TMA690 Recommended Problems - Week 5.

Problem 4.1. Let $v : \mathbb{R} \to \mathbb{R}$ be bounded and continuous. Define

$$F(x,t) := \int_{-\infty}^{\infty} e^{-\frac{(x-y)^2}{4t}} v(y) \,\mathrm{d}y, \quad x \in \mathbb{R}, t > 0.$$

(a) Show that $\frac{\partial F}{\partial x}$ exists¹ for all $x \in \mathbb{R}, t > 0$, and

$$\frac{\partial F}{\partial x}(x,t) = -\int_{-\infty}^{\infty} \frac{x-y}{2t} e^{-\frac{(x-y)^2}{4t}} v(y) \,\mathrm{d}y.$$

Hint: Write

$$F(x,t) = e^{-\frac{x^2}{4t}} \int_{-\infty}^{\infty} e^{\frac{xy}{2t}} e^{-\frac{y^2}{4t}} v(y) \, \mathrm{d}y := e^{-\frac{x^2}{4t}} G(x,t)$$

and show that $\frac{\partial G}{\partial x}$ exists and derive a formula for $\frac{\partial G}{\partial x}$. Then apply the product rule.

(b) Show that $\frac{\partial^2 F}{\partial x^2}$ and derive a formula for $\frac{\partial^2 F}{\partial x^2}$.

Problem 4.2. Let $v : \mathbb{R} \to \mathbb{R}$ be bounded and continuous. Define

$$F(x,t) := \int_{-\infty}^{\infty} e^{-\frac{(x-y)^2}{4t}} v(y) \,\mathrm{d}y, \quad x \in \mathbb{R}, t > 0.$$

Show that $\frac{\partial F}{\partial t}$ exists² for all $x \in \mathbb{R}, t > 0$ and

$$\frac{\partial F}{\partial t}(x,t) = \int_{-\infty}^{\infty} e^{-\frac{(x-y)^2}{4t}} \frac{(x-y)^2}{4t^2} v(y) \,\mathrm{d}y.$$

Hint: Consider first

$$G(x,r) = \int_{-\infty}^{\infty} e^{-\frac{(x-y)^2}{4}r} v(y) \,\mathrm{d}y,$$

show that $\frac{\partial G}{\partial r}$ exists and derive a formula for $\frac{\partial G}{\partial r}$. Then notice that $F(x,t) = G(x,\frac{1}{t})$ and use the chain rule.

Problem 4.3. Let $v : \mathbb{R} \to \mathbb{R}$ be bounded and continuous. Let

(1)
$$u(x,t) := (4\pi t)^{-\frac{1}{2}} \int_{-\infty}^{\infty} e^{-\frac{(x-y)^2}{4t}} v(y) \, \mathrm{d}y, \quad x \in \mathbb{R}, t > 0.$$

Show that u is a classical solution to the heat equation $\frac{\partial u}{\partial t} - \frac{\partial^2 u}{\partial x^2} = 0.$

Problem 4.4. Let $v : \mathbb{R} \to \mathbb{R}$ be bounded and continuous. Show that the solution u of the heat equation in 1D, given by (1), satisfies

$$||D^{\alpha}u||_{C(\mathbb{R})} \le Ct^{-5/2} ||v||_{C(\mathbb{R})}, \quad \alpha = (1,2),$$

for some C > 0.

Problem 4.5. Write down a solution formula in polar coordinates for

$$-\Delta u = f \text{ in } \Omega,$$
$$u = g \text{ on } \Gamma,$$

where $\Omega = \{x \in \mathbb{R}^2 : |x| < R\}, f, g$ are appropriately smooth, f(x) = h(|x|) for some $h : \mathbb{R} \to \mathbb{R}$ and $g = g(\varphi), \varphi \in [0, 2\pi)$.

Problem 4.6. Let $U(x) = \frac{1}{4\pi |x|}$, $x \in \mathbb{R}^3 \setminus \{0\}$. Show that $(U, -\Delta \varphi) = \varphi(0)$ for all $\varphi \in C_0^2(\mathbb{R}^3)$.

¹Actually, $\frac{\partial^n F}{\partial a^n}$ exists for all $n \in \mathbb{N}$ for $x \in \mathbb{R}, t > 0$ which can be shown by induction. ²In fact, $\frac{\partial^n F}{\partial t^n}$ exists for all $n \in \mathbb{N}$ for $x \in \mathbb{R}, t > 0$ which can be shown by induction.