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Introduction

We consider a possibly infeasible, i.e., inconsistent, convex
optimization problem
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Apply a Lagrangian dual method to this problem
⇒ Divergence of the dual iterates

Will the primal sequence of subproblem solutions still yield
relevant information about the primal solution?
Associate a primal-dual convex-concave program with a saddle
point problem
... and homogenize the dual problem
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Introduction

Convergence results for a subgradient optimization algorithm
applied to the Lagrange dual

Construct an ergodic, i.e., averaged, sequence of primal
subproblem solutions

⇒ Convergence to a saddle point

The dual iterates diverge in the direction of steepest ascent
⇐⇒ the unique dual solution of the saddle-point problem

The primal sequence converges to the subset of the primal set
X where the total infeasibility w.r.t. the relaxed constraints is
at minimum

For LP: The original objective function is minimized over the
subset of minimum infeasibility
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Introduction

To start, we wish to solve a convex program:

minimize
x

f (x), (1a)

subject to g(x) ≤ 0m, (1b)

x ∈ X (1c)

∅ 6= X ⊂ Rn – convex and compact set
g : Rn 7→ Rm, f : Rn 7→ R – convex functions
Lagrange function w.r.t. relaxing the constraints (1b):

Lf (x , u) := f (x) + u>g(x), (x , u) ∈ Rn × Rm (2)

Lagrangean dual function:

θf (u) := min
x∈X
Lf (x , u), u ∈ Rm (3)

Lagrangean dual problem:

maximize
u∈Rm

+

θf (u) (4)
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Results for the case of consistency

Assume {x ∈ X | g(x) ≤ 0m} 6= ∅
⇒ The optimal value of the convex program (1): θ∗f > −∞

Set of optimal solutions:
X ∗f := {x ∈ X | g(x) ≤ 0m, f (x) ≤ θ∗f }
Lagrangean dual problem:

θ∗c := max
u∈Rm

+

θf (u) (5)

The dual optimal set is bounded (provided a Slater condition,
i.e., {x ∈ X | g(x) < 0m} 6= ∅):

U∗f := {u ∈ Rm
+ | θf (u) ≥ θ∗f } 6= ∅

Lagrangean subproblem solution at u ∈ Rm:

xf (u) ∈ Xf (u) := argmin
x∈X

{f (x) + u>g(x)} (6)

5 / 22



Dual subgradient algorithm

Subdifferential of θf at u ∈ Rm:

∂θf (u) :=
{
γγγ ∈ Rm

∣∣∣ θf (w) ≤ θf (u) + γγγ T (w − u) , w ∈ Rm
}

= { g(x) | x ∈ Xf (u) }

Subgradient algorithm applied to the dual (5):

u0 ≥ 0; ut+1 :=
[
ut + αtg(xf (ut))

]
+

t = 0, 1, . . . (7)
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Convergence to a dual optimal set and point

Theorem

Apply the subgradient method (7) to the dual program (5). If the
step lengths αt fulfil the divergent series conditions

αt > 0 ∀t; {αt} → 0;
{∑t−1

s=0 αs

}
→∞. (8a)

Thena {dist(ut ;U∗f )} → 0 and {θf (ut)} → θ∗f
If, in addition, ∑∞

s=0 α
2
s <∞ (8b)

holds, thenb {ut} → u∞ ∈ U∗f .

aErmol’ev, Yu.M. (1966): Methods for solving nonlinear extremal problems,
Cybernetics 2(4), 1–14

bShepilov, M.A. (1976): Method of the generalized gradient for finding the
absolute minimum of a convex function, Cybernetics 12, 547–553
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Convergence of an ergodic (averaged) sequence of primal
subproblem solutions to the primal optimal set

Cumulative step lengths:

At :=
∑t−1

s=0 αs , t = 1, 2, . . . (9)

Averaged/ergodic primal sequence:

x tf := 1
At

∑t−1
s=0 αsxf (us), t = 1, 2, . . . (10)

Theorem
a Apply the subgradient method (7), (8) to the dual program (5).
Then,

{dist (x tf ;X ∗f )} → 0 and {f (x t)} → θ∗f

aLarsson, Patriksson, Strömberg (1999): Ergodic, primal convergence in dual
subgradient schemes for convex programming, Math. Prog. 86:283–312
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The case of inconsistency

Assume that {x ∈ X | g(x) ≤ 0m} = ∅
Lagrangean dual problem:

∞ = sup
u∈Rm

+

θf (u) (11)

⇒ The dual optimal set is empty: U∗f = ∅

A cone of feasible and ascent directions for the dual (11)
C := {w ∈ Rm

+ | w>g(x) > 0, x ∈ X}

Theorem

A theorem of the alternative:

{x ∈ X | g(x) ≤ 0m} = ∅ ⇐⇒ C 6= ∅

Note: The cone C is independent of the objective function f
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Divergence in the case of inconsistency

Theorem

Assume that {x ∈ X | g(x) ≤ 0m} = ∅.
Let the sequence {ut} be generated by

u0 ≥ 0; ut+1 =
[
ut + αtg(xf (ut))

]
+

with αt > 0, {αt} → 0, and
{∑t−1

s=0 αs

}
→∞, applied to the dual

program

sup
u∈Rm

+

θf (u).

Then {‖ut‖} → ∞ as t →∞
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A numerical illustration — the primal space

Let m = n = 2, f (x) = 4x1 + 2x2, g(x) =
(

2 −x1 −2x2
−1 +4x2

)
, and

X = [0, 1]2.
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A numerical illustration — the dual space

θf (u) =


2u1 − u2, u1 ≤ 4, u1 − 2u2 ≤ 1,
3u2 + 2, u1 ≤ 4, u1 − 2u2 ≥ 1,
u1 − u2 + 4, u1 ≥ 4, u1 − 2u2 ≤ 1,
−u1 + 3u2 + 6, u1 ≥ 4, u1 − 2u2 ≥ 1,

A couple of numbers in the figure are incorrect ...
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The homogeneous dual

Assume X 6= ∅ but {x ∈ X | g(x) ≤ 0m} = ∅

We will study the case when f (x) = 0 and restrict the dual
space to the unit ball

The Lagrange function at (x , u) for u 6= 0

Lf (x , u) = ‖u‖
(
f (x)

‖u‖ +
uTg(x)

‖u‖

)
(12)

As the value of ‖u‖ increases, the term f (x) in the
computation of xf (u) will tend to be negligible

For t � 1 the subgradient method (7), (8a) tackles an
approximation of the homogeneous dual – the Lagrange dual
of a pure feasibility problem:

maximize
u∈Rm

+

θ0(u) (13)
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The homogeneous dual

θ0(u) = min
x∈X

{
u>g(x)

}
, u ∈ Rm (14)

The function θ0 is superlinear – its hypograph is a nonempty
and convex cone in Rm+1

⇒ θ0(δu) = δθ0(u) holds for all δ ≥ 0 and all u ∈ Rm

Directional derivative θ′0(u; d), of θ0 at u in direction d :

θ′0(0; d) = θ0(d) holds for all d ∈ Rm (15)

The homogeneous dual (13) is interpreted as searching for a
steepest feasible ascent direction of θ0

⇒ Maximize θ0 over the set V =
{
u ∈ Rm

+

∣∣ ‖u‖ ≤ 1
}

θV ∗0 := max
u∈V

θ0(u) = max
d∈V

θ′0(0; d) (16)
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An associated saddle point problem

By definition of θ0 and (16):

θV ∗0 = max
u∈V

{
min
x∈X

{
u>g(x)

}}
= min

x∈X

{
max
u∈V

{
g(x)>u

}}
(17)

since uTg(x) is convex in x (for u ∈ Rm
+) and linear in u, and

since the sets X and V are convex and compact

Define the mappings X0(·) : V 7→ 2X and V (·) : X 7→ 2V by

X0(v) := argmin
x∈X

{
v>g(x)

}
, v ∈ V

V (x) := argmax
v∈V

{
g(x)>v

}
, x ∈ X

Saddle point property:
x ∈ X0(v) and v ∈ V (x)

⇐⇒
(x , v) is a saddle point for v>g(x) on X × V
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Characterization of the set of saddle points

Lemma

x ∈ X ⇒ V (x) =

{
[g(x)]+

‖[g(x)]+‖

}
The set X ∗0 × V ∗ of saddle points is characterized as:

X0(V ∗) = X ∗0 := argmin
x∈X

∥∥[g(x)]+
∥∥ “minimum total infeasibility”

V (x∗) = V ∗ := argmax
v∈V

θ0(v) “steepest ascent direction”

Lemma
X ∗0 6= ∅ is convex and compact
V ∗ = V (x∗) (a singleton) irrespective of x∗ ∈ X ∗0

Note: V ∗ ∈ C (the cone of feasible ascent directions for θf )
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Numerical illustrations — the primal space

−4x
2
 ≥ −1

x
1
 + 2x

2
 ≥ 2

X

x
1

x
2

0 0.5 1.0 1.5 2.0

0.5

1.0

X
*

0

{x̄t
c}

Figur: m = n = 2, f (x) = 4x1 + 2x2, g(x) =
(
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Dual and primal convergence in the inconsistent case —
convergence in the homogeneous dual

Theorem

Let the sequence {ut} be generated by the subgradient method

u0 ≥ 0; ut+1 :=
[
ut + αtg(xf (ut))

]
+

with αt > 0, {αt} → 0, and
{∑t−1

s=0 αs

}
→∞. Then

{v t} :=
{

ut

maxs≤t{1,‖us‖}

}
→ V ∗ and {θ0(v t)} → θV ∗0
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A numerical illustration — the homogeneous dual

θ0(u) =

{
u1 − u2, u1 ≤ 2u2,
−u1 + 3u2, u1 ≥ 2u2,

θV ∗0 =
1√
5

{v t} =

{
ut

maxs≤t{1, ‖us‖}

}
→ V ∗ =

1√
5

(
2
1

)

19 / 22



A numerical illustration — the homogeneous dual
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Convergence to a saddle point

Theorem (Convergence of the primal ergodic sequence)

{dist(x tf ;X0(V ∗))} → 0 as t →∞ where x tf = 1
At

∑t−1
s=0 αsxf (us)

Theorem (Convergence of the homogeneous dual sequence)

{dist (v t ;V (x∞f ))} → 0 as t →∞ where x∞f is an accumulation
point of {x tf }

Theorem (Convergence to a saddle point){
dist ((x tf , v

t);X0(V ∗)× V (x∞f ))
}
→ 0 as t →∞ where

x∞f ∈ X0(V ∗) = X ∗0 and V (x∞f ) = V ∗ =
[g(x∞f )]+∥∥[g(x∞f )]+

∥∥
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Further results: The effect of constraint scaling on the
solution set X ∗0

X
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