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Abstract

We present a unified methodology for the computational solution of parabolic systems of
differential equations with adaptive selection of discretization in space and time, based
on a posteriori error estimates involving residuals of computed solutions and stability
factors/weights, obtained by solving an associated linearized dual problem. We define
parabolicity as boundedness in time (up to logarithmic factors) of a certain strong stability
factor measuring the ���������	� -norm in time–space of the time derivative of the dual solution
with � � -normalized initial data.
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The simpler a hypothesis is, the better it is. (Leibniz)

1. What is a parabolic problem?

A common classification of partial differential equations uses the terms elliptic,
parabolic and hyperbolic, with the stationary Poisson equation being a prototype
example of an elliptic problem, the time-dependent heat equation that of a parabolic
problem, and the time-dependent wave equation being a hyperbolic problem. More
generally, parabolic problems are often described vaguely speaking as “diffusion-
dominated”, while hyperbolic problems are “convection-dominated” in a setting of
systems of convection-diffusion equations. Alternatively, the term “stiff problems” is
used to describe parabolic problems, with the term stiff referring to the characteristic
presence of a range of time scales, varying from slow to fast with increasing damping.

In the context of computational methods for a general class of systems of time-
dependent convection-diffusion-reaction equations, the notion of “parabolicity” or
“stiffness” may be given a precise quantitative definition, which will be at the
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2 ENCYCLOPEDIA OF COMPUTATIONAL MECHANICS

focal point of this presentation. We will define a system of convection-diffusion-
reaction equations to be parabolic if computational solution is possible over long
time without error accumulation, or alternatively, if a certain strong stability factor���������

, measuring error accumulation, is of unit size independent of the length�
in time of the simulation. More precisely, the error accumulation concerns

the Galerkin discretization error in a discontinuous Galerkin method dG( 	 ) with
piecewise polynomials of degree 	 of order 
�	
��� . (The total discretization error may
also contain a quadrature error, which typically accumulates at a linear rate in time
for a parabolic problem.) This gives parabolicity a precise quantitative meaning with
a direct connection to computational methods. A parabolic problem thus exhibits a
feature of “loss of memory” for Galerkin errors satisfying an orthogonality condition,
which allows long-time integration without error accumulation. As shall be made
explicit below, our definition of parabolicity through a certain stability factor is closely
related to the definition of an analytic semigroup.

For a typical hyperbolic problem the corresponding strong stability factor will grow
linearly in time, while for more general initial value problems the growth may be
polynomial or even exponential in time.

The solutions of parabolic systems in general vary considerably in space-time and
from one component to the other with occasional transients where derivatives are
large. Efficient computational methods for parabolic problems thus require adaptive
control of the mesh size in both space space and time, or more general multi-adaptive
control with possibly different resolution in time for different components.

2. Outline

We first consider in Section 3 time-stepping methods for Initial Value Problems
(IVPs) for systems of ordinary differential equations. We present an a posteriori
error analysis exhibiting the characteristic feature of a parabolic problem of non-
accumulation of Galerkin errors in the setting of the backward Euler method (the
discontinuous Galerkin method ��� ����� ), with piecewise constant (polynomial of order�

) approximation in time. The a posteriori error estimate involves the residual of the
computed solution and stability factors/weights obtained by solving an associated dual
linearized problem expressing in quantitative form the stability features of the IVP
being solved. The a posteriori error estimate forms the basis of an adaptive method
for time step control with the objective of controlling the Euclidean norm of the
error uniformly in time or at selected time levels, or some other output quantity.
The form of the a posteriori error estimate expresses the characteristic feature of a
parabolic problem that the time step control is independent of the length in time of the
simulation.

In Section 4 we compute stability factors for a couple of IVPs modeling chemical
reactions and find that the strong stability factor

���������
remains of unit size over long

time.
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ADAPTIVE COMPUTATIONAL METHODS FOR PARABOLIC PROBLEMS 3

In Section 5 we contrast with an IVP with exponentially growing stability factors:
the Lorenz system.

The backward Euler method, or more generally the ��� � 	 � method, is implicit and
requires the solution of a nonlinear system of equations at each time step. In Section
6 we study iterative fixed point-type solution strategies resembling explicit time-
stepping methods. However, since explicit time-stepping for stiff problems is unstable
unless the time step is smaller than the fastest time scale, which may be unnecessarily
restrictive outside fast transients, we include a stabilization technique based on
adaptively stabilizing the stiff system by taking a couple of small time steps when
needed. We show efficiency gain factors compared to traditional explicit methods
with the time step restriction indicated, of the order 10-100 or more depending on the
problem. The need for explicit-type methods for parabolic problems avoiding forming
Jacobians and solving associated linear systems of equations, is very apparent for the
large systems of convection-diffusion-reaction equations arising in the modeling of
chemical reactors with many reactants and reactions involved. The need for explicit
time-stepping also arises in the setting of multi-adaptive time-stepping with the time
step varying in both space and for different reactants, since here the discrete equations
may be coupled over several time steps for some of the subdomains (or reactants),
leading to very large systems of algebraic equations.

In Section 7 we prove the basic strong stability estimates for an abstract parabolic
model problem, and connect to the definition of an analytic semigroup.

In Sections 8–15 we present adaptive space-time Galerkin finite element methods
for a model parabolic IVP, the heat equation, including a priori and a posteriori error
estimates. The space-time Galerkin discretization method ��� ��� � ��� � 	 � is based on the
continuous Galerkin method ��� ��� � with piecewise polynomials of degree

�
in space,

and the discontinuous Galerkin method ��� � 	 � with piecewise polynomials of degree
	 in time (for 	�� ��� � ). In Section 16 we discuss briefly the extension to convection-
diffusion-reaction systems, and present computational results in Section 17.

3. Introduction to adaptive methods for IVPs

We now give a brief introduction to the general topic of adaptive error control for
numerical time-stepping methods for initial value problems, with special reference
to parabolic or stiff problems. In an adaptive method, the time steps are chosen
automatically with the purpose of controlling the numerical error to within a given
tolerance level. The adaptive method is based on an a posteriori error estimate
involving the residual of the computed solution and results of auxiliary computations
of stability factors, or more generally stability weights.

We consider an IVP of the form�� �
	 � ��� � � �
	 � � for
��
�	�� ��� � ��� � � ��� � (1)

where ��������� ��� is a given differentiable function, � ��� ��� a given initial
value, and

�! �
a given final time. For the computational solution of (1), we let
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4 ENCYCLOPEDIA OF COMPUTATIONAL MECHANICS

� � 	 � 
 	 � 
 ����� 
 	�� � � 
 	�� 
 ����� 
 	�� � �
be an increasing sequence of

discrete time steps with corresponding time intervals
	 � � �
	�� � � � 	���
 and time steps� � � 	���
 	�� � � , and consider the backward Euler method: Find � � 	�� � successively

for � � � � � � ����� ��� � according to the formula

� �
	�� � ��� �
	�� � � � � � � � � � � 	�� � � � (2)

with � ����� � � � . The backward Euler method is implicit in the sense that to compute
the value � �
	 � � with � � 	 � � � � already computed, we need to solve a system of of
equations. We will return to this aspect below.

We associate a function � �
	 � defined on � � � ��
 to the function values � �
	�� � ,� � ��� � � ����� ��� � as follows:

� �
	 � ��� �
	 � � for
	 � �
	 � � � � 	 � 
 �

In other words, � �
	 � is left-continuous piecewise constant on � ��� ��
 and takes the value� �
	 � � on
	 �

, and thus takes a jump from the limit from the left � � 	 �� � � � ��� �
	 � � � �
to the limit from the right � �
	��� � � � ��� � 	���� at the time level

	 � 	�� � � . We can now
write the backward Euler method in the form

� �
	�� � ��� � 	�� � � � � ���! 
�  #"�$ � � � �
	 � �&% 	 �

or equivalently

� �
	 � �('*) ��� �
	 � � � �+'�) � �,�  
�  #"�$ �

� � �
	 � �+'�)-% 	 � (3)

for all
) � ��� with the dot signifying the scalar product in � � . This method is also

referred to as � � ��� � , the discontinuous Galerkin method of order zero, corresponding
to approximating the exact solution by a piecewise constant function � � 	 � satisfying
the orthogonality condition (3).

The general ��� � 	 � method takes the form (3), with the restriction to each time
interval 	 � of the solution � � 	 � and the test function

)
on each time interval 	 � being

polynomial of degree 	 . The ��� � 	 � method comes also in multi-adaptive form with
each component and corresponding test function being piecewise polynomial with
possibly different sequences of time steps for different components.

We shall now derive an a posteriori error estimate, aiming at control of the scalar
product of the error . ����� � � � 
 � � ����� at final time

�
with a given vector / , where we

assume that / is normalized so that 0*/10 � � . We introduce the following linearized
dual problem running backward in time:
 �2 � 	 � �4315 �
	 � 2 � 	 � for

����	 
���� 2 ��� � �6/ � (4)

with
3 �
	 � � � �

� �87
�:9 � � 	 � � � � 
�9�� � �
	 � �;%<9 �
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ADAPTIVE COMPUTATIONAL METHODS FOR PARABOLIC PROBLEMS 5

where � �
	 � is the exact solution and � �
	 � the approximate solution, � 7 is the Jacobian
of � , and � denotes transpose. We note that � � � �
	 � � 
 � � � �
	 � � �43 �
	 � � � �
	 � 
 � � 	 � � .
We now start from the identity

. ��� �+' / �4. �����+' / �
�
���� �

�,�! 
�  #"�$ . ' ��


�2 
 3 5 2 �;% 	 �

and integrate by parts on each subinterval
�
	 � � � � 	 � � to get the error representation:

. �����+' / �
�
���� �

� �! 
�  #"�$ � �. 
 3 . �+' 2 % 	 


�
���� �

� � �
	�� � 
 � � 	�� � � � � ' 2 � 	�� � � � �

where the last term results from the jumps of � �
	 � at the the nodes
	 � 	 � � � . Since

now � solves the differential equation �� 
 � � � � � �
, and

�� � �
on each time interval�
	�� � � � 	�� � , we have

�. 
 3 . � �� 
 � � � �+
 �� � � � � � � 
 �� � � � � � � � � � � on
� 	 � � � � 	 � � �

It follows that

. ��� �+' / � 

�
���� �

� � �
	�� � 
 � � 	�� � � � � ' 2 � 	�� � � � � ���
� � � � �+' 2 % 	 �

Using (3) with
) ���2 � , the mean value of

2
over

	 �
, we get

. �����&' / � 

�
���� �

� � �
	 � �&
 � �
	 � � � � �;' � 2 �
	 � � � �;
 �2 � � �
�
���� �

� �! 
�  "�$ �

� � �&' � 2 
 �2 � �&% 	 �
Since now � �  

�  #"�$ � � � � � 2 
 �2 � �;% 	 � ���

because � � � �
	 � � is constant on
�
	�� � � � 	���
 , the error representation takes the form

. �����+' / � 

�
���� �

� � � 	 � � 
 � �
	 � � � � � ' � 2 � 	 � � � � 
 �2 � � �
Finally, from the estimate

0 2 �
	�� � � �(
 �2 � � 0 � � �! �  "�$ 0
�2 �
	 � 0 % 	 �

where 0 ' 0 denotes the the Euclidean norm in � � , we obtain the following a posteriori
error estimate for the backward Euler or ��� ����� method:

	 . �����+' / 	 � � � ����� / ��

������ � � � 0�� �
	�� �+
 � �
	�� � � � 0 � (5)
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6 ENCYCLOPEDIA OF COMPUTATIONAL MECHANICS

where the stability factor
� ������� / � is defined by

� � ����� / � � � �
� 0 �2 �
	 � 0 % 	 � (6)

Maximizing over / with 0 /10 � � , we obtain a posteriori control of the Euclidean
norm of . ����� :

0�. ����� 0 � � � ����� 

���� � � � � 0�� � 	 � � � 
 � �
	 � � � � � 0 � (7)

with corresponding stability factor
� � ��� � � 

�������� � � � � ����� / � � (8)

Equivalently, we can write this estimate as

0�. ����� 0 � � � ����� 

���
� � � � � 0 � �
	 ��� � � �
	 � � 0 � (9)

where
� � 	 � � � � � 	 � 
 	 � � � for

	 � �
	 � � � � 	 � 
 , and
� � � �
	 � � � � � �
	 � � 
� �
	 � � � � ��� � � � � � � �
	 � � � corresponds to the residual obtained by inserting the

discrete solution into the differential equation (noting that
�� �
	 � � �

on each time
interval).

We can express the a posteriori error estimate (5) alternatively in the form

	 . �����+' / 	 � ����
� �
	 �	� � � �
	 � � 0 �2 � 	 � 0 % 	 � (10)

where now the dual solution enters as a weight in a time integral involving the residual� � � � 	 � � . Maximizing over
� �
	 �	� � � �
	 � � and integrating 0 �2 �
	 � 0 we obtain the original

estimate (9).
We now define the IVP (1) to be parabolic if (up to possibly logarithmic factors)

the stability factor
� � ��� �

is of unit size for all
�

. We shall see that another typical
feature of a parabolic problem is that the stability factor

� � ����� / � varies little with the
specific choice of normalized initial data / , which means that to compute

� � ����� �

��� ����� � � � � ��� � / � , we may drastically restrict the variation / and solve the dual
problem with only a few different initial data.

If we perturb � to 
� in the discretization with ��� � 	 � , for instance by approximating
� � � � 	 � � by a polynomial connecting to quadrature in computing �
�  � � � �
	 � �;% 	 , we
obtain an additional contribution to the a posteriori error estimate of the form

��� ����� / � 

���� ��� ��� 0 � � � �
	 � � 
 
� � � �
	 � � 0 �

or
� � ����� 

��� � ��� ��� 0 � � � � 	 � � 
 
� � � �
	 � � 0 , with corresponding stability factors defined

by
������� � / � � � �

� 0 2 �
	 � 0 % 	 �
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where
2

solves the backward dual problem with
2 ����� � / , and

� ����� � �

��� ����� � � ��� ����� / � . In a parabolic problem we may have
� ������� � �

, although��������� � � for all
�  �

. We note that
� � �����

involves the time derivative
�2
, while���������

involves the dual
2

itself.
Note that in ��� � � � there is no need for quadrature in the present case of

an autonomous IVP, since then � � � �
	 � � is piecewise constant. However, in a
corresponding non-autonomous problem of the form �� � � � � �
	 � � 	 � with � depending
explicitly on

	
, quadrature may be needed also for ��� ��� � .

The basic parabolic or stiff problem is a linear constant coefficient IVP of the form�� � 	 � � � � � �
	 � � 	 ��� 
 3 � �
	 � � � � 	 � for
� 
 	 � �

, � ����� � � � , with 3 a constant
positive semidefinite symmetric matrix with eigenvalues ranging from small to large
positive. In this case, � 7 � � � � 
 3 with eigenvalues

��� �
and corresponding solution

components varying on time scales � � � ranging from very long (slow variation/decay
if
�

is small positive) to very short (fast variation/decay if
�

is large positive). A
solution to a typical stiff problem thus has a range of time-scales varying from slow
to fast. In this case the dual problem takes the form


 �2 �
	 � � 
 3 2 � 	 � for
� ��	 
 �

,
and the strong stability estimate states that, independent of the distribution of the
eigenvalues

��� �
of 3 , we have� �

�
���6
 	 � 0 �2 �
	 � 0	� % 	 � �
 �

where we assume that 0 2 ����� 0 � � . From this we may derive that for
��
�� 
 �

,
� � ��

� 0 �2 � 	 � 0 % 	�� �



������� ��� ��� � � ��� � �

which up to a logarithmic factor states that
� � ����� � � for all

�  �
. Further, the

corresponding (weak) stability estimate states that 0 2 �
	 � 0 � 0*/10 , from which directly
follows that that

� � ����� ���
as indicated. The (simple) proofs of the stability estimates

are given below.
The stability factors

� � ����� / � and
� � ����� / � may be approximately computed a

posteriori by replacing 3 �
	 � in (4) with � 7 � � �
	 � � , assuming � � 	 � is sufficiently close
to � �
	 � for all

	
, and solving the corresponding backward dual problem numerically

(e.g. using the ��� � � � method). We may similarly compute approximations of
� � �����

and
��� �����

by varying / . By computing the stability factors we get concrete evidence
of the parabolicity of the underlying problem, which may be difficult (or impossible)
to assess analytically a priori. Of course, there is also a gradual degeneracy of the
parabolicity as the stability factor

� � ��� �
increases.

A special feature of many parabolic problems is that
� � ��� � / � varies little with the

specific choice of initial data, which makes it possible to compute
� � �����

by solving
the dual problem a few times with different initial data and taking the maximum. We
give a simple motivation for this below.

The a posteriori error estimate (7) can be used as the basis for an adaptive time-
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8 ENCYCLOPEDIA OF COMPUTATIONAL MECHANICS

stepping algorithm, controlling the size of the Galerkin discretization error, of the
form: For � � � � 
 � ����� ��� , choose

� �
so that

0�� � 	�� � � 
 � �
	�� � � � � 0�� �����
� � ����� �

for some tolerance �����  �
. Recalling that the characteristic feature of a parabolic

problem is that
� � ����� � � for all

�� �
, this means that the time step control related to

the Galerkin discretization error will be independent of the length of the time interval
of the simulation. This means that long-time integration without error accumulation is
possible, which may be interpreted as some kind of ”parabolic loss of memory”. We
note again that this concerns the Galerkin error only, which has this special feature
as a consequence of the Galerkin orthogonality. However, the quadrature error may
accumulate in time typically at a linear rate, and so a long-time simulation may require
more accurate quadrature than a simulation over a shorter interval.

4. Examples of stiff IVPs

We have stated above that a parabolic or stiff initial value problem �� �
	 � ��� � � �
	 � �
for

� 
 	�� �
, � � � � � � � , may be characterized by the fact that the stability

factor
� � �����

is of moderate (unit) size independent of
�  �

, while the norm of
the linearized operator � 7 � � � 	 � � may be large, corresponding to the presence of large
negative eigenvalues. Such initial value problems are common in models of chemical
reactions, with reactions on a range of time scales varying from slow to fast. Typical
solutions include so-called transients where the fast reactions make the solution
change quickly over a short (initial) time interval, after which the fast reactions are
”burned out” and the slow reactions make the solution change on a longer time scale.
We now consider a set of test problems which we solve by the adaptive ��� ����� method,
including computation of the strong stability factor

� � �����
.

4.1. Model problem:
�� � 3 � �
	 � ��� �
	 � with 3 positive symmetric semidefinite

As indicated, the basic example of a parabolic IVP takes the form �� � 3 � �
	 � � � �
	 �
for

� 
 	 � �
, � ����� � � � , where 3 is a positive semidefinite square matrix. We

consider here the case

3��
�				



 
 � � 
 
 � � � � � � � � � � � � � � �

 � � � 
 
 � 
�� 
 � ��� � � ��� � � � �� � � � 
 � ��� 
 
 � � 
 
 � ��� � � � �� � � � � � ��� 
 � ��� 
 
 � 
�� 
 � � �� � � � � � � � � � � � 
 � � � 
 
 � � 


������
�

with eigenvalues
��� ��
 
 � � ��
 � ��
 � ��� ��
 �&� ��� � . In Figure 1, we plot the solution, a dual

solution and the stability factor
� ����� � / � as a function of

�
for a collection of different

initial values
2 ��� � � / . We note that the variation with / is rather small: about a

factor 4.
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Figure 1. Symmetric IVP: solution, dual solution and stability factors ��� ������� � .
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10 ENCYCLOPEDIA OF COMPUTATIONAL MECHANICS

4.2. The Akzo-Nobel system of chemical reactions

We next consider the so-called Akzo-Nobel problem, which is a test problem for
solvers of stiff ODEs modeling chemical reactions: Find the concentrations � � 	 � �� � � � 	 � � ����� � ��� �
	 � � such that for

��
�	�� �
,�������� �������

�� � � 
 
�� � ��� � 
 �
	 
 ��� ���
� � 
 � ��� � � 
 �
� 
 � � � �

 ��� ��� 	 � � � 
 � � ����	 ��� � � 
 � � ��� 	 
 
�� � ��� 
 � � � 
 � 	 ��� 
 ����� � 
 � 
 �

(11)

where � � �&� � ' � � � � � � � � 
 � � � and the reaction rates are given by � � � � 
&� � ' � � ��� � � ,� � � � ��� 
 ' � 	 � � , �
	 � � ��� 
 � � 
 � 
 ' � � � 
 , �
� � � � � � ' � � � �� and �

 � � � 
 
 ' � �� � � � ,with the initial condition � � � ��� � 
 � � � � � � � ��
 � � � � ��� � � � � ��� � � . In Figure 2 we plot
the solution, a dual solution and the stability factor

� � �����
as a function of

�
. We

note the initial transients in the concentrations and their long-time very slow variation
after the active phase of reaction. We also note that

� � �����
initially grows to about �&���

and then falls back to a value around 
 . This is a typical behavior for reactive systems,
where momentarily during the active phase of reaction the perturbation growth may be
considerable, while over long-time the memory of that phase fades. On the other hand���������

grows consistently, which shows that fading memory requires some mean-value
to be zero (Galerkin orthogonality). We present below more examples of this nature
exhibiting features of parabolicity.

5. A non-stiff IVP: the Lorenz system

The Lorenz system presented 1972 by the meteorologist Edward Lorenz:����� ����
�� � � 
 � � � � � � � � �

�
��
� � 
 
 � � 
 � � 
 � � � 	 ��� 	 � 
��	 � 	 � � � � � �� ��� � � � � �

(12)

is an example of an IVP with exponentially growing stability factors reflecting a
strong sensitivity to perturbations. Lorenz chose the model to illustrate perturbation
sensitivity in meteorological models, making forecasts of daily weather virtually
impossible over a period of more than a week. For the Lorenz system accurate
numerical solution using double precision beyond 50 units of time seems impossible.
Evidently, the Lorenz system is not parabolic.

The system (12) has three equilibrium points �� with � � �� � � �
: �� � ��� � � � � �

and �� � ��� � � 
 ��� � � 
 � 
 � � . The equilibrium point �� � ����� ��� � �
is unstable with

the corresponding Jacobian � 7 � �� � having one positive (unstable) eigenvalue and two
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Figure 2. The Akzo-Nobel problem: solution, dual solution, stability factor ��� ����� � � , and stability factor ��� ����� � � .
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12 ENCYCLOPEDIA OF COMPUTATIONAL MECHANICS

negative (stable) eigenvalues. The equilibrium points
��� � � 
 ��� � � 
 � 
�� � are slightly

unstable with the corresponding Jacobians having one negative (stable) eigenvalue
and two eigenvalues with very small positive real part (slightly unstable) and also an
imaginary part. More precisely, the eigenvalues at the two non-zero equilibrium points
are

� � � 
 � �&� � and
�
� � 	 � � � ����� � � � � ��� .

In Figure 3, we present two views of a solution � �
	 � that starts at � ����� � � � � ��� � �
computed to time � � with an error tolerance of

����� � � � � using an adaptive IVP-
solver of the form presented above. The plotted trajectory is typical: it is kicked away
from the unstable point

� ��� ��� ���
and moves towards one of the non-zero equilibrium

points. It then slowly orbits away from that point and at some time decides to cross
over towards the other non-zero equilibrium point, again slowly orbiting away from
that point and coming back again, orbiting out, crossing over, and so on. This pattern
of some orbits around one non-zero equilibrium point followed by a transition to
the other non-zero equilibrium point is repeated with a seemingly random number
of revolutions around each non-zero equilibrium point.
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Figure 3. Two views of a numerical trajectory of the Lorenz system over the time interval � � ��� ��	 .

In Figure 4, we plot the size of the stability factor
� � �����

connected to quadrature
errors as function of final time

�
. We notice that the stability factor takes an

exponential leap every time the trajectory flips, while the growth is slower when the
trajectory orbits one of the non-zero equilibrium points. The stability factor grows on
the average as � � � � 	 which sets the effective time limit of accurate computation to� � � � computing in double precision with say 15 accurate digits.

6. Explicit time-stepping for stiff IVPs

The ��� ����� method for the IVP �� � � � � � takes the form
� �
	�� � 
 � � � � � �
	�� � � ��� �
	�� � � � �
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Figure 4. The growth of the stability factor ��� ��� � for the Lorenz problem.

At each time step we have to solve an equation of the form
)�
 � � � � ) � � � �
	�� � � �

with � � 	�� � � � given. To this end we may try a damped fixed point iteration in the form)������ � � 	 
	� � )
��� � � � � � � � � 	�� � � � � � � � � )���� � � � � � �
with

�
some suitable matrix (or constant in the simplest case). Choosing

� � 	 with
only one iteration corresponds to the explicit Euler method. Convergence of the fixed
point iteration requires that

0 	 
	� � � � � � 7 � ) � 0 
 � �
for relevant values of

)
, which could force

�
to be small (e.g. in the stiff case with

� 7 � ) � having large negative eigenvalues) and result in slow convergence. A simple
choice is to take

�
to be a diagonal matrix with

�
��� � � � � � 
 � � � 7��� �!) ��� � � � � � ,
corresponding to a diagonal approximation of Newton’s method, with hope that the
number of iterations will be small.

We just learned that explicit time-stepping for stiff problems requires small time
steps outside transients and thus may be inefficient. We shall now indicate a way to
get around this limitation through a process of stabilization, where a large time step
is accompanied by a couple of small time steps. The resulting method has similarities
with the control system of a modern (unstable) jet fighter like the Swedish JAS Gripen,
the flight of which is controlled by quick small flaps of a pair of small extra wings
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14 ENCYCLOPEDIA OF COMPUTATIONAL MECHANICS

ahead of the main wings, or balancing a stick vertically on the finger tips if we want a
more domestic application.

We shall now explain the basic (simple) idea of the stabilization and present some
examples, as illustrations of fundamental aspects of adaptive IVP-solvers and stiff
problems. Thus to start with, suppose we apply the explicit Euler method to the scalar
problem

�� �
	 � � � � � 	 � � �
for

��
 	 �����
� � � � � ��� � (13)

with
�  �

taking first a large time step � satisfying � �  
 and then � small time
steps

�
satisfying

� � 
 
 , to get the method

� �
	 � � � � � 
 � � � � � � 
 � � � � � 	 � � � � � (14)

altogether corresponding to a time step of size
� � ��� ��� � . Here � gives a large

unstable time step with
	 � 
 � � 	  � and

�
is a small time step with

	 � 
 � � 	 
 � .
Defining the polynomial function

� � � � � � � 
�� � � � � � 
 � � , where
� ���� , we can

write the method (14) in the form

� � 	�� � � ��� � � � � �
	�� � � � �
For stability, we need

	 ��� � � � 	 � � � that is
	 � 
 � � 	 � � � � 
 � � � � �

or
� � � � � � � � 
 � �
������ 	 � 
 � � 	 � 
 ������� � � � � (15)

with 	�� � � � � � 
 for definiteness.
We conclude that � may be quite small even if � � is large, since the logarithm

grows so slowly, and then only a small fraction of the total time (a small fraction of
the time interval � ��� ��
 ) will be spent on stabilizing time-stepping with the small time
steps

�
.

To measure the efficiency gain we introduce
� � � �
�
� � � � � � � � � � � � � � �

which is the number of time steps per unit time interval with the stabilized explicit
Euler method. By (15) we have

� � � � 
 � � � � � � �
� � � � � � � � ��� � � 
 �

� � � � � � �
� � � 
 � � (16)

for � �
� � . On the other hand, the number of time steps per unit time interval for
the standard explicit Euler method is

� � � � � 
 � (17)
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with the maximum stable time step
� � � 
 � � .

The cost reduction factor using the stabilized explicit Euler method would thus be
�
� � �


 � � ��� � � �
� �

�
which can be quite significant for large values of � � .

We now present some examples using an adaptive � � � � � IVP-solver, where explicit
fixed point iteration (using only a couple of iterations) on each time interval is
combined with stabilizing small time steps, as described for the explicit Euler method.
In all problems we note the initial transient, where the solution components change
quickly, and the oscillating nature of the time step sequence outside the transient, with
large time steps followed by some small stabilizing time steps.

Example. We apply the indicated method to the scalar problem (13) with � � � � and� � � � � � , and display the result in Figure 5. The cost reduction factor in comparison
to a standard explicit method is large:

� � � � � � � � � � .
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Figure 5. Solution and time step sequence for eq. (13), � � ������� � � � � .

	
Example. We now consider the 
�
 
 diagonal system

�� �
	 � �
� � � � �
� � � � ��
 � �
	 � � �

for
��
 	 � � �

� � � � � � � �
(18)
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16 ENCYCLOPEDIA OF COMPUTATIONAL MECHANICS

with � � � � � � � � . There are now two eigenmodes with large eigenvalues that need to
be stabilized. The cost reduction factor is

� � � � � � � � � 
 .
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Figure 6. Solution and time step sequence for eq. (18), � � ������� � � ��� .

	
Example. We next consider the so-called HIRES problem (“High Irradiance
RESponse”) from plant physiology which consists of the following eight equations:������������ �����������

�� � � 
 � � � � � � � � � 
 � � � � 
&� � 
 � 	 � � � � � � � ���
� � � � � � � � 
 
&� � � � � ��� 	 � 
 � � � � � � 	 � � � 
 � � � � � � � � � � 
 ��� � � 
&� � 
 � � � � � � � � 	 
 � � ��
 � � ��� 
 � 
 � � � 
 � � 
 � � � 
 � � � � � � 
 � ��� ��� � � 
 
 
 � � � � � � � � � � ��� � � � � � � � � 
 
 � � 
 � � � � � � ��� ��� ��� � � 
 
 � � � ��� � � 
 � � 
 � � � ��� � � 
 
 
 � � � ��� � � � � � 
 � � � �

(19)

together with the initial condition � � � � � � ��� � � � � ��� ��� ��� � � � � � � � � � . We present the
solution and the time step sequence in Figure 7. The cost is now

� � 
 and the cost
reduction factor is

� � � � � � � ��� . 	
Example. We consider again the Akzo-Nobel problem from above, integrating over
the interval � � � � 
 �#
 . We plot the solution and the time step sequence in Figure 8.
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Figure 7. Solution and time step sequence for eq. (19), � � ��� ��� � � � .

Allowing a maximum time step of
�����	� � � (chosen arbitrarily), the cost is

� � 

and the cost reduction factor is

� � � � � � � � . The actual gain in a specific situation is
determined by the quotient between the large time steps and the small damping time
steps, as well as the number of small damping steps that are needed. In this case the
number of small damping steps is small, but the large time steps are not very large
compared to the small damping steps. The gain is thus determined both by the stiff
nature of the problem and the tolerance (or the size of the maximum allowed time
step). 	
Example. We consider now Van der Pol’s equation:
� ��� � � � 
 � � �� � � � ���
which we write as 
 �� � � �

�
�

��
� � 
 � � � � � 
 � � � �


 � � � (20)

We take � � � � � � and solve on the interval � ��� � � 
 with initial condition � � � � 
 � � � .
The cost is now

� � � 
 � and the cost reduction factor is
� � � � � � � � � . 	
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Figure 8. Solution and time step sequence for the Akzo-Nobel problem, � � � � ��� ��� .
7. Strong stability estimates for an abstract parabolic model problem

We consider an abstract parabolic model problem of the form: Find � � 	 � ��� such
that � �� � 	 � � 3�� � 	 � � �

for
� 
�	 � ���

� � � � ��� � � (21)

where � is a vector space with inner product
��' ��' �

and norm 0 ' 0 , 3 is a positive
semi-definite symmetric linear operator defined on a subspace of � , i.e. 3 is a linear
transformation satisfying

� 3�� ��) � � � � � 3 ) � and
� 3 )���) � � �

for all
)

and � in the
domain of definition of 3 , and � � is the initial data. In the model problem of Section
3, � � ��� and 3 is a positive semi-definite symmetric

% 
 % matrix. In the case
of the heat equation, considered in the next section, � �	� � ��
 � and


 3 �	� (the
Laplacian) with homogeneous Dirichlet boundary conditions.

We now state and prove the basic strong stability estimates for the parabolic model
problem (21), noting that the constants on the right-hand sides of the estimates are
independent of the positive semi-definite symmetric operator 3 . It should be noted
that the dual backward problem of (21),


 �2 ��3 2 � �
, takes the form (21) with� �
	 � � 2 ���6
 	 �

.
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Figure 9. Solution and time step sequence for eq. (20), � � ��� ��� ����� .

Lemma 7.1. The solution � of (21) satisfies for
�� �

,

0 � ����� 0 � ��

���
�
� 3�� �
	 � � � �
	 � �;% 	 � 0 � � 0 � � (22)

� �
�
	 0�3�� � 	 � 0	� % 	 � �
 0 � � 0	� � (23)

0�3�� ����� 0 � �� 
 � 0 � � 0 � (24)

Proof. Taking the inner product of �� � 	 � � 3�� � 	 � � �
with � �
	 � , we obtain

�


%% 	 0 � � 	 � 0 � � � 3�� � 	 � � � �
	 � � � ���

from which (22) follows.
Next, taking the inner product of �� �
	 � � 3�� �
	 � � �

with
	 3�� �
	 � and using the fact

that � �� � 	 � � 	 3�� � 	 � � � �


%% 	 �
	 � 3 � �
	 � � � � 	 � � � 
 �



� 3�� � 	 � � � �
	 � � �

since 3 is symmetric, we find after integration that

�


� � 3�� ����� � � ����� � � � �

�
	 0*3 � �
	 � 0 � % 	 � �



� �
�
� 3�� � 	 � � � �
	 � �&% 	 �
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from which (23) follows using (22) and the fact that
� 3�� � � � � �

.
Finally, taking the inner product in with

	 � 3 � � � 	 � , we obtain

�


%% 	 � 	 � 0�3�� � 	 � 0 ��� � 	 � � 3 � � �
	 � � 3 � �
	 � � � 	 0*3 � �
	 � 0 � �

from which (24) follows after integration and using (23).

The estimates (22)-(24) express in somewhat different ways “parabolic smoothing”;
in particular (24) expresses that that the norm of the time derivative �� �
	 � , or
equivalently 3�� �
	 � , decreases (increases) like � � 	 as

	
increases (decreases), which

means that the solution becomes smoother with increasing time. We note a close
relation between the two integrals

	 � � � �
� 0 �� �
	 � 0 % 	 � � �

� 0�3�� � 	 � 0 % 	 �
and

	
� �

� � �
�
	 0 �� �
	 � 0	� % 	�� ��� � � � � �

�
	 0*3 � �
	 � 0	� % 	�� ��� � �

both measuring strong stability of (21), with
	 � through Cauchy’s inequality being

bounded by
	
� up to a logarithm:

� �

 0*3 � �
	 � 0 % 	 �

� � �



� 	 % 	�� � � � � � �


	 0�3�� � 	 � 0 � % 	�� � � � � � � � � ��� ��� � � ��� � 	 � �

Remark 7.1. We now give an argument indicating that for the parabolic model
problem (21), the stability factor

� ������� / � varies little with the specific choice of data/ . We do this by noting that the quantity
� � � � � defined by

� � � � � �
� � �
�
	 0*3�� �
	 � 0 � % 	 � � � � �

where � � 	 � solves (21), varies little with the choice of initial data � � . To see this,
we let ��� �
	 be an orthonormal basis for � consisting of eigenfunctions of 3 with
corresponding eigenvalues � ��� 	 , which allows us to express the solution � �
	 � in the
form 
 ��� ��� ��
 ��� 	 � � �� � � with � �� � � � � � � � � . We may then write

� � � � � � � � � � �
�
	 � � � �� � � �� � � � ������
 
 ��� 	 �;% 	 � � � � � �� � � � �� 	 � �� � ��� ��
 
 ��� 	 �;% 	 �

Now, the factor � �
�
	 � �� � ��� ��
 
 � � 	 �;% 	 � �������

�
9 � ��� ��
 
 9 �;%<9
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takes on almost the same value ���� 9 � ������
 
 9��&%�9 � � � 
 for all � as soon as
� � � � � ,

that is when
� �

is not very small (since
�

is typically large). If we randomly choose
the initial data � � , the chance of hitting an eigenfunction corresponding to a very
small eigenvalue, must be very small. We conclude that

� � � � � varies little with � � .
As just indicated,

� � � � � is related to the integral � �� 0 �� �
	 � 0 % 	 , which is the analog
of the stability factor

� � ��� � / � for the dual problem. The bottom line is that
� ����� � / �

varies little with the choice of / .

Remark 7.2. The solution operator ��� � 	 � 	 ��� � of (21), given by � �
	 � � � � � �
	 � , is
said to define a uniformly bounded and analytic semigroup if there is a constant

�
such that the following estimates hold:

0 � � 	 � 0 � � 0 � � 0 �0�3�� � 	 � 0 � � � 0 � � 0 � (25)

for
	  �

. We see that that this definition directly couples to the stability estimates of
Lemma (7.1), in which case the constant

�
is of of unit size.

8. Adaptive space-time Galerkin methods for the heat equation

We now move on to space-time Galerkin finite element methods for the model
parabolic partial differential equation in the form of the heat equation: Find � �
 
 	 � � such that ��� ��

�� 
 � � ��� in

 
 	� � �

on � 
 	 �� ��' � ��� � � � in

 � (26)

where



is a bounded domain in � � with boundary � , on which we have posed
homogeneous Dirichlet boundary conditions, � � is a given initial temperature, � a
heat source and

	 � � ��� ��

a given time interval.

For the discretization of the heat equation in space and time, we use the � � ��� � ��� � 	 �
method based on a tensor product space-time discretization with continuous piecewise
polynomial approximation of degree

� � � in space and discontinuous piecewise
polynomial approximation of degree 	 � �

in time, giving a method which is accurate
of order

� � � in space and of order 
�	 � � in time. The discontinuous Galerkin � � � 	 �
method used for the time discretization reduces to the subdiagonal Padé method for
homogeneous constant coefficient problems and in general, together with quadrature
for the evaluation of the integral in time, corresponds to an implicit Runge-Kutta
method. For the discretization in space we use the standard conforming continuous
Galerkin � � ��� � method. The � � � � � � � � 	 � method has maximal flexibility and allows
the space and time steps to vary in both space and time. We design and analyze reliable
and efficient adaptive algorithms for global error control in � � � � � � 
 � � (maximum in
time and � � in space), with possible extensions to �
	 � ��� ��
 � � with � � � ��9���


.
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The ��� ��� � ��� � 	 � method is based on a partition in time
� � 	 � 
 	 � 
'�'�' 
�	�� � �

of the interval
� ��� ��


into time intervals
	 � � � 	�� � � � 	���
 of length� � � 	�� 
 	�� � � with associated finite element spaces

� ��� � �� � 
 � consisting of
piecewise polynomials of degree

�
on a triangulation � � � � � 	

of



into elements
� with local mesh size given by a function � � � � � . We define

� � � � ) � ) � �
�� � � 	

� ) � �;) � � � � 	 �
and � � � ) � ) 	 �  � � � � � � � � � � ��� 	 �
We thus define

�
to be the set of functions

) � 
 
 	 � � such that the restriction
of
) � � � 	 � to each time interval

	 �
is polynomial in

	
with coefficients in

� �
. The

� � � � � � � � 	 � method for (26) now reads: Find � � � such that for � � � � 
 � ����� ��� ,�
�  � � �� ��) � � ��� � ��� ) � 	+% 	 � � � � 
 � � � ��)��� � � � �

�
�  � � ��) �;% 		� ) � � � � (27)

where � � 
 � � � � 	 �� � 
 � �
	 �� � , � � � � �� � ��
 
 �
� ����� "�� � �
	�� � 9 �
, � �� � � � , and��' ��' �

denotes the � � � 
 � or � � � � 
 � 
 � inner product. Note that we allow the space
discretizations to change with time from one space-time slab


 
 	 � to the next.
For 	�� �

the scheme (27) reduces to the following variant of the backward Euler
scheme:

� � 
 � � � � � � ��� � � � � � � �
�  �

� � % 	 � (28)

where � � � � 	 �  , � � � � � � � �
is the discrete Laplacian on

� �
defined by��
 � � )�� � � � ��� )���� � � for all � � � � , and � � is the � � -projection onto
� �

defined
by

� � � ) � � � � �!)�� � � for all � � � � .
Alternatively, (28) may be written (with � � �

) in matrix form as
� ����� � � � 3 ����� � � � 
��� � � �

where � � and 3 � are mass and stiffness matrices related to a nodal basis for
� �

,
���

is the corresponding vector of nodal values for � � , and 
��� � � is the vector of nodal
values for � � � � � � . Evidently, we have to solve a system of equations with system
matrix

� � � � � 3 � to compute
� �

.

Remark 8.1. Note that in the discretization (27), the space and time steps may vary
in time and that the space discretization may be variable also in space, whereas the
time steps

� �
are kept constant in space. Clearly, optimal mesh design requires the

time steps to be variable also in space. Now, it is easy to extend the method (27) to
admit time steps which are variable in space simply by defining

� � � � ) � ) 	 �  � � � 	 � �
	 ��) � �;) � � � � 	 �
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where now the coefficients 	 � � 	 � are piecewise polynomial of degree 	 in
	

without
continuity requirements, on partitions of

	 �
which may vary with � . The discrete

functions may now be discontinuous in time also inside the space-time slab

 
 	 � , and

the degree 	 may vary over components and subintervals. The � � ��� � ��� � 	 � method
again takes the form (27), with the term

� � � 
!� � � , ) �� � � � replaced by a sum over all
jumps in time of � in


 
 � 	�� � � � 	�� � . Adaptive methods in this generality, so-called
multi-adaptive methods, are proposed and analyzed in detail for systems of ordinary
differential equations in (Logg, 2001a, Logg, 2001b).

9. A priori and a posteriori error estimates for the heat equation

In this section we state a priori and a posteriori error estimates for the � � � � � ��� � 	 �
method (27) in the case

� � � and 	 � ��� � , and give the proofs below. A couple
of technical assumptions on the space-mesh function � � � � � and time steps

� �
are

needed: We assume that each triangulation � � with associated mesh size � � satisfies,
with � � � � equal to the diameter and � � � � the volume of � � � � ,

	 � � �� � � � � � � � � � � � � � (29)

	 � �
� � � � � � � � � � � � � � � � � � � � � ����� (30)	 � � � � � � 	 � � � � � 
 � (31)

for some positive constants 	 � , 	 � and � . The constant � will be assumed to be small
enough in the a priori error estimates (but not in the a posteriori error estimates). We
further assume that there are positive constants 	
	 , 	�� and � such that for all � we have� � � 	�	 � � � � � (32)

	 � � � � � � � � � � � � � � � �
	�� � � � � � � � � 
 � (33)

�� �� � � � � or
� � � � � � � � (34)

where �� � � 

���������	 � � � � � . Furthermore, we assume for simplicity that



is convex,
so that the following elliptic regularity estimate holds: 0�
 � ) 0 � 0�� ) 0 for all
functions

)
vanishing on � . Here

� 
 � ) � � � 
 � � ) �� � � , where
) � � � is the second partial

derivative of
)

with respect to � � and � � , and 0 ' 0 denotes the � � ��
 � -norm. With these
assumptions, we have the following a priori error estimates:

Theorem 9.1. If � and � are sufficiently small, then there is a constant � only
depending on the constants 	 � � � � � � 
 � � � 
 � such that for � the solution of (26)
and � that of (27), we have for

� � � and 	�� � � � ,
0 � 
 ��0 �  � � � � 

���� � � � � � � � � � � � � � � � ����� ��� � (35)

and for 	�� � ,
0 � � 	 � � 
 � �
	 � � 0 � � � � 

������ � � � � � � � � � � � � � � ����� ��� � (36)
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where � � � � � � � �
	���� � � � � � � � � � , � � � � � � � 
 
�� � � � � � � �� 0 � � � �� 0 ��� � 0 � �� 
 � � 0 ��� ,

	 � ��� � � 
 with � � � � � �� , � � � �� � 
� , � � 	 �� � � 
� and 0 � 0 � � � 

��� � � � � 0 � �
	 � 0 �
These estimates state that the discontinuous Galerkin method (27) is of order 	 � �
globally in time and of order 
�	 � � at the discrete time levels

	 �
for 	 � � � � ,

and is second order in space. In particular, the estimate (35) is optimal compared
to interpolation with piecewise polynomials of order 	 � ��� � in time and piecewise
linears in space, up to the logarithmic factor � � . The third order accuracy in time at
the discrete time levels for 	 � � reflects a superconvergence feature of the � � � 	 �
method.

The a posteriori error estimates for (27) take the form:

Theorem 9.2. If � is the solution of (26) and � that of (27) with
� � � , then we have

for 	�� �
, 0 � � 	 � � 
 � �
	 � � 0 � 

������ � � ��� � � � � � � � � � � ����� ��� � (37)

and for 	�� � ,
0 � � 	 � � 
 � �
	 � � 0 � 

������ � � ��� � � � � � � � � � � ����� ��� � (38)

where

� � � � � � � � � 0 � �� � � � � 0 � � � � � 0 � �� � � 
 � � � � � � 0�� � � 	�0 � � � � � � � � 0 � � �
� � �

� � � � � � 0 � �� � � � � 0 � � � � � 0 � �� � � 
 � � � � � � 0�� � � �<0 � 	� � �
�
� � � 0 � � �

and � � � � � 	 � 	 � 
 �� � �� � � � � � � 	 � 	 � 	 � � 
 � � � 	 � � � �� �
�
� � � � 	 � � � 	 � 	 � � � � � � 
 � � � 	 � � �� �

on

 
 	 � . A star indicates that the corresponding term is present only if

� � � �
is not a subset of

� � . Further, � � � � � � � where the � � are constants related to
approximation by piecewise constant or linear functions. Finally, 
 �� � on a space
element � � � � is the modulus of the maximal jump in normal derivative of �
across an edge of � divided by the diameter of � .

Remark 9.1. The term
	 � 	 in

� � � � may a be replaced by
	 � �� 
 � � 	 . Similarly, the

term
	 � 	 in � � � may be replaced with

� 	 �� 	 and
	 
� 	 in � �

�
� � � by

� 	 � 
� 	 .
The a posteriori error estimates are sharp in the sense that the quantities on the right-
hand sides can be bounded by the corresponding right-hand sides in the (optimal) a
priori error estimates. Therefore, the a posteriori error estimates may be used as a basis
for efficient adaptive algorithms, as we indicate below.
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10. Adaptive methods/algorithms

An adaptive method for the heat equation addresses the following problem: For a given
tolerance

�����  �
find a discretization in space and time � � � � � � � � � � ��� 	 � � � , such

that
� � � 0 � � 	�� �(
 � � 	�� � 0 � �����

for � � � � 
 � ����� �� 
 � � � � is optimal, in the sense that the number of degrees of freedom is minimal �
(39)

We approach this problem using the a posteriori estimates (37) and (38) in an adaptive
method of the form: Find � � � such that for � � � � 
 � ����� �

��� � � � � � ����� �
if 	�� � �

� �
� � � � � ����� �

if 	�� � �
the number of degrees of freedom of � � � is minimal �

(40)

To solve this problem, we use an adaptive algorithm for choosing � � � based on
equidistribution of the form: For each � � � � 
 � ����� , with � � � a given initial space
mesh and

� � � an initial time step, determine triangulations � � � with
� �

elements of
size � � � � � � , time steps

� � �
, and corresponding approximate solutions � � � defined on	 � � � �
	 � � � � 	 � � � � � � � �

, such that for � � ��� � � ����� � 
� 
 � ,
� � 

���� � �  � 0 � �� � � � � � � � � � � 0���� � � �
� � � 0 � �� � � � � � � 
 � � � � � � � � � 0 �� � � � � � � �����
�� � � � � � � � � �
� � � � � � � 	�0 � � � � � � � � 0 �  � � �����



�

if 	�� ���
� 	� � � � � � �<0 � � � � � � � � 0 �  � � �����



�

if 	�� � �

(41)

that is we determine iteratively each new time step
� � � � �	��

and triangulation
� � � � �	�� . The number of trials 
� is the smallest integer � such that (40) holds with� replaced by � � � , and the parameter

� � � is chosen so that 
� is small.

11. Reliability and efficiency.

By the a posteriori estimates (37) and (38) it follows that the adaptive method (40)
is reliable in the sense that if (40) holds, then the error control (39) is guaranteed.
The efficiency of (40) follows from the fact that the right-hand sides of the a posteriori
error estimates may be bounded by the corresponding right-hand sides in the (optimal)
a priori error estimates.

Encyclopedia of Computational Mechanics. Edited by Erwin Stein, René de Borst and Thomas J.R. Hughes.
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12. Strong stability estimates for the heat equation

We now state the fundamental strong stability results for the continuous and discrete
problems to be used in the proofs of the a priori and a posteriori error estimates.
Analogous to in Section 7, we consider the problem �� 
 � � � �

, where � � 	 � �2 ��� 
 	 �
is the backward dual solution with time reversed.

The proof of Lemma 12.1 is similar to that of Lemma 7.1, multiplying by � � 	 � ,
 	 � � �
	 � and
	 � � � � �
	 � . The proof of Lemma 12.2 is also analogous: For 	 � �

,
we multiply (28) by � � and

	 � 3 � � � , noting that if
� � � � � � �

(corresponding
to coarsening in the time direction of the primal problem �� 
 � � � � ), then
� � � � � � ��� � � � , � 3 � � � � � � � � � � � � � � 3 � � � � � � and

� 3 � � � � � � � � � � � �� 3 � � � � � � � � � � � � � . The proof for 	�� � i similar.

Lemma 12.1. Let � be the solution of (26) with � � �
. Then for

�  �
,

0 � ����� 0 � ��

� �
� 0 � � � 	 � 0 � % 	 � 0 � � 0	� � (42)

� �
�

� �<0 �� � 	 � 0 � � 0�� � �
	 � 0	� 	+% 	 � �

 0 � � 0	� � (43)

0 � � ����� 0 � �� 
 � 0 � � 0 � (44)

Lemma 12.2. There is a constant � such that if
� � � � � � �

for � � � � 
 � ����� ��� , and
� is the solution of (27) with � � �

, then for
� � 	 �  �

,

0�� �� 0	� � 

���
� 0 � � 0 � % 	 �

�
���� � 0 � �


 � � � 0	� ��0 � � 0	� � (45)

�
���� �

	 � �
�  �<0 �� 0 � � 0�� � � 0 � 	 % 	 � �

���� �
	 � 0 � � 
 � � � 0	� � � � � ��0 � � 0	� � (46)

and�
���� �

�
�  �;0 �� 0 ��0 � � � 0 	 % 	 � �

���� � 0 � �

 � � � 0 � �

� ����� 	 �� � � � 
 ��� � 0 � � 0 � (47)

13. A priori error estimates for the � � - and elliptic projections

We shall use the following a priori error estimate for the � � -projection � � � � � � 
 � �� �
defined by

� � 
 � � � ��) � � �
for all

) � � �
. This estimate follows from the

fact that � � is very close to the nodal interpolation operator � � into
� �

, defined by
� � � � � at the nodes of � � if � is smooth (and � � � ��� ���� if � � � � � 
 � , where�� is a locally regularized approximation of � ).
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Lemma 13.1. If � is sufficiently small, then there is a positive constant � such that
for all � � � �� ��
 ��� � � ��
 � ,	 � � � � 
 � � � �(
 ��� � ��� � � 
 � � � � � 	 � ��0 � �� � � � � � 0 0�
 � � 0 � (48)
where

� � � � � � 	 � 	 � 
 �� � .

We shall also need the following a priori error estimate for the elliptic projection
� � � � �� � 
 � � � �

defined by� � � � 
 � � � � ��� ) � � � �8) � � � � (49)
Lemma 13.2. If � is sufficiently small, then there is a positive constant � such that
for all � � � � ��
 ��� � �� ��
 � ,

0 � 
 � � � 0 � ��0 � �� 
 � � 0 � (50)

Proof. We shall first prove that with . � � 
 � � � , we have 0*.;0 � ��0 � � � .;0 . For
this purpose, we let

2
be the solution of the continuous dual problem


 � 2 � . in



with
2 � �

on � , and note that by integration by parts, the Galerkin orthogonality
(49), a standard estimate for the interpolation error � 
 � � � , together with elliptic
regularity, we have

0*.;0 � � � . ��
 � 2 � � � � . ��� 2 � � ��� . ��� � 2 
 � � 2 � �� 0 � � � .;0 0 � � �� � � 2 
 � � 2 � 0 � ��0 � � � .;0 0�
 � 2 0 � ��0 � � � .;0 0�.;0 �
which proves the desired estimate. Next to prove that 0 � � � .;0 � ��0 � �� 
 � � 0 , we
note that since �

� � � � � � � � , we have
0 � � � .;0 � 0 � � � � � 
 � � � � 0 ��0 � � � � � � � 
 � � � � 0� ��0 � � � � � 
 � � � � 0 � ��0 � �� 
 � � 0 � �

where we used stability of the elliptic projection �
�

in the form
0 � � � � �&) 0 � ��0 � � � ) 0 � ) � � �� � 
 � �

which is a weighted analog of the basic property of the elliptic projection 0 � � �;) 0 �0 � ) 0 for all
) � � �� � 
 � . For the proof of the weighted analog we need the mesh size

not to vary too quickly, expressed in the assumption that � is small.

14. Proof of the a priori error estimates

In this section we give the proof of the a priori estimates, including (35) and (36). For
simplicity, we shall assume that

� � � � � � � , corresponding to a situation where the
solution gets smoother with increasing time. The proof is naturally divided into the
following steps, indicating the overall structure of the argument:

(a) An error representation formula using duality;
(b) Strong stability of the discrete dual problem;
(c) Choice of interpolant and proof of (35);
(d) Choice of interpolant and proof of (36).
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14.1. An error representation formula using duality

Given a discrete time level
	��  �

, we write the discrete set of equations (27)
determining the discrete solution � � � up to time

	��
in compact form as

3 � � ��) � � � � � ��)<�� � � � � ��) � � � ) � � � (51)

where

3 � � ��) � �
�
���� � � � �� ��) ��� � � � � ��� ) ��� 	 � � � �� ��)<�� � �

�
����
�

� � � 
 � � � ��)<�� � � � �
�!)�� � � � � � �  �!)�� � �;% 	 and 	 � � ��� ��


. The error . � � 
 � satisfies the Galerkin
orthogonality 3 � . ��) � � � � ) � � � (52)

which follows from the fact that (51) is satisfied also by the exact solution � of (26).
Let now the discrete dual solution � � � be defined by

3 � ) � �
� � � ) �� � . ���	�8) � � � (53)

where . � � � � 	 � �-
 � � 	 � � is the error at final time
	 �

, corresponding to control
of the � � ��
 � -norm of . � . We note that � is a discrete � � � � � � � � 	 � -solution of the
continuous dual problem 
 �2 
 � 2 � �

in

 
 � ��� ��� �2 � �

on � 
 � ��� ��� � (54)

with initial data
2 ����� ��. � . This follows from the fact that the bilinear form 3 ��' ��' � ,

after time integration by parts, can also be written as

3 � � ��) � �
�
���� � � � � ��
 �) � � � � � � ��� ) � � 	 � � � ����� �

� � �� ��
 � ) 
 � � � � � �� ��) �� � � (55)

In view of (53) and (52) we have for any
) � � ,

0*. � 0 � � � � � 
 ) �� � . � � � � ) �� 
 � �� � . � �
� � � � 
 ) �� � . � � ��3 �!) 
 � � �

� � � � � 
 ) �� � . ��� ��3 �!) 
 � � �
� �
(56)

Taking here
) � � to be a suitable interpolant of � , we thus obtain a representation of

the error . � in terms of an interpolation error � 
 ) and the discrete solution � of the
associated dual problem, combined through the bilinear form 3 ��' ��' � . To obtain the a
priori error estimates, we estimate below the interpolation error � 
 ) in � � � � � ��
 � �and the time derivative

�
� in � � � � � ��
 � � using discrete strong stability.
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c
 2004 John Wiley & Sons, Ltd.



ADAPTIVE COMPUTATIONAL METHODS FOR PARABOLIC PROBLEMS 29

14.2. Strong stability of the discrete dual problem

We apply Lemma 12.2 to the function � � 	 � � �
��� 
 	 �

, to obtain the strong stability
estimate

0 �
� 	 � 0 � �

�
���� �

�
�  �;0 ��10 � 0�� � � 0 	 % 	 � �

���� � 0 � �

 � 0 � � � � 0*. � 0 � (57)

with � � � � � � � ��� � � � � � � � � � � � .
14.3. Proof of the a priori error estimate (35)

In the error representation we take the interpolant to be
) � �� ��� � � � � on

	 �
, where� �

is the � � � 	 � � -projection onto polynomials of degree 	 on
	 �

, and �
�

is the elliptic
projection defined in Section 13. For 	 � �

, we thus take

�� 	 �  � � � �� �
�  � � � %<9 � (58)

and for 	�� � , we take

�� 	 �  � � � �� �
�  � � � %�9 � ��
 � 	 
 	 � � � 
 � � � 
 �� 	�

�
�  � 9 
 	�� � � 
 � � � 
 � � � � %<9 � (59)

With this choice of interpolant, (56) reduces to

0�. � 0	� � � � � 
 �� �� � . � � � 
 ���� � � � 
 � � � � ��
� �

�
� � ����� �

� � � 
 �� �� � � �

 � � 
 � � �4
 �� �� � � �� � � (60)

where we have used (49), (55) and the fact that
� � � � 
 �� ��) � � � �

for all
) � � � , and

thus in particular for
) � �

� and
) � � � � .

Using Lemma 13.2 and the fact that
� �

is bounded in 0 ' 0 �  , we have

0 � 
 �� 0 �  � 0 � 
�� � � 0 �  � 0 � � � � 
 � � � � 0 �  � �
� 
 
�� � � � � � � �� 0 � � � �� 0 �  � 0 � �� 
 � � 0 �  �� � (61)

where the bound for � 
�� � � follows from the Taylor expansion

� �
	 � � � �
	 � � � � �
�  ��

� 9 �;%<9

� � �
	�� � � � 	+
 	�� � � �� � 	���� � � �
�  �
	+
 9 � 
� �:9��&%�9 �

noting that
� �

is the identity on the polynomial part of � � 	 � .
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From (60) we thus obtain,

0*. � 0 � � � 

������ � � �
� 
 
��� � � � � � �� 0 � � � �� 0 �  � 0 � �� 
 � � 0 �  



 �
0�. � 0 �

�
���� �

�
�  0

�
�10 % 	 �

� � ����� � 0 � �

 � 0 � 0 � �� 0 � �

and conclude in view of (57) that

0*. � 0 � � � � 

���� � � � �
� 
 
 �� � 	 � � � �� 0 � � � �� 0 �  ��0 � �� 
 � � 0 �  
 � (62)

By a local analysis this estimate extends to 0*.;0 ��� , completing the proof of (35).

14.4. Proof of the a priori error estimate (36)

In the error representation formula (56) we now choose
) � � � � � � , where

� �
is the

(Radau) projection onto linear functions on
	 �

, defined by
� �1� � � � � �� � � � � � and

the condition that
� � � � � 
 � � � has mean value zero over

	 �
, that is we take

�1� � � � 	 �  � � � � � � �
	 
 	�� � 
�
��
�
�  � ��� � � 
 � �;%<9 � (63)

With this choice of interpolant, (56) reduces to

0*. � 0 � � � � � 
 � � � � � . � �
� 
 ���� � � � 
 � � � � ��

� � 
 
 ���� � ��� � � � � 
 � � � � � � ��� �
� �

� 
 � � ���� � � � � 
 � � � � � � �

 � � 
 � � � 
 � � � � � � �� � �

(64)
where in the first sum we have used the fact that �

� � 
 � � � � � is orthogonal to
�

�
(which is constant in

	
on
	 �

), and in the second sum we have used (49). For the latter
term, we have

� � � � � � 
 �1� � � � � ��� �
��� � � � � � � � 
 �1� � � � � ��� � �� ���

� ��� � � � � 
 � � � � � � � � 	 
 	�� �
� ��
��� �

so that by our choice of
� � � � � ,

	 ��� � � � � 
 � � � � � � ��� �
��� 	 �

�
�
�
��� � � � � 
 � � � � � � � � 	 
 	�� �
� ��

��� �
�
�� � � 0 � � � � � � 
 � � � � � � 0 �  � �  0 ��10 % 	 � (65)

Using Taylor expansions we easily find that

0 � � � � � � 
 � � � � � � 0 �  � � � �� 0 � � � � � � � �� 0 �  � (66)

Finally, we note that for any � � � � � 
 � � � �� � 
 � we have
��
 � � � � � ��) � � ��� � � � ��� ) � � � � � ��� ) � � ��
 � � ��) �	� ) � � � �
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from which we deduce by taking
) � 
 � � � � � that

0�� � � � � 0 � 0 � � 0 � � � � � � 
 ��� � �� � 
 � � (67)

It now follows from (64) through (67), together with Lemma 13.2 and strong
stability for � , that

0�. � 0	� � � 

��� ��� � � � � 
 
 � � � � � � � �� 0 � � � ���0 �  � 0 � �� 
 � � 0 �  �

 � 0*. � 0 �

�
���� �

�
�  0

�
� 0 % 	 �

� � ����� � 0 � �

 � 0 � 0 � �� 0 �

� 0*. � 0 � � � 

��� ��� � � � � 
 
 � � � � � � � �� 0 � � � �� 0 �  � 0 � �� 
 � � 0 �  � �
where we have used the notation � � 	 �� � � 
� . This completes the proof of (36) and
Theorem 9.1.

15. Proof of the a posteriori error estimates

The proof of the a posteriori error estimates is similar to that of the a priori error
estimates just presented. The difference is that now the error representation involves
the exact solution

2
of the continuous dual problem (54), together with the residual of

the discrete solution � . By the definition of the dual problem and the bilinear form 3 ,
we have 0�. � 0	� �43 � . � 2 � �43 � � � 2 � 
 3 � � � 2 � �
Using now that 3 � � � 2 � � � ��� � 2 �� � � � � � 2 � � �
together with the Galerkin orthogonality, we obtain the following error representation
in terms of the discrete solution � , the dual solution

2
and data � � and � :

0�. � 0	� � 3 � � ��) 
 2 � � � � � � 2 �� 
 )<�� � � � � � 2 
 ) � �
�

�
���� � � � �� ��) 
 2 � � � ��� � ��� �!) 
 2 � � � 	 � �

���� �
� � � 
 � � � ��)��� � � 
 2 �� � � �

� � � � 2 
 ) � �
� 	 � 	 	 � 	�	 	 �

(68)

with obvious notation. This holds for all
) � � .

To prove (37), we now choose
) 	 �  � �2 � � � � � 2 in (68), and note that
� �� � �2 
 2 � � � � �

Since also
��� � ��� � �2 
 � � 2 � ��� � ��
 � � � � �2 
 � � 2 ��� � ��
 � � � � � � � 
 	 � � � 2 � � � �
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it follows that

	 �
�
���� �

��� � ��� � � � 
 	 � 2 � � �
�
���� �

��� � � ��� � � � 
 	 � � �  2 % 	 � �
Using that

� � �  2 % 	 �
�
�  � 2 % 	 �

�
�  
�2 % 	 � 2 �
	�� � 
 2 � 	�� � � � �

together with Lemma 13.1 and elliptic regularity, we get

	 	 	 � �
�
���� � 0 � �� 
 �� � 0 �  0 �

�
�  2 % 	 0

� � 

������ � � � 0 � �� 
 �� � � � 0 �  
� � � � "�$
� 0 �2 0 % 	 � 
 0 2 0 � � 
,� (69)

To estimate
	�	

, we note that by Lemma 13.1 we have
�
�
� � � 
 � � � ��� � � 
 	 � 2 �� � � � �� � ��0 � �� � � 
 � � � 0 � 0 � 2 �� � � 0 � (70)

noting that the left-hand side is zero if
� � � � � � �

. By obvious stability and
approximation properties of the � � � 	 � � -projections onto the set of constant functions
on
	 �

, we also have

0 �2 
 � � 2 0 �  � 0 � � 2 0 �  � 0 2 0 �  � (71)

and
0 �2 
 � � 2 0 �  � � �  0 � �

�2 0 % 	�� � �  0
�2 0 % 	 � (72)

We thus conclude that
	 	 	 	 � � 

��� ��� � � � 0 � �� � � 
 � � � � � � 0 � 
 ���� � � � 0�� 2 �� � � 0

� 

������ � � � 0 � � 
 � � � 0 �
� � � "�$
� 0 �2 0 % 	 � 0 2 0 � � � � (73)

The data term III is estimated similarly. We finally use strong stability of
2

in the form
 � � ���� � � � 0 � �� � � 0 � � � � "�$� 0 � 0 % 	� � � � � "�$� � 	��4
 	 � � � % 	 � ��� � � � � �� � 	�� 
 	 � 0 � 0 � % 	 � � � �
� �

�
�
log � �� � �

���
� 0*. � 0 �

(74)
for � � �2

and � � � 2 , together with the estimate
� � 0 � 2 �� � � 0 � � ��� ��
 � � 0*. � 0 .

Combining the estimates completes the proof of the posteriori error estimate (37).
The proof of the a posteriori error estimate (38) is similar.
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16. Extension to systems of convection-diffusion-reaction problems

We may in a natural way directly extend the scope of methods and analysis to systems
of convection-diffusion-reaction equations of the form��� ��

�� 
 � ' ��� � � � � ��� ' � � � 
 � � � � � �
in

 
 ��� � ��
 �

�<� � � �
on � 
 ����� ��
 �

� ��' � � � � � in

 � (75)

where � � � � � � ����� � � � � is a vector of concentrations,
� � � � � � 	 � is a diagonal matrix

of diffusion coefficients,
� � � � � � 	 � is a given convection velocity, and � � � � models

reactions. Depending on the size of the coefficients
�

and
�

and the reaction term,
this problem may exhibit more or less parabolic behavior, determined by the size
of the strong stability factor coupled to the associated linearized dual problem (here
linearized at the exact solution � ):��� ��


 �2 
 � '���� � 2 � 
 � ' � 2 � � 
 � � 7 � � � � 5 2 � �
in

 
 � ��� ��� ��<� 2 � �

on � 
 � ��� � � �2 ��' � ��� �4/ in

 � (76)

where
� ��' � 2 � � � � � � '�� 2 � � �

for ��� � � ����� ��% .

17. Examples of reaction-diffusion problems

We now present solutions to a selection of reaction-diffusion problems, including
solutions of the dual backward problem and computation of stability factors.

17.1. Moving heat source

In Figures 10 and 11 we display mesh and solution at two different times for the
adaptive ��� � � � ��� � � � method applied to the the heat equation with a moving heat
source producing a moving hot spot. We notice that the space mesh adapts to the
solution.

17.2. Adaptive time steps for the heat equation

We consider again the heat equation, �� 
 � � � � with homogeneous Dirichlet
boundary conditions on the unit square

����� � � 
 ����� � � over the time interval � � � � � �#
 .
The source � � � � 	 � � 
 � ��� 
 � � � � � � � 
 � � � � � ��� � 
 � � 
 � � 	 � � � � � � 
 � � 	 �
	 is periodic in
time, with corresponding exact solution

� � � � 	 � � � 
 ��� � � � � � 
 � � � � � � � 
 � � 
 � � 	 � �
In Figure 12 we show a computed solution using the � � � � � � � ��� � method, and we
also plot the time evolution of the � � -error in space together with the sequence of
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Figure 10. Meshes for moving source problem.

Figure 11. Solution for moving source problem.

adaptive time steps. We notice that the error does not grow with time, reflecting the
parabolic nature of the problem. We also note the periodic time variation of the time
steps, reflecting the periodicity of the solution, with larger time steps when the solution
amplitude is small.

17.3. Logistics reaction-diffusion

We now consider the heat equation with a non-linear reaction-term, referred to as the
logistics problem: ��� ��

�� 
 � � � � � � � 
 � � in

 
 � ��� ��
 �

� � � � �
on � 
 � ��� ��
 �

� ��' � � � � � � in

 � (77)

with

 � � ��� � � 
 ����� � � , � � � � ,

� � � � � � , and

��� � � � �
� ��� ��
 � � 
 � ��� �
� � � � � � � � 
 � � (78)
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Figure 12. Heat equation: solution, error and adaptive time steps.
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Through the combined action of the diffusion and reaction the solution � � � � 	 � tends
to � for all � with increasing time, see Figure 13.We focus interest at final time

�
to a

circle of radius � � � � 
 � centered at � � ��� ��� � � ��� � . The corresponding dual problem
linearized at the exact solution � is given by��� ��


 �2 
 � � 2 � � � 
 
 � � 2 in

 
 � � � ��� �� � 2 � �

on � 
 � ��� ��� �2 ��' � ��� � / in

 � (79)

where we choose / � � � � � � within the circle and zero outside. In Figure 14 we plot
the dual solution

2 ��' � 	 �
and also the stability factor

� � ����� / � as function of
�

. As in
the Akzo-Nobel problem discussed above, we note that

� � ����� / � reaches a maximum
for

� � � , and then decays somewhat for larger
�

. The decay with larger
�

can be
understood from the sign

� � 
 
 � � of the coefficient of the
2

-term in the dual problem,
which is positive when � � � � 	 � 
 � � � and thus is positive for

	
small and � � 
 � ��� and

negative for larger
	
. The growth phase in / ��' � 	 � thus occurs after a longer phase of

decay if
�

is large, and thus
� � ����� / � may effectively be smaller for larger

�
, although

the interval of integration is longer for large
�

.
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Figure 13. The logistics problem: solution at three different times.
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c
 2004 John Wiley & Sons, Ltd.



ADAPTIVE COMPUTATIONAL METHODS FOR PARABOLIC PROBLEMS 37

0

0.5

1

0

0.5

1

0

1

2

3

4

5

6

7

8

0

0.5

1

0

0.5

1

0

1

2

3

4

5

6

7

8

0

0.5

1

0

0.5

1

0

1

2

3

4

5

6

7

8

PSfrag replacements

� � � � � ��
�

�
�

�
�

	 � � 	 � � � � 	 � � �

0 1 2 3 4 5 6 7 8 9 10
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

PSfrag replacements

�

� �
� ���
�
�

Figure 14. The logistics problem: dual solution and stability factor � � ����� � � .
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17.4. Moving reaction front

Next, we consider a system of reaction-diffusion equations, modeling an auto-catalytic
reaction where 3 reacts to form � with � as a catalyst:

3�� 
������ ��
�� � (80)
With � � the concentration of 3 and � � that of � , the system takes the form� �� � 
 � � � � � 
 � � � �� ���

�

 � � � � � � � � �� � (81)

on

 
 � ��� � � � 
 with


 � � ��� � � 
 ��� � � � 
 � � , � � � � � � � � and homogeneous Neumann
boundary conditions. As initial conditions, we take

� � � � � � � �
� ��� � 
 � � 
 � � 
 � �
� � � � 
 � � � � 
 � � (82)

and � �
��' � � � � � 
 � � ��' � � � . The solution � � � � 	 � corresponds to a reaction front,

starting at � � � � � 
 � and propagating to the the right in the domain until all of 3 is
consumed and the concentration of � is � � � � in all of



, see Figure 15.
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Figure 15. Reaction front problem: solution for the two components at three different times.

The dual problem, linearized at � � � � � � �
�
�
, is given by� 
 �2 � 
 � � 2 � � 
 � �� 2 � � � �� 2 � �
 �2

�

 � � 2 � � 
 
 � � � � 2 � � 
 � � � � 2 � � (83)
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As in the previous example, we take the final time data / � for the first component of
the dual to be an approximation of a Dirac delta function centered in the middle of the
domain, and / � � �

.
We note that the stability factor peaks at the time of active reaction, and that before

and after the reaction front has swept the region of observation the stability factor��������� / � is significantly smaller.
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Figure 16. Reaction front problem: dual solution and stability factor � � ��� � as function of � .
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