TMA690 Recommended Problems - Week 3.

Problem 3.1. Let Ω be the open unit disc in \mathbb{R}^{2}. Consider the boundary value problem

$$
\begin{aligned}
-\nabla \cdot\left(\left(1+x^{2} y^{2}\right) \nabla u\right) & =\frac{1}{\sqrt[4]{x^{2}+y^{2}}}, \quad(x, y) \in \Omega \\
u & =1 \quad \text { on } \Gamma
\end{aligned}
$$

Write down the weak formulation of the problem and prove that there is a unique weak solution.
Problem 3.2. Let $\Omega \subset \mathbb{R}^{d}$ be a domain, $F=\left(f_{1}, \ldots, f_{d}\right)$ and $G=\left(g_{1}, \ldots, g_{d}\right)$, where $f_{i}, g_{i} \in$ $L^{2}(\Omega)$. Prove that

$$
|(F, G)|:=\left|\int_{\Omega} F \cdot G \mathrm{~d} x\right| \leq\left(\int_{\Omega} \sum_{i=1}^{d} f_{i}^{2} \mathrm{~d} x\right)^{1 / 2}\left(\int_{\Omega} \sum_{i=1}^{d} g_{i}^{2} \mathrm{~d} x\right)^{1 / 2}:=\|F\|_{L^{2}}\|G\|_{L 2}
$$

Problem 3.3. From the book: Problems 3.1, 3.4-3.9, 3.13.

