TMA690 Recommended Problems - Week 5.
Problem 4.1. Let $v: \mathbb{R} \rightarrow \mathbb{R}$ be bounded and continuous. Define

$$
F(x, t):=\int_{-\infty}^{\infty} e^{-\frac{(x-y)^{2}}{4 t}} v(y) \mathrm{d} y, \quad x \in \mathbb{R}, t>0
$$

(a) Show that $\frac{\partial F}{\partial x}$ exists 1 for all $x \in \mathbb{R}, t>0$, and

$$
\frac{\partial F}{\partial x}(x, t)=-\int_{-\infty}^{\infty} \frac{x-y}{2 t} e^{-\frac{(x-y)^{2}}{4 t}} v(y) \mathrm{d} y
$$

Hint: Write

$$
F(x, t)=e^{-\frac{x^{2}}{4 t}} \int_{-\infty}^{\infty} e^{\frac{x y}{2 t}} e^{-\frac{y^{2}}{4 t}} v(y) \mathrm{d} y:=e^{-\frac{x^{2}}{4 t}} G(x, t)
$$

and show that $\frac{\partial G}{\partial x}$ exists and derive a formula for $\frac{\partial G}{\partial x}$. Then apply the product rule.
(b) Show that $\frac{\partial^{2} F}{\partial x^{2}}$ and derive a formula for $\frac{\partial^{2} F}{\partial x^{2}}$.

Problem 4.2. Let $v: \mathbb{R} \rightarrow \mathbb{R}$ be bounded and continuous. Define

$$
F(x, t):=\int_{-\infty}^{\infty} e^{-\frac{(x-y)^{2}}{4 t}} v(y) \mathrm{d} y, \quad x \in \mathbb{R}, t>0
$$

Show that $\frac{\partial F}{\partial t}$ exists \int^{2} for all $x \in \mathbb{R}, t>0$ and

$$
\frac{\partial F}{\partial t}(x, t)=\int_{-\infty}^{\infty} e^{-\frac{(x-y)^{2}}{4 t}} \frac{(x-y)^{2}}{4 t^{2}} v(y) \mathrm{d} y
$$

Hint: Consider first

$$
G(x, r)=\int_{-\infty}^{\infty} e^{-\frac{(x-y)^{2}}{4} r} v(y) \mathrm{d} y
$$

show that $\frac{\partial G}{\partial r}$ exists and derive a formula for $\frac{\partial G}{\partial r}$. Then notice that $F(x, t)=G\left(x, \frac{1}{t}\right)$ and use the chain rule.
Problem 4.3. Let $v: \mathbb{R} \rightarrow \mathbb{R}$ be bounded and continuous. Let

$$
\begin{equation*}
u(x, t):=(4 \pi t)^{-\frac{1}{2}} \int_{-\infty}^{\infty} e^{-\frac{(x-y)^{2}}{4 t}} v(y) \mathrm{d} y, \quad x \in \mathbb{R}, t>0 \tag{1}
\end{equation*}
$$

Show that u is a classical solution to the heat equation $\frac{\partial u}{\partial t}-\frac{\partial^{2} u}{\partial x^{2}}=0$.
Problem 4.4. Let $v: \mathbb{R} \rightarrow \mathbb{R}$ be bounded and continuous. Show that the solution u of the heat equation in 1D, given by (1), satisfies

$$
\left\|D^{\alpha} u\right\|_{C(\mathbb{R})} \leq C t^{-5 / 2}\|v\|_{C(\mathbb{R})}, \quad \alpha=(1,2)
$$

for some $C>0$.
Problem 4.5. Write down a solution formula in polar coordinates for

$$
\begin{aligned}
-\Delta u & =f \text { in } \Omega \\
u & =g \text { on } \Gamma
\end{aligned}
$$

where $\Omega=\left\{x \in \mathbb{R}^{2}:|x|<R\right\}, f, g$ are appropriately smooth, $f(x)=h(|x|)$ for some $h: \mathbb{R} \rightarrow \mathbb{R}$ and $g=g(\varphi), \varphi \in[0,2 \pi)$.
Problem 4.6. Let $U(x)=\frac{1}{4 \pi|x|}, x \in \mathbb{R}^{3} \backslash\{0\}$. Show that $(U,-\Delta \varphi)=\varphi(0)$ for all $\varphi \in C_{0}^{2}\left(\mathbb{R}^{3}\right)$.

[^0]
[^0]: ${ }^{1}$ Actually, $\frac{\partial^{n} F}{\partial x^{n}}$ exists for all $n \in \mathbb{N}$ for $x \in \mathbb{R}, t>0$ which can be shown by induction.
 ${ }^{2}$ In fact, $\frac{\partial^{n} F}{\partial t^{n}}$ exists for all $n \in \mathbb{N}$ for $x \in \mathbb{R}, t>0$ which can be shown by induction.

