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A standard LP problem and its Lagrangian dual

. : T
V| = min € X
LP X )

subject to Ax < b,
Dx < d,
x € R

» We assume for now that the polyhedron

X::{XERfHAbe}

is bounded
» Let {x!,x2,...,x%} be the set of extreme points in X
» |t follows that X = conv {xl,xz, . ,xK}
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The Lagrangian dual

» The Lagrangian dual of the LP with respect to relaxing the
constraints Dx < d is

v = max  q(p),
=0
» Due to convexity of LP, it holds that v, = v p
» The Lagrangian dual function is defined as:

q(p) == min {c'x+p' (Dx—d)} (1a)
= ie{rlrj.i.riK} {chi—i-uT(Dxi—d)} (1b)

» Solution set to the subproblem at p:

X(p) := argmin {ch +p' (Dx — d)}
xeX

= conv{ argmin {chi + ' (Dx' — d)} }
xiii=1,...,K
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An equivalent formulation of the Lagrangian dual

» Due to (1), for all g > 0 the function q fulfills the inequalities
q(p) < c"x' + " (Dx' - d), i=1,...,K.

» The Lagrangian dual can be equivalently formulated as

v = max  z,
oz
subject to z < ¢ x' + MT(Dxi —d), i=1,...,K,
n>0.

» If, at an optimal dual solution p*, the solution set X(u*) is a
singleton, i.e., X(u*) = {x*}, then x* is optimal (and unique)
— thanks to strong duality

» This typically does not happen, unless an optimal solution x*
happens to be an extreme point of X

» But x* can always be expressed as a convex combination of
extreme points of X (cf. the previous lecture)
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A cutting plane method for the Lagrangian dual problem

» Suppose that only a subset, {xl,xz, ... ,xk} of the extreme
points {xl,xz, .. ,xK} is known (hence, k < K), and
consider the following relaxation of the Lagrangian dual
problem:

(u*,z¥) € argmax z, (2a)
m,z

subject to z < chi—l—uT(Dxi—d), i=1,...,k, (2b)

pn>0 (2¢)

» For k=1,...,K it holds that zX > v

» How do we determine whether an optimal solution to the
Lagrangian dual is found?

If it holds that

<X+ () (DX —d), i=1,...,K,
then p* is optimal in the dual. Why?
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Check for optimality—generate new inequality

» How check for optimality? Find the most violated constraint
» Solve the subproblem

q(u*) == min {cx+ (") (Dx — d)} (3)
= ie{r1n7.i.r.17K} {chi + ()T (DX — d)}

» If zK < q(u¥) then p* is optimal in the dual
» Otherwise, we have identified a constraint of the form

z< CTxk—i-l _|_“T(ka+1 _ d), (4)
which is violated at (uX, z¥)
» The latter means that the following (strict) inequality holds:
Zk > CTxk+1 + ('u’k)T(ka—ﬁ-l _ d)

» Add the inequality (4) to (2b), update k := k + 1, and resolve
the LP (2)
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Cutting plane algorithm

» We call this a cutting plane algorithm

> It is based on the addition of constraints to the dual problem,
in order to improve the solution, in the process of cutting off
the previous (optimal) point

» The thick lines correspond to the subset of k inequalities
known at iteration k
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Cutting plane algorithm

» Obviously, zX > q(u*) must hold, because of the possible lack
of constraints

» For the case in the figure, z5 > g(¥) holds = in the next
iteration q(u*) is evaluated and the last lacking inequality
(the thin solid line) will be identified

» The resulting maximization will then yield the optimal
solution p*, as illustrated in the figure

» How do we generate an optimal primal solution from this
scheme?

» Let us look at the LP dual of the Lagrangian dual problem (2)
in this cutting plane algorithm
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Duality relations and the Dantzig—Wolfe algorithm

» We rewrite the relaxed Lagrangian dual problem (2) as

k

z“:= max z,
(z.1)
subject to z—p' (Dx'—d)<c'x', i=1,...,k,

r>0

» Defining the LP dual variables \; >0, i =1,..., k, we obtain

the LP dual:
zZX=" min fozl(cTXi))\i,
subject to Zf'(:l Ai=1,

— > (DX — d)A; > 0,
N>0,  i=1,... .k
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The linear programming dual rewritten
k .
zK = min ¢’ <Z A,-x’) ) (5)

\>0,  i=1,... k,
k .
D(Z}\,’X’)<d
i=1

» Minimize ¢ x when x lies in the convex hull of the extreme
points x' found so far and fulfills the constraints that are
Lagrangian relaxed
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An illustration in the x-space

A* = (0.4,0.6,0)
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The Dantzig-Wolfe algorithm

» The problem (5) is known as the restricted master problem
(RMP) in the Dantzig-Wolfe algorithm (to be developed next)

» In this algorithm, we have at hand a subset {x!,..., x*} of
the extreme points of X (and a dual vector p<~1)

» Find a feasible solution to the original LP by solving the RMP

» Then generate an optimal dual solution p* to this RMP,
where the dual variables g correspond to the primal
constraints Dx < d

» The vector x¥*1 generated in the next subproblem (3) was
already included in the RMP <=
An optimal solution to the original LP is found and verified
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Three algorithms which are “dual” to each other

» “Cutting plane” applied to the Lagrangian dual of an LP

—

» “Dantzig—-Wolfe decomposition” applied to the original LP

—

» Benders decomposition applied to the dual of the original LP
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Column generation

» Consider an LP with very many variables:
¢G,x; €R,a;,bcR™, n>m

n

minimize z = Z GjX; (6a)
j=1

subject to Z aixi=>b (6b)
j=1

» The matrix (a1,...,a,) is too large to handle

> Assume that m is relatively small = a basis matrix is not
too large (m x m)
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Basic feasible solutions

» B := {m elements from the set {1,...,n}} is a basis if the
corresponding matrix B = (a;);cp has an inverse, B~!

» A basic solution is given by xg := B~ 1b and xi=0,,¢B.
It is feasible if xg > 07

> A better basic feasible solution can be found by computing
the reduced costs: ¢; := ¢; — cEB‘laj forj¢ B

» Let & := minimum {G;}
’ es

» If & < 0 = a better solution will be received if xs enters the
basis

» If &g > 0 = xp is an optimal basic solution
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Generating columns

Suppose the columns a; are defined by a set
S:={aj|j=1,...,n} being, e.g., solutions to a system of
equations (extreme points, integer points, ...)

v

v

The incoming column is then chosen by solving a subproblem

¢(a’) := minimum {c — cEB‘la}
ac$s

v

a’ is a column having the least reduced cost w.r.t. the basis B

v

/
If ¢(a’) < 0, let the column [ C(;) ] enter the LP (6)
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Example: The cutting stock problem

» Supply: rolls of e.g. paper of length L
» Demand: b; roll pieces of length ¢; < L, i=1,..., m

» Objective: minimize the number of rolls needed for producing
the demanded pieces
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First formulation

v — 1 ifroll k is used | # of pieces of length /;
K71 0 otherwise =1 that are cut from roll k

K
minimize E Xk
k=1

m
subject to ZE,-y,-k <Ixx, k=1,...,K
i=1

K
Zy,-k:b,-, i:1,...,m
k=1

X binary, k=1,... K
yk €EZTH i=1,...,m k=1,....K
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First formulation

» The value of the continuous relaxation is M
be very bad if, e.g., ¢; = [L/2+ 1] and L is large

, which can

> A large duality gap = potentially bad performance of IP
solvers

» Also, there are a lot of symmetries (i.e., equivalently good,
but differently denoted, solutions) in the “first formulation”

» Symmetries are extremely difficult to handle for integer
programming solvers
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Second formulation

» Cut pattern number j contains aj; pieces of length /;
» Feasible pattern if Y " | ¢;a;; < L, where aj; > 0, integer
» Variables: x; = number of times that pattern j is used

n
minimize g Xj
j=1

n

subject to Za,-jszb,-, i=1,...,m
Jj=1

xj > 0, integer, j=1...,n

» Bad news: n = total number of feasible cut patterns—a
HUGE integer

» Good news: the value of the continuous relaxation is often
very close to that of the optimal solution

= Relax integrality constraints, solve an LP instead of an ILP
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Starting solution

Natural: m unit columns (yields lots of waste) —>

m
minimize E Xj
j=1

subject to x; = b, j=1...,m

x; > 0, j=1...,m
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New columns generated by the subproblem

Generate better patterns using the dual variable values 7; = a
new column @, computed from:

1-— max {Z m;a ,k} < minimize (ck - CBB )

™

m
subject to Zéiaik <L,
i=1
ajx > 0, integer, i=1,...,m

» Solution to this integer knapsack problem: new column a

» If 1 — 7w "a, <0, then the column @, will improve the
formulation

» If 1 — "3, > 0, then the columns already generated are
sufficient to determine the optimum (of the LP problem)
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