TMA521/MMA511 Large Scale Optimization Lecture 7 Cutting plane methods and column generation

Ann-Brith Strömberg

31 Januari 2018

A standard LP problem and its Lagrangian dual

$$\begin{aligned} v_{\mathsf{LP}} &:= & \min_{\boldsymbol{X}} & \boldsymbol{c}^{\top} \boldsymbol{x}, \\ \text{subject to} & \boldsymbol{A} \boldsymbol{x} \leq \boldsymbol{b}, \\ & \boldsymbol{D} \boldsymbol{x} \leq \boldsymbol{d}, \\ & \boldsymbol{x} \in \mathbb{R}_{+}^{n} \end{aligned}$$

A standard LP problem and its Lagrangian dual

$$egin{aligned} \mathbf{v}_{\mathsf{LP}} := & \min_{oldsymbol{X}} & oldsymbol{c}^{ op} oldsymbol{x}, \\ & \mathsf{subject} \ \ \mathsf{to} & oldsymbol{A} oldsymbol{x} \leq oldsymbol{b}, \\ & oldsymbol{D} oldsymbol{x} \leq oldsymbol{d}, \\ & oldsymbol{x} \in \mathbb{R}^n_+ \end{aligned}$$

We assume for now that the polyhedron

$$X := \{ x \in \mathbb{R}^n_+ \mid Ax \leq b \}$$

is bounded

▶ Let $\{x^1, x^2, \dots, x^K\}$ be the set of extreme points in X

A standard LP problem and its Lagrangian dual

$$egin{aligned} \mathbf{v}_{\mathsf{LP}} &:= & \min_{oldsymbol{x}} & oldsymbol{c}^{ op} oldsymbol{x}, \\ & \mathsf{subject} \ \ \mathsf{to} & oldsymbol{A} oldsymbol{x} \leq oldsymbol{b}, \\ & oldsymbol{D} oldsymbol{x} \leq oldsymbol{d}, \\ & oldsymbol{x} \in \mathbb{R}_+^n, \end{aligned}$$

We assume for now that the polyhedron

$$X := \{ x \in \mathbb{R}^n_+ \mid Ax \leq b \}$$

is bounded

- Let $\{x^1, x^2, \dots, x^K\}$ be the set of extreme points in X
- ▶ It follows that $X = \operatorname{conv}\left\{ \boldsymbol{x}^{1}, \boldsymbol{x}^{2}, \dots, \boldsymbol{x}^{K} \right\}$

▶ The Lagrangian dual of the LP with respect to relaxing the constraints $Dx \le d$ is

$$egin{array}{ll} {\it v}_{\sf L} := & \max_{oldsymbol{\mu} \geq oldsymbol{0}} & q(oldsymbol{\mu}), \end{array}$$

▶ The Lagrangian dual of the LP with respect to relaxing the constraints $Dx \le d$ is

$$egin{array}{ll}
u_{\mathsf{L}} := & \max_{oldsymbol{\mu} \geq oldsymbol{0}} & q(oldsymbol{\mu}), \end{array}$$

▶ Due to convexity of LP, it holds that $v_L = v_{LP}$

▶ The Lagrangian dual of the LP with respect to relaxing the constraints $Dx \le d$ is

$$egin{array}{ll}
u_{\mathsf{L}} := & \max_{oldsymbol{\mu} \geq oldsymbol{0}} & q(oldsymbol{\mu}), \end{array}$$

- ▶ Due to convexity of LP, it holds that $v_L = v_{LP}$
- ► The Lagrangian dual function is defined as:

$$q(\boldsymbol{\mu}) := \min_{\mathbf{x} \in X} \left\{ \boldsymbol{c}^{\top} \boldsymbol{x} + \boldsymbol{\mu}^{\top} (\boldsymbol{D} \boldsymbol{x} - \boldsymbol{d}) \right\}$$
 (1a)

$$= \min_{i \in \{1, \dots, K\}} \left\{ \boldsymbol{c}^{\top} \boldsymbol{x}^{i} + \boldsymbol{\mu}^{\top} (\boldsymbol{D} \boldsymbol{x}^{i} - \boldsymbol{d}) \right\}$$
 (1b)

▶ The Lagrangian dual of the LP with respect to relaxing the constraints $Dx \le d$ is

$$egin{array}{ll}
u_{\mathsf{L}} := & \max_{oldsymbol{\mu} \geq oldsymbol{0}} & q(oldsymbol{\mu}), \end{array}$$

- ▶ Due to convexity of LP, it holds that $v_L = v_{LP}$
- ► The Lagrangian dual function is defined as:

$$q(\boldsymbol{\mu}) := \min_{\mathbf{x} \in X} \left\{ \boldsymbol{c}^{\top} \boldsymbol{x} + \boldsymbol{\mu}^{\top} (\boldsymbol{D} \boldsymbol{x} - \boldsymbol{d}) \right\}$$
 (1a)

$$= \min_{i \in \{1, \dots, K\}} \left\{ \boldsymbol{c}^{\top} \boldsymbol{x}^{i} + \boldsymbol{\mu}^{\top} (\boldsymbol{D} \boldsymbol{x}^{i} - \boldsymbol{d}) \right\}$$
 (1b)

▶ Solution set to the subproblem at μ :

$$\begin{split} X(\boldsymbol{\mu}) &:= \underset{\mathbf{x} \in X}{\operatorname{argmin}} \ \left\{ \boldsymbol{c}^{\top} \boldsymbol{x} + \boldsymbol{\mu}^{\top} (\boldsymbol{D} \boldsymbol{x} - \boldsymbol{d}) \right\} \\ &= \operatorname{conv} \bigg\{ \underset{\mathbf{x}^i: i = 1, \dots, K}{\operatorname{argmin}} \ \left\{ \boldsymbol{c}^{\top} \boldsymbol{x}^i + \boldsymbol{\mu}^{\top} (\boldsymbol{D} \boldsymbol{x}^i - \boldsymbol{d}) \right\} \bigg\} \end{split}$$

An equivalent formulation of the Lagrangian dual

lacktriangle Due to (1), for all $\mu \geq 0$ the function q fulfills the inequalities

$$q(\boldsymbol{\mu}) \leq \boldsymbol{c}^{\top} \boldsymbol{x}^i + \boldsymbol{\mu}^{\top} (\boldsymbol{D} \boldsymbol{x}^i - \boldsymbol{d}), \qquad i = 1, \dots, K.$$

An equivalent formulation of the Lagrangian dual

▶ Due to (1), for all $\mu \geq 0$ the function q fulfills the inequalities

$$q(\boldsymbol{\mu}) \leq \boldsymbol{c}^{\top} \boldsymbol{x}^i + \boldsymbol{\mu}^{\top} (\boldsymbol{D} \boldsymbol{x}^i - \boldsymbol{d}), \qquad i = 1, \dots, K.$$

The Lagrangian dual can be equivalently formulated as

$$egin{aligned} \mathbf{v}_{\!\!\!m{L}} &:= & \max_{oldsymbol{\mu},z} \quad z, \ & ext{subject to} \quad z \leq oldsymbol{c}^{ op} oldsymbol{x}^i + oldsymbol{\mu}^{ op}(oldsymbol{D} oldsymbol{x}^i - oldsymbol{d}), \qquad i = 1,\ldots,K, \ & oldsymbol{\mu} \geq oldsymbol{0}. \end{aligned}$$

An equivalent formulation of the Lagrangian dual

▶ Due to (1), for all $\mu \geq 0$ the function q fulfills the inequalities

$$q(\boldsymbol{\mu}) \leq \boldsymbol{c}^{\top} \boldsymbol{x}^i + \boldsymbol{\mu}^{\top} (\boldsymbol{D} \boldsymbol{x}^i - \boldsymbol{d}), \qquad i = 1, \dots, K.$$

The Lagrangian dual can be equivalently formulated as

$$egin{aligned} \mathbf{v}_{\!\!\! L} &:= & \max_{oldsymbol{\mu}, \mathbf{z}} \quad \mathbf{z}, \ & ext{subject to} \quad \mathbf{z} \leq oldsymbol{c}^{ op} oldsymbol{x}^i + oldsymbol{\mu}^{ op}(oldsymbol{D} oldsymbol{x}^i - oldsymbol{d}), \qquad i = 1, \dots, K, \ oldsymbol{\mu} \geq oldsymbol{0}. \end{aligned}$$

- If, at an optimal dual solution μ^* , the solution set $X(\mu^*)$ is a singleton, i.e., $X(\mu^*) = \{x^*\}$, then x^* is optimal (and unique) thanks to strong duality
- ► This typically does not happen, unless an optimal solution x* happens to be an extreme point of X
- ► But **x*** can always be expressed as a convex combination of extreme points of *X* (cf. the previous lecture)

▶ Suppose that only a subset, $\{x^1, x^2, ..., x^k\}$ of the extreme points $\{x^1, x^2, ..., x^K\}$ is known (hence, $k \le K$), and consider the following relaxation of the Lagrangian dual problem:

$$(\boldsymbol{\mu}^k, \boldsymbol{z}^k) \in \operatorname*{argmax} \boldsymbol{z},$$
 (2a)
$$\operatorname*{subject\ to} \boldsymbol{z} \leq \boldsymbol{c}^\top \boldsymbol{x}^i + \boldsymbol{\mu}^\top (\boldsymbol{D} \boldsymbol{x}^i - \boldsymbol{d}), \ i = 1, \dots, k, \ \ \text{(2b)}$$

$$\boldsymbol{\mu} \geq \boldsymbol{0}$$
 (2c)

Suppose that only a subset, $\{x^1, x^2, ..., x^k\}$ of the extreme points $\{x^1, x^2, ..., x^K\}$ is known (hence, $k \le K$), and consider the following relaxation of the Lagrangian dual problem:

For k = 1, ..., K it holds that $z^k \ge v_L$

Suppose that only a subset, $\{x^1, x^2, ..., x^k\}$ of the extreme points $\{x^1, x^2, ..., x^K\}$ is known (hence, $k \le K$), and consider the following relaxation of the Lagrangian dual problem:

$$(\boldsymbol{\mu}^k, \boldsymbol{z}^k) \in \underset{\boldsymbol{\mu}, \boldsymbol{z}}{\operatorname{argmax}} \boldsymbol{z},$$
 (2a)
subject to $\boldsymbol{z} < \boldsymbol{c}^{\top} \boldsymbol{x}^i + \boldsymbol{\mu}^{\top} (\boldsymbol{D} \boldsymbol{x}^i - \boldsymbol{d}), i = 1, \dots, k,$ (2b)

$$\mu \geq \mathbf{0}$$
 (2c)

- For k = 1, ..., K it holds that $z^k \ge v_L$
- ► How do we determine whether an optimal solution to the Lagrangian dual is found?

Suppose that only a subset, $\{x^1, x^2, ..., x^k\}$ of the extreme points $\{x^1, x^2, ..., x^K\}$ is known (hence, $k \le K$), and consider the following relaxation of the Lagrangian dual problem:

$$(\mu^k, z^k) \in \operatorname*{argmax} z,$$
 (2a)
$$\operatorname{subject\ to}\ z \leq \boldsymbol{c}^{\top} \boldsymbol{x}^i + \mu^{\top} (\boldsymbol{D} \boldsymbol{x}^i - \boldsymbol{d}), \ i = 1, \dots, k, \ \ \text{(2b)}$$
 $\mu \geq \boldsymbol{0}$ (2c)

- For k = 1, ..., K it holds that $z^k \ge v_L$
- ► How do we determine whether an optimal solution to the Lagrangian dual is found?
- ▶ If it holds that

$$z^k \leq \boldsymbol{c}^{\top} \boldsymbol{x}^i + (\boldsymbol{\mu}^k)^{\top} (\boldsymbol{D} \boldsymbol{x}^i - \boldsymbol{d}), \quad i = 1, \dots, K,$$

then μ^k is optimal in the dual.

How check for optimality?

► How check for optimality? Find the most violated constraint

- How check for optimality? Find the most violated constraint
- Solve the subproblem

$$q(\boldsymbol{\mu}^k) := \min_{\mathbf{x} \in X} \left\{ \boldsymbol{c}^\top \boldsymbol{x} + (\boldsymbol{\mu}^k)^\top (\boldsymbol{D} \boldsymbol{x} - \boldsymbol{d}) \right\}$$

$$= \min_{i \in \{1, \dots, K\}} \left\{ \boldsymbol{c}^\top \boldsymbol{x}^i + (\boldsymbol{\mu}^k)^\top (\boldsymbol{D} \boldsymbol{x}^i - \boldsymbol{d}) \right\}$$
(3)

▶ If $z^k \leq q(\mu^k)$ then μ^k is optimal in the dual

- How check for optimality? Find the most violated constraint
- Solve the subproblem

$$q(\boldsymbol{\mu}^k) := \min_{\mathbf{x} \in X} \left\{ \boldsymbol{c}^\top \boldsymbol{x} + (\boldsymbol{\mu}^k)^\top (\boldsymbol{D} \boldsymbol{x} - \boldsymbol{d}) \right\}$$

$$= \min_{i \in \{1, \dots, K\}} \left\{ \boldsymbol{c}^\top \boldsymbol{x}^i + (\boldsymbol{\mu}^k)^\top (\boldsymbol{D} \boldsymbol{x}^i - \boldsymbol{d}) \right\}$$
(3)

- ▶ If $z^k \leq q(\mu^k)$ then μ^k is optimal in the dual
- Otherwise, we have identified a constraint of the form

$$z \leq \boldsymbol{c}^{\top} \boldsymbol{x}^{k+1} + \boldsymbol{\mu}^{\top} (\boldsymbol{D} \boldsymbol{x}^{k+1} - \boldsymbol{d}), \tag{4}$$

which is violated at (μ^k, z^k)

- How check for optimality? Find the most violated constraint
- Solve the subproblem

$$q(\boldsymbol{\mu}^{k}) := \min_{\mathbf{x} \in X} \left\{ \boldsymbol{c}^{\top} \boldsymbol{x} + (\boldsymbol{\mu}^{k})^{\top} (\boldsymbol{D} \boldsymbol{x} - \boldsymbol{d}) \right\}$$

$$= \min_{i \in \{1, \dots, K\}} \left\{ \boldsymbol{c}^{\top} \boldsymbol{x}^{i} + (\boldsymbol{\mu}^{k})^{\top} (\boldsymbol{D} \boldsymbol{x}^{i} - \boldsymbol{d}) \right\}$$
(3)

- ▶ If $z^k \leq q(\mu^k)$ then μ^k is optimal in the dual
- Otherwise, we have identified a constraint of the form

$$z \le \boldsymbol{c}^{\top} \boldsymbol{x}^{k+1} + \boldsymbol{\mu}^{\top} (\boldsymbol{D} \boldsymbol{x}^{k+1} - \boldsymbol{d}), \tag{4}$$

which is violated at (μ^k, z^k)

▶ The latter means that the following (strict) inequality holds:

$$z^k > c^{ op} x^{k+1} + (\mu^k)^{ op} (Dx^{k+1} - d)$$

- How check for optimality? Find the most violated constraint
- Solve the subproblem

$$q(\boldsymbol{\mu}^{k}) := \min_{\mathbf{x} \in X} \left\{ \boldsymbol{c}^{\top} \boldsymbol{x} + (\boldsymbol{\mu}^{k})^{\top} (\boldsymbol{D} \boldsymbol{x} - \boldsymbol{d}) \right\}$$

$$= \min_{i \in \{1, \dots, K\}} \left\{ \boldsymbol{c}^{\top} \boldsymbol{x}^{i} + (\boldsymbol{\mu}^{k})^{\top} (\boldsymbol{D} \boldsymbol{x}^{i} - \boldsymbol{d}) \right\}$$
(3)

- ▶ If $z^k \leq q(\mu^k)$ then μ^k is optimal in the dual
- Otherwise, we have identified a constraint of the form

$$z \le \boldsymbol{c}^{\top} \boldsymbol{x}^{k+1} + \boldsymbol{\mu}^{\top} (\boldsymbol{D} \boldsymbol{x}^{k+1} - \boldsymbol{d}), \tag{4}$$

which is violated at (μ^k, z^k)

▶ The latter means that the following (strict) inequality holds:

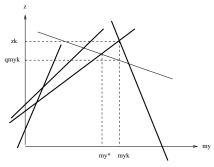
$$z^k > c^{ op} x^{k+1} + (\mu^k)^{ op} (Dx^{k+1} - d)$$

Add the inequality (4) to (2b), update k := k + 1, and resolve the LP (2)

▶ We call this a *cutting plane* algorithm

- ▶ We call this a *cutting plane* algorithm
- ▶ It is based on the addition of constraints to the dual problem, in order to improve the solution, in the process of cutting off the previous (optimal) point

- We call this a cutting plane algorithm
- ▶ It is based on the addition of constraints to the dual problem, in order to improve the solution, in the process of cutting off the previous (optimal) point
- ► The **thick** lines correspond to the subset of *k* inequalities known at iteration *k*



▶ Obviously, $z^k \ge q(\mu^k)$ must hold, because of the possible lack of constraints

- Obviously, $z^k \ge q(\mu^k)$ must hold, because of the possible lack of constraints
- ▶ For the case in the figure, $z^k > q(\mu^k)$ holds \Longrightarrow in the next iteration $q(\mu^k)$ is evaluated and the last lacking inequality (the thin solid line) will be identified

- ▶ Obviously, $z^k \ge q(\mu^k)$ must hold, because of the possible lack of constraints
- For the case in the figure, $z^k > q(\mu^k)$ holds \Longrightarrow in the next iteration $q(\mu^k)$ is evaluated and the last lacking inequality (the thin solid line) will be identified
- ▶ The resulting maximization will then yield the optimal solution μ^* , as illustrated in the figure

- ▶ Obviously, $z^k \ge q(\mu^k)$ must hold, because of the possible lack of constraints
- ▶ For the case in the figure, $z^k > q(\mu^k)$ holds \Longrightarrow in the next iteration $q(\mu^k)$ is evaluated and the last lacking inequality (the thin solid line) will be identified
- ▶ The resulting maximization will then yield the optimal solution μ^* , as illustrated in the figure
- ► How do we generate an optimal primal solution from this scheme?
 - ► Let us look at the LP dual of the Lagrangian dual problem (2) in this cutting plane algorithm

Duality relations and the Dantzig-Wolfe algorithm

▶ We rewrite the relaxed Lagrangian dual problem (2) as

$$\begin{split} \boldsymbol{z}^k &:= \max_{(\boldsymbol{z}, \boldsymbol{\mu})} \quad \boldsymbol{z}, \\ \text{subject to} \quad \boldsymbol{z} - \boldsymbol{\mu}^\top (\boldsymbol{D} \boldsymbol{x}^i - \boldsymbol{d}) \leq \boldsymbol{c}^\top \boldsymbol{x}^i, \quad i = 1, \dots, k, \\ \boldsymbol{\mu} \geq \boldsymbol{0} \end{split}$$

Duality relations and the Dantzig-Wolfe algorithm

▶ We rewrite the relaxed Lagrangian dual problem (2) as

$$egin{aligned} z^k &:= \max_{(z,\mu)} \quad z, \ & ext{subject to} \quad z - m{\mu}^ op(m{D}m{x}^i - m{d}) \leq m{c}^ op m{x}^i, \quad i = 1,\dots,k, \ &m{\mu} \geq m{0} \end{aligned}$$

▶ Defining the LP dual variables $\lambda_i \ge 0$, i = 1, ..., k, we obtain the LP dual:

$$egin{aligned} oldsymbol{z}^k &= & \min \; \sum_{i=1}^k (oldsymbol{c}^ op oldsymbol{x}^i) \lambda_i, \ & ext{subject to} & \sum_{i=1}^k \lambda_i = 1, \ & -\sum_{i=1}^k (oldsymbol{D} oldsymbol{x}^i - oldsymbol{d}) \lambda_i \geq oldsymbol{0}, \ & \lambda_i \geq 0, \qquad i = 1, \dots, k \end{aligned}$$

The linear programming dual rewritten

$$z^{k} = \min \quad \boldsymbol{c}^{\top} \left(\sum_{i=1}^{k} \lambda_{i} \boldsymbol{x}^{i} \right),$$
subject to
$$\sum_{i=1}^{k} \lambda_{i} = 1,$$

$$\lambda_{i} \geq 0, \qquad i = 1, \dots, k,$$

$$\boldsymbol{D} \left(\sum_{i=1}^{k} \lambda_{i} \boldsymbol{x}^{i} \right) \leq \boldsymbol{d}$$

$$(5)$$

The linear programming dual rewritten

$$z^{k} = \min \quad \boldsymbol{c}^{\top} \left(\sum_{i=1}^{k} \lambda_{i} \boldsymbol{x}^{i} \right),$$
subject to
$$\sum_{i=1}^{k} \lambda_{i} = 1,$$

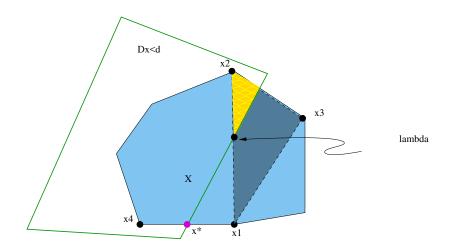
$$\lambda_{i} \geq 0, \qquad i = 1, \dots, k,$$

$$\boldsymbol{D} \left(\sum_{i=1}^{k} \lambda_{i} \boldsymbol{x}^{i} \right) \leq \boldsymbol{d}$$

$$(5)$$

Minimize $c^{\top}x$ when x lies in the convex hull of the extreme points x^i found so far and fulfills the constraints that are Lagrangian relaxed

An illustration in the x-space



The Dantzig-Wolfe algorithm

► The problem (5) is known as the restricted master problem (RMP) in the Dantzig–Wolfe algorithm (to be developed next)

The Dantzig-Wolfe algorithm

- ► The problem (5) is known as the restricted master problem (RMP) in the Dantzig-Wolfe algorithm (to be developed next)
- In this algorithm, we have at hand a subset $\{x^1, \ldots, x^k\}$ of the extreme points of X (and a dual vector μ^{k-1})

The Dantzig-Wolfe algorithm

- ► The problem (5) is known as the restricted master problem (RMP) in the Dantzig-Wolfe algorithm (to be developed next)
- ▶ In this algorithm, we have at hand a subset $\{x^1, \ldots, x^k\}$ of the extreme points of X (and a dual vector μ^{k-1})
- ▶ Find a feasible solution to the original LP by solving the RMP

The Dantzig-Wolfe algorithm

- ► The problem (5) is known as the restricted master problem (RMP) in the Dantzig-Wolfe algorithm (to be developed next)
- ▶ In this algorithm, we have at hand a subset $\{x^1, \ldots, x^k\}$ of the extreme points of X (and a dual vector μ^{k-1})
- ▶ Find a feasible solution to the original LP by solving the RMP
- ▶ Then generate an optimal dual solution μ^k to this RMP, where the dual variables μ correspond to the primal constraints $\mathbf{D}\mathbf{x} \leq \mathbf{d}$

The Dantzig-Wolfe algorithm

- ► The problem (5) is known as the restricted master problem (RMP) in the Dantzig-Wolfe algorithm (to be developed next)
- ▶ In this algorithm, we have at hand a subset $\{x^1, \ldots, x^k\}$ of the extreme points of X (and a dual vector μ^{k-1})
- ▶ Find a feasible solution to the original LP by solving the RMP
- ▶ Then generate an optimal dual solution μ^k to this RMP, where the dual variables μ correspond to the primal constraints $\mathbf{D}\mathbf{x} \leq \mathbf{d}$
- ▶ The vector \mathbf{x}^{k+1} generated in the next subproblem (3) was already included in the RMP \iff An optimal solution to the original LP is found and verified

Three algorithms which are "dual" to each other

"Cutting plane" applied to the Lagrangian dual of an LP

$$\iff$$

"Dantzig-Wolfe decomposition" applied to the original LP

$$\iff$$

Benders decomposition applied to the dual of the original LP

Column generation

► Consider an LP with *very* many variables: $c_j, x_j \in \mathbb{R}$, $a_j, b \in \mathbb{R}^m$, $n \gg m$

minimize
$$z = \sum_{j=1}^{n} c_j x_j$$
 (6a)

subject to
$$\sum_{j=1}^{n} \boldsymbol{a}_{j} x_{j} = \boldsymbol{b}$$
 (6b)

$$x_j \geq 0, \qquad j = 1, \dots, n$$
 (6c)

Column generation

▶ Consider an LP with *very* many variables: $c_j, x_j \in \mathbb{R}$, $a_j, b \in \mathbb{R}^m$, $n \gg m$

minimize
$$z = \sum_{j=1}^{n} c_j x_j$$
 (6a)

subject to
$$\sum_{j=1}^{n} \boldsymbol{a}_{j} x_{j} = \boldsymbol{b}$$
 (6b)

$$x_j \geq 0, \qquad j = 1, \ldots, n \qquad (6c)$$

▶ The matrix $(a_1, ..., a_n)$ is too large to handle

Column generation

▶ Consider an LP with *very* many variables: $c_j, x_j \in \mathbb{R}$, $a_j, b \in \mathbb{R}^m$, $n \gg m$

minimize
$$z = \sum_{j=1}^{n} c_j x_j$$
 (6a)

subject to
$$\sum_{j=1}^{n} \boldsymbol{a}_{j} x_{j} = \boldsymbol{b}$$
 (6b)

$$x_j \geq 0, \qquad j = 1, \dots, n \qquad (6c)$$

- ▶ The matrix $(a_1, ..., a_n)$ is too large to handle
- Assume that m is relatively small \Longrightarrow a basis matrix is not too large $(m \times m)$

▶ $B := \{m \text{ elements from the set } \{1, ..., n\}\}$ is a basis if the corresponding matrix $\mathbf{B} = (\mathbf{a}_j)_{j \in B}$ has an inverse, \mathbf{B}^{-1}

- ▶ $B := \{m \text{ elements from the set } \{1, ..., n\}\}$ is a basis if the corresponding matrix $\mathbf{B} = (\mathbf{a}_j)_{j \in B}$ has an inverse, \mathbf{B}^{-1}
- ▶ A basic solution is given by $x_B := B^{-1}b$ and $x_j = 0$, $j \notin B$. It is feasible if $x_B \ge 0^m$

- ▶ $B := \{m \text{ elements from the set } \{1, ..., n\}\}$ is a basis if the corresponding matrix $\mathbf{B} = (\mathbf{a}_j)_{j \in B}$ has an inverse, \mathbf{B}^{-1}
- ▶ A basic solution is given by $\mathbf{x}_B := \mathbf{B}^{-1}\mathbf{b}$ and $x_j = 0$, $j \notin B$. It is feasible if $\mathbf{x}_B \ge \mathbf{0}^m$
- ▶ A better basic feasible solution can be found by computing the reduced costs: $\bar{c}_j := c_j c_B^\top B^{-1} a_j$ for $j \notin B$

- ▶ $B := \{m \text{ elements from the set } \{1, ..., n\}\}$ is a basis if the corresponding matrix $\mathbf{B} = (\mathbf{a}_j)_{j \in B}$ has an inverse, \mathbf{B}^{-1}
- A basic solution is given by $\mathbf{x}_B := \mathbf{B}^{-1}\mathbf{b}$ and $x_j = 0$, $j \notin B$. It is feasible if $\mathbf{x}_B \ge \mathbf{0}^m$
- ▶ A better basic feasible solution can be found by computing the reduced costs: $\bar{c}_j := c_j c_B^\top B^{-1} a_j$ for $j \notin B$
 - Let $\bar{c}_s := \underset{j \notin B}{\mathsf{minimum}} \{\bar{c}_j\}$

- ▶ $B := \{m \text{ elements from the set } \{1, ..., n\}\}$ is a basis if the corresponding matrix $\mathbf{B} = (\mathbf{a}_j)_{j \in B}$ has an inverse, \mathbf{B}^{-1}
- ▶ A basic solution is given by $\mathbf{x}_B := \mathbf{B}^{-1}\mathbf{b}$ and $x_j = 0$, $j \notin B$. It is feasible if $\mathbf{x}_B \ge \mathbf{0}^m$
- ▶ A better basic feasible solution can be found by computing the reduced costs: $\bar{c}_j := c_j c_B^\top B^{-1} a_j$ for $j \notin B$
 - ▶ Let $\bar{c}_s := \min_{j \notin B} \{\bar{c}_j\}$
 - If $\bar{c}_s < 0 \Longrightarrow$ a better solution will be received if x_s enters the basis

- ▶ $B := \{m \text{ elements from the set } \{1, ..., n\}\}$ is a basis if the corresponding matrix $\mathbf{B} = (\mathbf{a}_j)_{j \in B}$ has an inverse, \mathbf{B}^{-1}
- ▶ A basic solution is given by $\mathbf{x}_B := \mathbf{B}^{-1}\mathbf{b}$ and $x_j = 0$, $j \notin B$. It is feasible if $\mathbf{x}_B \ge \mathbf{0}^m$
- ▶ A better basic feasible solution can be found by computing the reduced costs: $\bar{c}_j := c_j c_B^\top B^{-1} a_j$ for $j \notin B$
 - Let $\bar{c}_s := \min_{j \notin B} \{\bar{c}_j\}$
 - ▶ If $\bar{c}_s < 0 \Longrightarrow$ a better solution will be received if x_s enters the basis
 - If $\bar{c}_s \geq 0 \Longrightarrow x_B$ is an optimal basic solution

▶ Suppose the columns a_j are defined by a set $S := \{a_j \mid j = 1, \dots, n\}$ being, e.g., solutions to a system of equations (extreme points, integer points, . . .)

- ▶ Suppose the columns a_j are defined by a set $S := \{a_j \mid j = 1, ..., n\}$ being, e.g., solutions to a system of equations (extreme points, integer points, ...)
- ▶ The incoming column is then chosen by solving a subproblem

$$ar{c}(\mathbf{a}') := \min_{\mathbf{a} \in S} \max \left\{ c - \mathbf{c}_B^{\top} \mathbf{B}^{-1} \mathbf{a} \right\}$$

- ▶ Suppose the columns a_j are defined by a set $S := \{a_j \mid j = 1, ..., n\}$ being, e.g., solutions to a system of equations (extreme points, integer points, ...)
- ▶ The incoming column is then chosen by solving a subproblem

$$ar{c}(\mathbf{a}') := \min_{\mathbf{a} \in S} \max \left\{ c - \mathbf{c}_B^{\top} \mathbf{B}^{-1} \mathbf{a} \right\}$$

ightharpoonup a' is a column having the least reduced cost w.r.t. the basis B

- Suppose the columns a_j are defined by a set $S := \{a_j \mid j = 1, \dots, n\}$ being, e.g., solutions to a system of equations (extreme points, integer points, ...)
- ▶ The incoming column is then chosen by solving a subproblem

$$ar{c}(\mathbf{a}') := \min_{\mathbf{a} \in S} \max \left\{ c - \mathbf{c}_B^{\top} \mathbf{B}^{-1} \mathbf{a} \right\}$$

- ightharpoonup a' is a column having the least reduced cost w.r.t. the basis B
- ▶ If $\bar{c}(a') < 0$, let the column $\begin{bmatrix} c(a') \\ a' \end{bmatrix}$ enter the LP (6)

Example: The cutting stock problem

▶ **Supply:** rolls of e.g. paper of length *L*

▶ **Demand:** b_i roll pieces of length $\ell_i < L$, i = 1, ..., m

▶ **Objective:** minimize the number of rolls needed for producing the demanded pieces

$$x_k = \left\{ \begin{array}{ll} 1 & \text{if roll k is used} \\ 0 & \text{otherwise} \end{array} \right. \quad y_{ik} = \left\{ \begin{array}{ll} \# \text{ of pieces of length ℓ_i} \\ \text{that are cut from roll k} \end{array} \right.$$

$$\text{minimize } \sum_{k=1}^K x_k,$$

$$\text{subject to } \sum_{i=1}^m \ell_i y_{ik} \leq L x_k, \quad k=1,\ldots,K$$

$$\sum_{k=1}^K y_{ik} = b_i, \qquad i=1,\ldots,m$$

$$x_k \text{ binary, } \quad k=1,\ldots,K$$

$$y_{ik} \in \mathbb{Z}_+^{m \cdot K}, \; i=1,\ldots,m, \; k=1,\ldots,K$$

▶ The value of the continuous relaxation is $\frac{\sum_{i=1}^{m} \ell_i b_i}{L}$, which can be very bad if, e.g., $\ell_i = \lfloor L/2 + 1 \rfloor$ and L is large

- ▶ The value of the continuous relaxation is $\frac{\sum_{i=1}^{m} \ell_i b_i}{L}$, which can be very bad if, e.g., $\ell_i = \lfloor L/2 + 1 \rfloor$ and L is large
- A large duality gap ⇒ potentially bad performance of IP solvers

- ▶ The value of the continuous relaxation is $\frac{\sum_{i=1}^{m} \ell_i b_i}{L}$, which can be very bad if, e.g., $\ell_i = \lfloor L/2 + 1 \rfloor$ and L is large
- A large duality gap ⇒ potentially bad performance of IP solvers
- Also, there are a lot of symmetries (i.e., equivalently good, but differently denoted, solutions) in the "first formulation"

- ▶ The value of the continuous relaxation is $\frac{\sum_{i=1}^{m} \ell_i b_i}{L}$, which can be very bad if, e.g., $\ell_i = \lfloor L/2 + 1 \rfloor$ and L is large
- A large duality gap ⇒ potentially bad performance of IP solvers
- Also, there are a lot of symmetries (i.e., equivalently good, but differently denoted, solutions) in the "first formulation"
- Symmetries are extremely difficult to handle for integer programming solvers

▶ Cut pattern number j contains a_{ij} pieces of length ℓ_i

- **Cut pattern** number j contains a_{ij} pieces of length ℓ_i
- ▶ **Feasible** pattern if $\sum_{i=1}^{m} \ell_i a_{ij} \leq L$, where $a_{ij} \geq 0$, integer

- ▶ Cut pattern number j contains a_{ij} pieces of length ℓ_i
- ▶ **Feasible** pattern if $\sum_{i=1}^{m} \ell_i a_{ij} \leq L$, where $a_{ij} \geq 0$, integer
- **Variables:** $x_j =$ number of times that pattern j is used

minimize
$$\sum_{j=1}^n x_j$$
 subject to $\sum_{j=1}^n a_{ij}x_j=b_i,$ $i=1,\ldots,m$ $x_j\geq 0,$ integer, $j=1,\ldots,n$

- ▶ Cut pattern number j contains a_{ij} pieces of length ℓ_i
- ▶ **Feasible** pattern if $\sum_{i=1}^{m} \ell_i a_{ij} \leq L$, where $a_{ij} \geq 0$, integer
- **Variables:** $x_j = \text{number of times that pattern } j$ is used

minimize
$$\sum_{j=1}^n x_j$$
 subject to $\sum_{j=1}^n a_{ij}x_j=b_i,$ $i=1,\ldots,m$ $x_j\geq 0,$ integer, $j=1,\ldots,n$

▶ Bad news: n = total number of feasible cut patterns—a HUGE integer

- ▶ Cut pattern number j contains a_{ij} pieces of length ℓ_i
- ▶ **Feasible** pattern if $\sum_{i=1}^{m} \ell_i a_{ij} \leq L$, where $a_{ij} \geq 0$, integer
- **Variables:** $x_j =$ number of times that pattern j is used

minimize
$$\sum_{j=1}^n x_j$$
 subject to $\sum_{j=1}^n a_{ij}x_j=b_i,$ $i=1,\ldots,m$ $x_j\geq 0,$ integer, $j=1,\ldots,n$

- ▶ Bad news: n = total number of feasible cut patterns—a HUGE integer
- ► **Good news:** the value of the continuous relaxation is often very close to that of the optimal solution

- **Cut pattern** number j contains a_{ii} pieces of length ℓ_i
- ▶ **Feasible** pattern if $\sum_{i=1}^{m} \ell_i a_{ii} \leq L$, where $a_{ii} \geq 0$, integer
- **Variables:** x_i = number of times that pattern j is used

minimize
$$\sum_{j=1}^n x_j$$
 subject to $\sum_{j=1}^n a_{ij}x_j=b_i,$ $i=1,\ldots,m$ $x_j\geq 0,$ integer, $j=1,\ldots,n$

- ▶ Bad news: n = total number of feasible cut patterns—a **HUGE** integer
- ▶ **Good news:** the value of the continuous relaxation is often very close to that of the optimal solution
- ⇒ Relax integrality constraints, solve an LP instead of an ILP

Starting solution

Natural: m unit columns (yields lots of waste) \Longrightarrow

minimize
$$\sum_{j=1}^m x_j$$

subject to $x_j = b_j, \qquad j = 1, \dots, m$
 $x_j \geq 0, \qquad j = 1, \dots, m$

Generate better patterns using the dual variable values $\pi_i \Longrightarrow$ a new column \overline{a}_k computed from:

$$1 - \max_{a_{ik}} \left\{ \sum_{i=1}^{m} \pi_i a_{ik} \right\} \qquad \left[\Leftrightarrow \text{minimize } \left(c_k - \underbrace{\boldsymbol{c}_B^\top \boldsymbol{B}^{-1}}_{\boldsymbol{\pi}} \boldsymbol{a}_k \right) \right]$$
 subject to
$$\sum_{i=1}^{m} \ell_i a_{ik} \leq L,$$

$$a_{ik} \geq 0, \text{ integer, } \qquad i = 1, \dots, m$$

Generate better patterns using the dual variable values $\pi_i \Longrightarrow$ a new column \overline{a}_k computed from:

$$1 - \max_{a_{ik}} \ \left\{ \sum_{i=1}^{m} \pi_i a_{ik} \right\} \qquad \left[\Leftrightarrow \text{minimize } \left(c_k - \underbrace{\boldsymbol{c}_k^\top \boldsymbol{B}^{-1}}_{\boldsymbol{\pi}} \boldsymbol{a}_k \right) \right]$$
 subject to
$$\sum_{i=1}^{m} \ell_i a_{ik} \leq L,$$

$$a_{ik} \geq 0, \text{ integer, } \qquad i = 1, \dots, m$$

ightharpoonup Solution to this integer knapsack problem: new column $\overline{m{a}}_k$

Generate better patterns using the dual variable values $\pi_i \Longrightarrow$ a new column \overline{a}_k computed from:

$$1 - \max_{a_{ik}} \left\{ \sum_{i=1}^{m} \pi_i a_{ik} \right\} \qquad \left[\Leftrightarrow \text{minimize } \left(c_k - \underbrace{\boldsymbol{c}_B^\top \boldsymbol{B}^{-1}}_{\boldsymbol{\pi}} \boldsymbol{a}_k \right) \right]$$
 subject to
$$\sum_{i=1}^{m} \ell_i a_{ik} \leq L,$$

$$a_{ik} \geq 0, \text{ integer, } \qquad i = 1, \dots, m$$

- ightharpoonup Solution to this integer knapsack problem: new column $\overline{m{a}}_k$
- If $1 \pi^{\top} \overline{a}_k < 0$, then the column \overline{a}_k will improve the formulation

Generate better patterns using the dual variable values $\pi_i \Longrightarrow$ a new column \overline{a}_k computed from:

$$1 - \max_{\pmb{a}_{ik}} \ \left\{ \sum_{i=1}^m \pi_i \pmb{a}_{ik} \right\} \qquad \left[\Leftrightarrow \text{minimize } \left(\pmb{c}_k - \underbrace{\pmb{c}_B^\top \pmb{B}^{-1}}_{\pmb{\pi}} \pmb{a}_k \right) \right]$$
 subject to
$$\sum_{i=1}^m \ell_i \pmb{a}_{ik} \leq L,$$

$$\pmb{a}_{ik} \geq 0, \text{ integer, } \qquad i = 1, \dots, m$$

- ightharpoonup Solution to this integer knapsack problem: new column $\overline{m{a}}_k$
- If $1 \pi^{\top} \overline{a}_k < 0$, then the column \overline{a}_k will improve the formulation
- ▶ If $1 \pi^{\top} \overline{a}_k \ge 0$, then the columns already generated are sufficient to determine the optimum (of the LP problem)

