
TMA521/MMA511
Large Scale Optimization

Lecture 7
Cutting plane methods and column generation

Ann-Brith Strömberg

31 Januari 2018

1 / 22

A standard LP problem and its Lagrangian dual

vLP := min
x

c⊤x ,

subject to Ax ≤ b,
Dx ≤ d ,
x ∈ R

n
+

◮ We assume for now that the polyhedron

X :=
{

x ∈ R
n
+

∣
∣Ax ≤ b

}

is bounded

◮ Let
{
x1, x2, . . . , xK

}
be the set of extreme points in X

◮ It follows that X = conv
{
x1, x2, . . . , xK

}

2 / 22

The Lagrangian dual

◮ The Lagrangian dual of the LP with respect to relaxing the
constraints Dx ≤ d is

vL := max
µ≥0

q(µ),

◮ Due to convexity of LP, it holds that vL = vLP
◮ The Lagrangian dual function is defined as:

q(µ) := min
x∈X

{
c
⊤
x+µ⊤(Dx−d)

}
(1a)

= min
i∈{1,...,K}

{

c
⊤
x
i+µ⊤(Dx

i−d)
}

(1b)

◮ Solution set to the subproblem at µ:

X (µ) := argmin
x∈X

{

c
⊤
x + µ⊤(Dx − d)

}

= conv

{

argmin
xi :i=1,...,K

{

c
⊤
x
i + µ⊤(Dx

i − d)
}}

3 / 22

An equivalent formulation of the Lagrangian dual

◮ Due to (1), for all µ ≥ 0 the function q fulfills the inequalities

q(µ) ≤ c
⊤
x
i + µ⊤(Dx

i − d), i = 1, . . . ,K .

◮ The Lagrangian dual can be equivalently formulated as

vL := max
µ,z

z ,

subject to z ≤ c
⊤
x
i + µ⊤(Dx

i − d), i = 1, . . . ,K ,

µ ≥ 0.

◮ If, at an optimal dual solution µ∗, the solution set X (µ∗) is a
singleton, i.e., X (µ∗) = {x∗}, then x∗ is optimal (and unique)
— thanks to strong duality

◮ This typically does not happen, unless an optimal solution x∗

happens to be an extreme point of X
◮ But x∗ can always be expressed as a convex combination of

extreme points of X (cf. the previous lecture)

4 / 22

A cutting plane method for the Lagrangian dual problem

◮ Suppose that only a subset,
{
x1, x2, . . . , xk

}
of the extreme

points
{
x1, x2, . . . , xK

}
is known (hence, k ≤ K), and

consider the following relaxation of the Lagrangian dual
problem:

(µk , zk) ∈ argmax
µ,z

z , (2a)

subject to z ≤ c
⊤
x
i+µ⊤(Dx

i−d), i=1, . . . , k , (2b)

µ ≥ 0 (2c)

◮ For k = 1, . . . ,K it holds that zk ≥ vL
◮ How do we determine whether an optimal solution to the

Lagrangian dual is found?
◮ If it holds that

zk ≤ c
⊤
x
i + (µk)⊤(Dx

i − d), i = 1, . . . ,K ,

then µk is optimal in the dual. Why?

5 / 22

Check for optimality—generate new inequality

◮ How check for optimality? Find the most violated constraint
◮ Solve the subproblem

q(µk) := min
x∈X

{

c
⊤
x + (µk)⊤(Dx − d)

}

(3)

= min
i∈{1,...,K}

{

c
⊤
x
i + (µk)⊤(Dx

i − d)
}

◮ If zk ≤ q(µk) then µk is optimal in the dual
◮ Otherwise, we have identified a constraint of the form

z ≤ c
⊤
x
k+1 + µ⊤(Dx

k+1 − d), (4)

which is violated at (µk , zk)
◮ The latter means that the following (strict) inequality holds:

zk > c
⊤
x
k+1 + (µk)⊤(Dx

k+1 − d)

◮ Add the inequality (4) to (2b), update k := k + 1, and resolve
the LP (2)

6 / 22

Cutting plane algorithm

◮ We call this a cutting plane algorithm

◮ It is based on the addition of constraints to the dual problem,
in order to improve the solution, in the process of cutting off

the previous (optimal) point

◮ The thick lines correspond to the subset of k inequalities
known at iteration k

µ
µ∗

q(µk)

z

zk

µk

7 / 22

Cutting plane algorithm

◮ Obviously, zk ≥ q(µk) must hold, because of the possible lack
of constraints

◮ For the case in the figure, zk > q(µk) holds =⇒ in the next
iteration q(µk) is evaluated and the last lacking inequality
(the thin solid line) will be identified

◮ The resulting maximization will then yield the optimal
solution µ∗, as illustrated in the figure

◮ How do we generate an optimal primal solution from this
scheme?

◮ Let us look at the LP dual of the Lagrangian dual problem (2)
in this cutting plane algorithm

8 / 22

Duality relations and the Dantzig–Wolfe algorithm

◮ We rewrite the relaxed Lagrangian dual problem (2) as

zk := max
(z ,µ)

z ,

subject to z − µ⊤(Dx
i − d) ≤ c

⊤
x
i , i = 1, . . . , k ,

µ ≥ 0

◮ Defining the LP dual variables λi ≥ 0, i = 1, . . . , k , we obtain
the LP dual:

zk = min
∑k

i=1(c
⊤x i)λi ,

subject to
∑k

i=1 λi = 1,

−
∑k

i=1(Dx i − d)λi ≥ 0,

λi ≥ 0, i = 1, . . . , k

9 / 22

The linear programming dual rewritten

zk = min c
⊤

(
k∑

i=1

λix
i

)

, (5)

subject to

k∑

i=1

λi= 1,

λi≥ 0, i = 1, . . . , k ,

D

(
k∑

i=1

λix
i

)

≤ d

◮ Minimize c⊤x when x lies in the convex hull of the extreme
points x i found so far and fulfills the constraints that are
Lagrangian relaxed

10 / 22

An illustration in the x-space

x1

x2

x3

x4

x∗

X

Dx ≤ d

λ3 = (0.4, 0.6, 0)

11 / 22

The Dantzig-Wolfe algorithm

◮ The problem (5) is known as the restricted master problem
(RMP) in the Dantzig–Wolfe algorithm (to be developed next)

◮ In this algorithm, we have at hand a subset {x1, . . . , xk} of
the extreme points of X (and a dual vector µk−1)

◮ Find a feasible solution to the original LP by solving the RMP

◮ Then generate an optimal dual solution µk to this RMP,
where the dual variables µ correspond to the primal
constraints Dx ≤ d

◮ The vector xk+1 generated in the next subproblem (3) was
already included in the RMP ⇐⇒
An optimal solution to the original LP is found and verified

12 / 22

Three algorithms which are “dual” to each other

◮ “Cutting plane” applied to the Lagrangian dual of an LP

⇐⇒

◮ “Dantzig–Wolfe decomposition” applied to the original LP

⇐⇒

◮ Benders decomposition applied to the dual of the original LP

13 / 22

Column generation

◮ Consider an LP with very many variables:
cj , xj ∈ R, aj ,b ∈ R

m, n ≫ m

minimize z =
n∑

j=1

cjxj (6a)

subject to

n∑

j=1

ajxj = b (6b)

xj ≥ 0, j = 1, . . . , n (6c)

◮ The matrix (a1, . . . , an) is too large to handle

◮ Assume that m is relatively small =⇒ a basis matrix is not
too large (m ×m)

14 / 22

Basic feasible solutions

◮ B := {m elements from the set {1, . . . , n}} is a basis if the
corresponding matrix B = (aj)j∈B has an inverse, B

−1

◮ A basic solution is given by xB := B
−1

b and xj = 0, j 6∈ B .
It is feasible if xB ≥ 0m

◮ A better basic feasible solution can be found by computing
the reduced costs: c̄j := cj − c⊤

BB
−1

aj for j 6∈ B

◮ Let c̄s := minimum
j 6∈B

{c̄j}

◮ If c̄s < 0 =⇒ a better solution will be received if xs enters the
basis

◮ If c̄s ≥ 0 =⇒ xB is an optimal basic solution

15 / 22

Generating columns

◮ Suppose the columns aj are defined by a set
S := {aj | j = 1, . . . , n} being, e.g., solutions to a system of
equations (extreme points, integer points, . . .)

◮ The incoming column is then chosen by solving a subproblem

c̄(a′) := minimum
a∈S

{

c − c
⊤
BB

−1
a

}

◮ a′ is a column having the least reduced cost w.r.t. the basis B

◮ If c̄(a′) < 0, let the column

[
c(a′)
a′

]

enter the LP (6)

16 / 22

Example: The cutting stock problem

◮ Supply: rolls of e.g. paper of length L

◮ Demand: bi roll pieces of length ℓi < L, i = 1, . . . ,m

◮ Objective: minimize the number of rolls needed for producing
the demanded pieces

17 / 22

First formulation

xk =

{
1 if roll k is used
0 otherwise

yik =

{
of pieces of length ℓi
that are cut from roll k

minimize
K∑

k=1

xk ,

subject to
m∑

i=1

ℓiyik ≤ Lxk , k = 1, . . . ,K

K∑

k=1

yik = bi , i = 1, . . . ,m

xk binary, k = 1, . . . ,K

yik ∈ Z
m·K
+ , i = 1, . . . ,m, k = 1, . . . ,K

18 / 22

First formulation

◮ The value of the continuous relaxation is
∑m

i=1 ℓibi
L

, which can
be very bad if, e.g., ℓi = ⌊L/2 + 1⌋ and L is large

◮ A large duality gap ⇒ potentially bad performance of IP
solvers

◮ Also, there are a lot of symmetries (i.e., equivalently good,
but differently denoted, solutions) in the “first formulation”

◮ Symmetries are extremely difficult to handle for integer
programming solvers

19 / 22

Second formulation

◮ Cut pattern number j contains aij pieces of length ℓi
◮ Feasible pattern if

∑m
i=1 ℓiaij ≤ L, where aij ≥ 0, integer

◮ Variables: xj = number of times that pattern j is used

minimize

n∑

j=1

xj

subject to

n∑

j=1

aijxj = bi , i = 1, . . . ,m

xj ≥ 0, integer, j = 1, . . . , n

◮ Bad news: n = total number of feasible cut patterns—a
HUGE integer

◮ Good news: the value of the continuous relaxation is often
very close to that of the optimal solution

⇒ Relax integrality constraints, solve an LP instead of an ILP

20 / 22

Starting solution

Natural: m unit columns (yields lots of waste) =⇒

minimize

m∑

j=1

xj

subject to xj = bj , j = 1, . . . ,m

xj ≥ 0, j = 1, . . . ,m

21 / 22

New columns generated by the subproblem

Generate better patterns using the dual variable values πi =⇒ a
new column ak computed from:

1−max
aik

{
m∑

i=1

πiaik

} 

⇔ minimize
(

ck − c
⊤
BB

−1

︸ ︷︷ ︸

π

ak

)





subject to

m∑

i=1

ℓiaik ≤ L,

aik ≥ 0, integer, i = 1, . . . ,m

◮ Solution to this integer knapsack problem: new column ak

◮ If 1− π⊤ak < 0, then the column ak will improve the
formulation

◮ If 1− π⊤ak ≥ 0, then the columns already generated are
sufficient to determine the optimum (of the LP problem)

22 / 22

