TMA683: INTRODUCTION TO CONVOLUTIONS

1. Convolutions

A convolution is a mathematical operation taking two functions as input, and producing a third function as output, much like addition or multiplication operations but with a more involved definition. As we will see below, convolutions have interesting applications in connection with Laplace transforms because of their simple transforms.
Definition 1.1. The convolution of two functions $f, g: \mathbb{R} \rightarrow \mathbb{R}$ is defined by

$$
\begin{equation*}
(f * g)(t)=\int_{-\infty}^{\infty} f(t-\tau) g(\tau) d \tau \tag{1}
\end{equation*}
$$

if the integral is bounded.
In the context of Laplace transforms, we assume that $f(t)=0$ and $g(t)=0$ for $t<0$. In this case, we may reduce the limits of integration to where the integrand is non-zero, and the convolution becomes

$$
\begin{equation*}
(f * g)(t)=\int_{0}^{t} f(t-\tau) g(\tau) d \tau \theta(t) \tag{2}
\end{equation*}
$$

where $\theta(t)$ is the Heaviside step function, i.e. $(f * g)(t)=0$ for $t<0$.
The convolution satisfies some basic relations.

Theorem 1.1.

a) The convolution $f * g$ is a bi-linear operation, i.e. for all $\alpha, \beta \in \mathbb{R}$

$$
(\alpha f+\beta g) * h=\alpha(f * h)+\beta(g * h)
$$

and similar in the second argument.
The convolution also satisfies
b) $f * g=g * f$
c) $(f * g) * h=f *(g * h)$

Proof. The relations are direct consequences of the definition and a) and c) are left as exercises. As for b),

$$
\begin{aligned}
(f * g)(t) & =\int_{-\infty}^{\infty} f(t-\tau) g(\tau) d \tau=\left\{\begin{array}{c}
\eta=t-\tau \\
d \eta=-d \tau
\end{array}\right\}=-\int_{\infty}^{-\infty} f(\eta) g(t-\eta) d \eta \\
& =\int_{-\infty}^{\infty} f(\eta) g(t-\eta) d \eta=(g * f)(t)
\end{aligned}
$$

One of the main reasons for using convolutions is their simple Laplace transform, namely

Theorem 1.2 (Convolution theorem). If $f(t)=0$ for $t<0$ and $g(t)=0$ for $t<0$ (f and g are causal), with $\mathcal{L}[f]=F$ and $\mathcal{L}[g]=G$, and if there exist M and a so that $|f(t)| \leq M e^{a t}$ and $|g(t)| \leq M e^{a t}$, we have

$$
\begin{equation*}
\mathcal{L}[f * g](s)=F(s) G(s) . \tag{3}
\end{equation*}
$$

Date: November 29, 2016.

Proof.

$$
\begin{aligned}
\mathcal{L}[f * g](s) & =\int_{0}^{\infty} e^{-s t}\left(\int_{0}^{t} f(t-\tau) g(\tau) d \tau\right) d t=\int_{0}^{\infty} \int_{0}^{t} e^{-s t} f(t-\tau) g(\tau) d \tau d t \\
& =\left\{\begin{array}{l}
\text { switch order of integration, } \\
\text { see figure 1 }
\end{array}\right\}=\int_{0}^{\infty} g(\tau)\left(\int_{\tau}^{\infty} e^{-s t} f(t-\tau) d t\right) d \tau \\
& =\int_{0}^{\infty} e^{-s \tau} g(\tau)\left(\int_{\tau}^{\infty} e^{-s(t-\tau)} f(t-\tau) d t\right) d \tau \\
& =\{\text { set } r=t-\tau \text { in the inner integral }\} \\
& =\int_{0}^{\infty} e^{-s \tau} g(\tau)\left(\int_{0}^{\infty} e^{-s r} f(r) d r\right) d \tau=F(s) G(s)
\end{aligned}
$$

Figure 1. The integration area in the proof of theorem 1.2.

Exercises

1. Compute $(f * g)(t)$ when
a) $f(t)=\left\{\begin{array}{ll}1, & 0<t<1 \\ 0, & \text { otherwise }\end{array}\right.$ and $g(t)=t \theta(t)$
b) $f(t)=\left(e^{-t}-e^{-2 t}\right) \theta(t)$ and $g(t)=e^{t} \theta(t)$
2. Use the convolution theorem to compute the inverse Laplace transform of
a) $F(s)=\frac{1}{\left(s^{2}+1\right)\left(s^{2}+4\right)}\left(\right.$ Hint: $\left.\sin \alpha \sin \beta=\frac{1}{2}[\cos (\alpha-\beta)-\cos (\alpha+\beta)]\right)$
b) $F(s)=\frac{1}{s^{2}\left(s^{2}+9\right)}$

Answers

1. a) $(f * g)(t)= \begin{cases}0, & t<0 \\ t^{2} / 2, & 0 \leq t<1 \\ t-1 / 2, & t \geq 1\end{cases}$
b) $(f * g)(t)=\frac{1}{6}\left(e^{t}-3 e^{-t}+2 e^{-2 t}\right) \theta(t)$
2. a) $\frac{1}{3} \sin t-\frac{1}{6} \sin 2 t, \quad$ b) $\frac{1}{9} t-\frac{1}{27} \sin 3 t$
