 ∈ (0, 12),
and let t := 0 and u0 ∈ <m

+

2 Apply the subgradient method (8) to the Lagrangian dual
problem (15) until t = τ

3 If x̄τj ≥ 1− ε1, then fix the value xj ≡ 1; If x̄τj ≤ ε1, then fix
the value xj ≡ 0, j = 1, . . . , n

4 If the core problem, defined by the non-fixed variables, is
feasible, then solve it, either exactly or approximately. If it is
not feasible, then decrease the values of ε1 and/or ε2,
j = 1, . . . , n, and repeat from step 3

5 If the best feasible solution to (13) found is satisfactory, then
terminate the algorithm

6 Update (increase) the values of ε1 and ε2, j = 1, . . . , n and
repeat from 2 with t := 0 and u0 := uτ
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Ways to utilize the core problems to solve (13) efficiently

In Aldenvik, Schierscher (2015) also a Lagrangian heuristic as
well as a Branch-and-bound algorithm with a Lagrangian
heuristic are implemented

The technique using core problems can be used to find a
feasible solution to the original problem.

Read also the slides about the case of convex optimization
problems with possibly empty feasible sets
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