FEM: Boundary value problems in several variables. An nonrigorous description. ${ }^{1]}$

1.1 The heat equation

Let Ω be a solid in \mathbf{R}^{3} with boundary surface Γ and let Ω_{0} be an arbitrary subsolid of Ω with piecewise-smooth positively oriented boudary surface Γ_{0}. The principle of energy conservation states that the rate of change of the internal energy in Ω_{0} equals to the net heat flux through Γ_{0} plus the energy added through a heat source.

Figure 1: A solid Ω with a subsolid Ω_{0}.
Mathematically,

$$
\frac{\mathrm{d}}{\mathrm{~d} t} \iiint_{\Omega_{0}} e \mathrm{~d} V=-\iint_{\Gamma_{0}} \mathbf{j} \cdot \mathbf{n} \mathrm{~d} S+\iiint_{\Omega_{0}} p \mathrm{~d} V, \text { for } t>0
$$

where $e=e(x, y, z, t)$ is the density of the internal energy $\left(\left[\mathrm{J} /\left(\mathrm{m}^{3}\right)\right]\right), \mathbf{j}=\mathbf{j}(x, y, z, t)$ is the heatflux density $\left[\mathrm{J} /\left(\mathrm{m}^{3} \mathrm{~s}\right)\right]$ and p is the power density of the heat-source $\left(\left[\mathrm{J} /\left(\mathrm{m}^{3} \mathrm{~s}\right)\right]\right)$. We use the Divergence Theorem to transform the surface integral on the right to a triple integral, noting that, by definition:

$$
\iint_{\Gamma_{0}} \mathbf{j} \cdot \mathbf{n} \mathrm{~d} S=\iint_{\Gamma_{0}} \mathbf{j} \cdot \mathrm{~d} \mathbf{S} .
$$

Hence,

$$
\frac{\mathrm{d}}{\mathrm{~d} t} \iiint_{\Omega_{0}} e \mathrm{~d} V=-\iint_{\Omega_{0}} \operatorname{div} \mathbf{j} \mathrm{~d} V+\iiint_{\Omega_{0}} p \mathrm{~d} V, \text { for } t>0
$$

[^0]Collecting all the terms on one side and interchanging the triple integral and the time derivative (this can be done, for example if e is continuously differentiable), we get

$$
\iiint_{\Omega_{0}}\left(\partial_{t} e+\operatorname{div} \mathbf{j}-p\right) \mathrm{d} V=0, \text { for } t>0 .
$$

If the integrand is continuous, this can only hold for every possible choice of Ω_{0} if

$$
\partial_{t} e+\operatorname{div} \mathbf{j}-p=0, \quad \text { in } \Omega, \text { for } t>0,
$$

or, using the ∇ notation,

$$
\begin{equation*}
\partial_{t} e+\nabla \cdot \mathbf{j}=p \quad \text { in } \Omega, \text { for } t>0 . \tag{1}
\end{equation*}
$$

In order to relate the internal energy e and the heat flux \mathbf{j} to the temperature T ($[\mathrm{K}]$) one needs further assumptions that are called constitutive relations. The first relation is that the internal energy is a linear function of the temperature:

$$
\begin{equation*}
e=e_{0}+\sigma\left(T-T_{0}\right)=e_{0}+\sigma u, \text { with } u=T-T_{0} \tag{2}
\end{equation*}
$$

for some suitably chosen reference energy e_{0} and temperature T_{0}. Here, $\sigma=\sigma(x, y, z)$ is specific heat capacity $\left(\left[\mathrm{J} /\left(\mathrm{m}^{3} \mathrm{~K}\right)\right]\right)$. The second relation is Fourier's law, which states that the heat flux is proprtional to the temperature gradient:

$$
\begin{equation*}
\mathbf{j}=-\lambda \operatorname{grad} u=-\lambda \nabla u, \tag{3}
\end{equation*}
$$

where $\lambda=\lambda(x, y, z)$ is the heat conductivity [J/(mKs)]. Substituting, (22) and (3) into (1) we obtain the heat equation:

$$
\begin{equation*}
\sigma \partial_{t} u-\nabla \cdot(\lambda \nabla u)=p \quad \text { in } \Omega, \text { for } t>0 . \tag{4}
\end{equation*}
$$

1.1.1 Special cases: stationary heat equation

When the temperutre in the solid is in equilibrium; that is, when $\partial_{t} u$, then we obtain the stationary heat equation

$$
-\nabla \cdot(\lambda \nabla u)=p \quad \text { in } \Omega .
$$

If λ is constant, then

$$
-\nabla \cdot(\lambda \nabla u)=-\lambda \nabla \cdot \nabla u=-\lambda \Delta u
$$

where

$$
\Delta u=\nabla \cdot \nabla u=\frac{\partial^{2} u}{\partial x^{2}}+\frac{\partial^{2} u}{\partial y^{2}}+\frac{\partial^{2} u}{\partial z^{2}}
$$

is called the Laplace operator. Hence, in this case, we get (with $f=-p / \lambda$),

$$
\Delta u=f \text { in } \Omega,
$$

which is called Poisson's equation. When $f=0$, this reads

$$
\Delta u=0 \text { in } \Omega
$$

which is called Laplace's equation.

1.1.2 Boundary conditions

In order to supplement the heat equation with boundary conditions, we assume that the heat flux through the boundary Γ is proportional to the difference of the temperature of the surface of the solid and the ambient temperature T_{A}, reduced by a possibly a prescribed heat influx (for example, through heating) $g=g(x, y, z, t)\left(\left[\mathrm{J} /\left(\mathrm{m}^{2} \mathrm{~s}\right)\right]\right)$:

$$
\begin{equation*}
\mathbf{j} \cdot \mathbf{n}=\kappa\left(T-T_{A}\right)-g=\kappa\left(u-u_{A}\right)-g, \text { on } \Gamma \quad u_{A}=T_{A}-T_{0} \tag{5}
\end{equation*}
$$

where $\kappa=\kappa(x, y, z)$ is the heat transfer coefficient $\left(\left[\mathrm{J} /\left(\mathrm{m}^{2} \mathrm{sK}\right)\right]\right)$. The heat flux should also obey Fourier's law at the boundary:

$$
\begin{equation*}
\mathbf{j} \cdot \mathbf{n}=-\lambda \nabla u \cdot n \tag{6}
\end{equation*}
$$

Introducing the notation

$$
D_{N} u=\nabla u \cdot n
$$

and equating (5) and (6), one arrives at

$$
\begin{equation*}
\lambda D_{N} u+\kappa\left(u-u_{A}\right)=g \text { on } \Gamma \tag{7}
\end{equation*}
$$

Special cases:

1. Perfect isolation: $\kappa=0$. Then, 7 becomes

$$
\lambda D_{N} u=g \text { on } \Gamma
$$

which is called a Neumann boundary condition.
2. No isolation: $\kappa=\infty$. One divides 7 by κ,

$$
\frac{1}{\kappa} \lambda D_{N} u+\left(u-u_{A}\right)=\frac{1}{\kappa} g \text { on } \Gamma
$$

and let $\kappa \rightarrow \infty$. We get $u-u_{A}=0$ on Γ or

$$
u=u_{A} \text { on } \Gamma
$$

This is called a Dirichlet boundary condition.

1.2 Boundary value problem and weak formulation

Let Ω be a bounded solid in \mathbf{R}^{3} with piecewise smooth positively oriented (= outward normal) boundary surface Γ.
The boundary value problem is: find $u=u(x, y, z)$ such that

$$
\begin{cases}-\nabla \cdot(\lambda \nabla u)=p & \text { in } \Omega \tag{8}\\ \lambda \mathrm{D}_{N} u+\kappa\left(u-u_{\mathrm{A}}\right)=g & \text { on } \Gamma\end{cases}
$$

In order to derive the weak formulation of this problem, one needs an integration by parts formula in 3 dimensions. Let ϕ be a continuously differentiable scalar field and \mathbf{F} be a continuously differentiable vector field. Then one has the product rule

$$
\begin{equation*}
\operatorname{div}(\phi \mathbf{F})=\nabla \cdot(\phi F)=\mathbf{F} \cdot \nabla \phi+\phi \nabla \cdot \mathbf{F}=\mathbf{F} \cdot \operatorname{grad} \phi+\phi \operatorname{div} \mathbf{F} \tag{9}
\end{equation*}
$$

This can be proved in a straightforward fashion by writing out the definitions of div and grad and using the one dimensional product rule (See, problem 25 in Chapter 16.6 of Stewart). Integration over Ω gives

$$
\iiint_{\Omega} \operatorname{div}(\phi \mathbf{F}) \mathrm{d} V=\iiint_{\Omega} \mathbf{F} \cdot \operatorname{grad} \phi \mathrm{d} V+\iiint_{\Omega} \phi \operatorname{div} \mathbf{F} \mathrm{d} V
$$

Using the Divergence Theorem, this yields

$$
\iint_{\Gamma} \phi \mathbf{F} \cdot \mathrm{d} \mathbf{S}=\iiint_{\Omega} \mathbf{F} \cdot \operatorname{grad} \phi \mathrm{d} V+\iiint_{\Omega} \phi \operatorname{div} \mathbf{F} \mathrm{d} V
$$

We rearrange, use the ∇ notation and the definition

$$
\iint_{\Gamma} \phi \mathbf{F} \cdot \mathrm{d} \mathbf{S}=\iint_{\Gamma} \phi \mathbf{F} \cdot \mathbf{n} \mathrm{d} S
$$

to arrive at the integration by parts formula

$$
\begin{equation*}
\iiint_{\Omega} \phi \nabla \cdot \mathbf{F} \mathrm{d} V=\iint_{\Gamma} \phi \mathbf{F} \cdot \mathbf{n} \mathrm{d} S-\iiint_{\Omega} \mathbf{F} \cdot \nabla \phi \mathrm{d} V . \tag{10}
\end{equation*}
$$

Now we consider the heat equation in (8). We multiply the first equation in (8) with a test function $v=v(x, y, z)$, integrate over the domain Ω and use the integration by parts formula 10 with $\mathbf{F}=\lambda \nabla u$ and $\phi=v:$

$$
\begin{equation*}
\iiint_{\Omega} p v \mathrm{~d} V=-\iiint_{\Omega} v \nabla \cdot(\lambda \nabla u) \mathrm{d} V=-\iint_{\Gamma} v \lambda \nabla u \cdot \mathbf{n} \mathrm{~d} S+\iiint_{\Omega} \lambda \nabla u \cdot \nabla v \mathrm{~d} V \tag{11}
\end{equation*}
$$

We use the boundary condition, the second equation in (8), to write

$$
\lambda \nabla u \cdot \mathbf{n}=\lambda D_{N} u=g-\kappa\left(u-u_{A}\right)
$$

Inserting this to we obtain

$$
\iiint_{\Omega} p v \mathrm{~d} V=\iint_{\Gamma} \kappa u v \mathrm{~d} S-\iint_{\Gamma}\left(g+\kappa u_{A}\right) v \mathrm{~d} S+\iiint_{\Omega} \lambda \nabla u \cdot \nabla v \mathrm{~d} V
$$

Hence, the weak formulation of (8) reads:
Find $u=u(x, y, z)$ such that

$$
\begin{equation*}
\iiint_{\Omega} \lambda \nabla u \cdot \nabla v \mathrm{~d} V+\iint_{\Gamma} \kappa u v \mathrm{~d} S=\iiint_{\Omega} p v \mathrm{~d} V+\iint_{\Gamma}\left(g+\kappa u_{A}\right) v \mathrm{~d} S \tag{12}
\end{equation*}
$$

for every test function v.

As in the one dimensional case, for the precise mathematical formulation one would have to specify the exact function spaces to which u and v belongs to. This is beyond the scope of this course.

Note. Often different boundary conditions are specified on different parts of the boundary Γ. In this case, the weak formulation changes. For example, consider the boundary value problem:
Find $u=u(x, y, z)$ such that

$$
\left\{\begin{align*}
-\nabla \cdot(\lambda \nabla u) & =p \quad \text { in } \Omega \tag{13}\\
u & =u_{B} \quad \text { on } \Gamma_{1} \\
\lambda \mathrm{D}_{N} u+\kappa\left(u-u_{\mathrm{A}}\right) & =g \quad \text { on } \Gamma_{2}
\end{align*}\right.
$$

where $\Gamma=\Gamma_{1} \cup \Gamma_{2}$ and Γ_{1} and Γ_{2} are disjoint except at the curve where they meet. Note that on Γ_{1} we prescribed a Dirichlet boundary condition which is special and this has to be taken into account appropriately in the weak formulation as follows:

Find $u=u(x, y, z)$ such that $u=u_{B}$ on Γ_{1} and

$$
\begin{equation*}
\iiint_{\Omega} \lambda \nabla u \cdot \nabla v \mathrm{~d} V+\iint_{\Gamma_{2}} \kappa u v \mathrm{~d} S=\iiint_{\Omega} p v \mathrm{~d} V+\iint_{\Gamma_{2}}\left(g+\kappa u_{A}\right) v \mathrm{~d} S \tag{14}
\end{equation*}
$$

for every test function v such that $v=0$ on Γ_{1}.
In particular, when $\Gamma_{2}=\emptyset$; that is when $u=u_{B}$ on the whole of $\Gamma=\Gamma_{1}$, then both boundary integral terms in (14) disappear completely.

1.3 The stationary heat equation and FEM in 2D

In this section we consider the stationary heat equation in 2 D and its finite element approximation. Let now Ω be a bounded planar domain and Γ be its piecewise smooth boundary with positive (counterclockwise) orientation. Then the boundary value problem we consider reads as follows:
Find $u=u(x, y)$ such that

$$
\begin{cases}-\nabla \cdot(\lambda \nabla u)=f & \text { in } \Omega \tag{15}\\ \lambda \mathrm{D}_{N} u+\kappa\left(u-u_{\mathrm{A}}\right)=g & \text { on } \Gamma .\end{cases}
$$

In order to derive the weak formulation of (15), we need a 2 D version of integration by parts. Recall Green's theorem which states that if $\overline{\mathbf{F}}=P \mathbf{i}+Q \mathbf{j}$ is a continuously differentiable vector field in 2 D and Ω is a bounded planar domain with piecewise smooth boundary Γ with positive (counterclockwise) orientation, then

$$
\iint_{\Omega}\left(\frac{\partial Q}{\partial x}-\frac{\partial P}{\partial y}\right) \mathrm{d} A=\int_{\Gamma} \mathbf{F} \cdot \mathrm{d} \mathbf{r}=\int_{\Gamma} \mathbf{F} \cdot \mathbf{r}_{\mathbf{0}} \mathrm{d} s
$$

where $\mathbf{r}_{\mathbf{0}}$ is the unit tangent vector of Γ. Using this one can derive the following form of Green's theorem, see Stewart, Section 16.5 page 1097, formula 13:

$$
\begin{equation*}
\iint_{\Omega} \operatorname{div} \mathbf{F} \mathrm{d} A=\iint_{\Omega}\left(\frac{\partial P}{\partial x}+\frac{\partial Q}{\partial y}\right) \mathrm{d} A=\int_{\Gamma} \mathbf{F} \cdot \mathbf{n} \mathrm{d} s \tag{16}
\end{equation*}
$$

where \mathbf{n} is the outward pointing unit normal vector to Γ. By integrating the product rule (9) over Ω we get

$$
\iint_{\Omega} \operatorname{div}(\phi \mathbf{F}) \mathrm{d} A=\iint_{\Omega} \mathbf{F} \cdot \operatorname{grad} \phi \mathrm{d} A+\iint_{\Omega} \phi \operatorname{div} \mathbf{F} \mathrm{d} A .
$$

Using (16), this yields

$$
\int_{\Gamma} \phi \mathbf{F} \cdot \mathbf{n} \mathrm{d} s=\iint_{\Omega} \mathbf{F} \cdot \operatorname{grad} \phi \mathrm{d} A+\iint_{\Omega} \phi \operatorname{div} \mathbf{F} \mathrm{d} A .
$$

We rearrange and use the ∇ notation to arrive at the integration by parts formula in 2 D :

$$
\begin{equation*}
\iint_{\Omega} \phi \nabla \cdot \mathbf{F} \mathrm{d} A=\int_{\Gamma} \phi \mathbf{F} \cdot \mathbf{n} \mathrm{d} s-\iint_{\Omega} \mathbf{F} \cdot \nabla \phi \mathrm{d} A . \tag{17}
\end{equation*}
$$

Now we consider the heat equation in (15). We multiply the first equation in 15 with a test function $v=v(x, y)$, integrate over the domain Ω and use the integration by parts formula (17) with $\mathbf{F}=\lambda \nabla u$ and $\phi=v$:

$$
\begin{equation*}
\iint_{\Omega} f v \mathrm{~d} A=-\iint_{\Omega} v \nabla \cdot(\lambda \nabla u) \mathrm{d} A=-\int_{\Gamma} v \lambda \nabla u \cdot \mathbf{n} \mathrm{~d} s+\iint_{\Omega} \lambda \nabla u \cdot \nabla v \mathrm{~d} A . \tag{18}
\end{equation*}
$$

We use the boundary condition, the second equation in (15), to write

$$
\lambda \nabla u \cdot \mathbf{n}=\lambda D_{N} u=g-\kappa\left(u-u_{A}\right) .
$$

Inserting this to 18 we obtain

$$
\iint_{\Omega} f v \mathrm{~d} A=\int_{\Gamma} \kappa u v \mathrm{~d} s-\int_{\Gamma}\left(g+\kappa u_{A}\right) v \mathrm{~d} s+\iint_{\Omega} \lambda \nabla u \cdot \nabla v \mathrm{~d} A .
$$

Hence, the weak formulation of $\sqrt{15}$ reads:
Find $u=u(x, y)$ such that

$$
\begin{equation*}
\iint_{\Omega} \lambda \nabla u \cdot \nabla v \mathrm{~d} A+\int_{\Gamma} \kappa u v \mathrm{~d} s=\iint_{\Omega} f v \mathrm{~d} A+\int_{\Gamma}\left(g+\kappa u_{A}\right) v \mathrm{~d} s \tag{19}
\end{equation*}
$$

for every test function v.
Note. Similarly to the 3D case, often different boundary conditions are specified on different parts of the boundary curve Γ. In this case the weak formulation changes. For example, consider the boundary value problem in 2D:
Find $u=u(x, y)$ such that

$$
\left\{\begin{align*}
-\nabla \cdot(\lambda \nabla u) & =f \quad \text { in } \Omega \tag{20}\\
u & =u_{B} \quad \text { on } \Gamma_{1}, \\
\lambda \mathrm{D}_{N} u+\kappa\left(u-u_{\mathrm{A}}\right) & =g \quad \text { on } \Gamma_{2}
\end{align*}\right.
$$

where $\Gamma=\Gamma_{1} \cup \Gamma_{2}$ and Γ_{1} and Γ_{2} are disjoint except at the points where they meet. Note that on Γ_{1} we prescribed a Dirichlet boundary condition which is special and this has to be taken into account appropriately in the weak formulation as follows:
Find $u=u(x, y)$ such that $u=u_{B}$ on Γ_{1} and

$$
\begin{equation*}
\iint_{\Omega} \lambda \nabla u \cdot \nabla v \mathrm{~d} A+\int_{\Gamma_{2}} \kappa u v \mathrm{~d} s=\iint_{\Omega} f v \mathrm{~d} A+\int_{\Gamma_{2}}\left(g+\kappa u_{A}\right) v \mathrm{~d} s \tag{21}
\end{equation*}
$$

for every test function v such that $v=0$ on Γ_{1}.
In particular, when $\Gamma_{2}=\emptyset$; that is when $u=u_{B}$ on the whole of $\Gamma=\Gamma_{1}$, then both boundary integral terms in 21) disappear completely.

1.3.1 FEM in 2D

Let Ω be a polygonal domain, for simplicity, and consider a triangulation (triangular mesh) of Ω. A mesh constists of

$$
\begin{aligned}
& N \text { nodes }\left\{P_{i}\right\}_{i=1}^{N}, \\
& M \text { triangles }\left\{T_{j}\right\}_{j=1}^{M}, \\
& L \text { edges }\left\{E_{l}\right\}_{l=1}^{L}
\end{aligned}
$$

Figure 2: Triangulation of a rectangular planar domain Ω.

A continuous piecewise linear function U is a continuous function on Ω such that $U(x, y)=$ $a+b x+c y$ (plane) on every triangle T_{j} (of course, the constants a, b, c usually change from tringle to triangle). As 3 points in space determines a plane such a function U is completely determined by its nodal values $U\left(P_{i}\right)$:

$$
\begin{equation*}
U(x, y)=\sum_{i=1}^{N} U_{i} \phi_{i}(x, y), \quad U_{i}=U\left(P_{i}\right) \tag{22}
\end{equation*}
$$

Here, $\left\{\phi_{i}\right\}_{i=1}^{N}$ are the basis functions, defined to be continuous piecewise linear functions such that

$$
\phi_{i}\left(P_{j}\right)= \begin{cases}1, & \text { om } i=j \\ 0, & \text { om } i \neq j\end{cases}
$$

These are also called pyramid functions (see Figure (3) for a typical example.)

Figure 3: Basis function ("pyramid function").
We look for an approximation of the solution u of 15 of the form $U(x, y)=\sum_{i=1}^{N} U_{i} \phi_{i}(x, y)$ and hence we need to determine the nodal values U_{i} of U. As continuous piecewise linear functions do not have two derivatives, we use the weak formulation $\sqrt{19}$ instead of the original formulation (15). We replace u by U in (19) and use the special choice $v=\phi_{j}$ as test functions:

$$
\begin{aligned}
& \iint_{\Omega} \lambda \nabla\left(\sum_{i=1}^{N} U_{i} \phi_{i}\right) \cdot \nabla \phi_{j} \mathrm{~d} A+\int_{\Gamma} \kappa\left(\sum_{i=1}^{N} U_{i} \phi_{i}\right) \phi_{j} \mathrm{~d} s \\
&=\iint_{\Omega} f \phi_{j} \mathrm{~d} A+\int_{\Gamma}\left(g+\kappa u_{A}\right) \phi_{j} \mathrm{~d} s, \quad j=1, \ldots, N .
\end{aligned}
$$

Factoring out the coefficients U_{i} we get:

$$
\begin{aligned}
& \sum_{i=1}^{N} U_{i} \iint_{\Omega} \lambda \nabla \phi_{i} \cdot \nabla \phi_{j} \mathrm{~d} A+\sum_{i=1}^{N} U_{i} \int_{\Gamma} \kappa \phi_{i} \phi_{j} \mathrm{~d} s \\
&=\iint_{\Omega} f \phi_{j} \mathrm{~d} A+\int_{\Gamma}\left(g+\kappa u_{A}\right) \phi_{j} \mathrm{~d} s, \quad j=1, \ldots, N
\end{aligned}
$$

or, after collecting terms,

$$
\begin{aligned}
& \sum_{i=1}^{N} U_{i} \underbrace{\left(\iint_{\Omega} \lambda \nabla \phi_{i} \cdot \nabla \phi_{j} \mathrm{~d} A+\int_{\Gamma} \kappa \phi_{i} \phi_{j} \mathrm{~d} s\right)}_{=a_{j i}} \\
&=\underbrace{\iint_{\Omega} f \phi_{j} \mathrm{~d} A+\int_{\Gamma}\left(g+\kappa u_{A}\right) \phi_{j} \mathrm{~d} s, \quad j=1, \ldots, N}_{=b_{j}},
\end{aligned}
$$

This is of the form

$$
\sum_{i=1}^{N} a_{j i} U_{i}=b_{j}, \quad j=1, \ldots, N
$$

that is, a linear system of equations for U_{i}. We rewrite this in the matrix form as

$$
\mathcal{A} \mathcal{U}=b
$$

with

$$
\mathcal{U}=\left[\begin{array}{c}
U_{1} \\
\vdots \\
U_{N}
\end{array}\right]
$$

and stiffness matrix

$$
\mathcal{A}=\left[\begin{array}{ccc}
a_{11} & \cdots & a_{1 N} \\
\vdots & \ddots & \vdots \\
a_{N 1} & \cdots & a_{N N}
\end{array}\right], \quad a_{j i}=\iint_{\Omega} \lambda \nabla \phi_{i} \cdot \nabla \phi_{j} \mathrm{~d} A+\int_{\Gamma} \kappa \phi_{i} \phi_{j} \mathrm{~d} s
$$

and load vector

$$
b=\left[\begin{array}{c}
b_{1} \\
\vdots \\
b_{N}
\end{array}\right], \quad b_{j}=\iint_{\Omega} f \phi_{j} \mathrm{~d} A+\int_{\Gamma}\left(g+\kappa u_{A}\right) \phi_{j} \mathrm{~d} s
$$

The matrix \mathcal{A} is symmetric: $A=A^{T}\left(a_{i j}=a_{j i}\right)$, and is usually very large: the number N of nodes is large (for example, $N=10^{4}$ or more.) However, the matrix \mathcal{A} is sparse: for most matrix elements we have $a_{i j}=0$. We only have $a_{i j} \neq 0$ when the corresponding nodes P_{i} and P_{j} are neighbours.

PDE Toolbox

The Matlab-program PDE Toolbox sets up the linear system of equations $\mathcal{A} \mathcal{U}=b$ and solves it.

1.4 The time dependent heat equation

We consider the 2D version of the time dependent heat equation (4). Let Ω be a bounded planar domain and Γ be its piecewise smooth boundary with positive (counterclockwise) orientation. Then the initial-boundary value problem we consider reads as follows:
Find $u=u(x, y, t)$ such that

$$
\begin{cases}\partial_{t} u(x, y, t)-\nabla \cdot(\lambda(x, y) \nabla u(x, y, t))=f(x, y, t) & (x, y) \in \Omega, \quad t>0 \tag{23}\\ \lambda \mathrm{D}_{N} u(x, y, t)+\kappa(x, y)\left(u(x, y)-u_{\mathrm{A}}(t)\right)=g(x, y, t) & (x, y) \in \Gamma, \quad t>0 \\ u(x, y, 0)=w(x, y) & (x, y) \in \Omega\end{cases}
$$

1.4.1 Weak formulation

We derive the weak formulation the same way as for the stationary heat equation by multiplying the first equation in 23 by a test function $v=v(x, y)$, integrate over the domain Ω and use the boundary condition, the second equation in 23 after integrating by parts. The weak formulation of (23) then becomes:
Find $u=u(x, y, t)$ such that $u(x, y, 0)=w(x, y)$ and for $t>0$,

$$
\begin{equation*}
\iint_{\Omega} \partial_{t} u v \mathrm{~d} A+\iint_{\Omega} \lambda \nabla u \cdot \nabla v \mathrm{~d} A+\int_{\Gamma} \kappa u v \mathrm{~d} s=\iint_{\Omega} f v \mathrm{~d} A+\int_{\Gamma}\left(g+\kappa u_{A}\right) v \mathrm{~d} s \tag{24}
\end{equation*}
$$

for every test function v.
The novelty in this weak formulation compared to the stationary case is the requirement that $u(x, y, 0)=w(x, y)$ and the appearance of the term $\iint_{\Omega} \partial_{t} u v \mathrm{~d} A$ on the left hand side of 24 which is not present in the stationary case 19 .

1.4.2 FEM

As in the stationary case, let Ω be a polygonal domain, for simplicity, and consider a triangulation of Ω with nodes $P_{i}, i=1, \ldots, N$. We look for an approximation of u in the form $U(x, y, t)=$ $\sum_{i=1}^{N} U_{i}(t) \phi_{i}(x, y)$, where ϕ_{i} is the finite element basis function corresponding to P_{i}. We need to determine the nodal values $U_{i}(t)$ of U. As in the stationary case we replace u by U in the weak formulation (24) and use the test functions $v=\phi_{j}, j=1, \ldots, N$, to get

$$
\begin{aligned}
\sum_{i=1}^{N} \dot{U}_{i}(t) \iint_{\Omega} \phi_{i} \phi_{j} \mathrm{~d} A+\sum_{i=1}^{N} U_{i} \iint_{\Omega} \lambda \nabla \phi_{i} \cdot & \nabla \phi_{j} \mathrm{~d} A+\sum_{i=1}^{N} U_{i} \int_{\Gamma} \kappa \phi_{i} \phi_{j} \mathrm{~d} s \\
& =\iint_{\Omega} f \phi_{j} \mathrm{~d} A+\int_{\Gamma}\left(g+\kappa u_{A}\right) \phi_{j} \mathrm{~d} s, \quad j=1, \ldots, N
\end{aligned}
$$

or, after collecting terms,

$$
\begin{aligned}
&\sum_{i=1}^{N} \dot{U}_{i}(t) \underbrace{\iint_{\Omega} \phi_{i} \phi_{j} \mathrm{~d} A}_{=m_{j} i}+\sum_{i=1}^{N} U_{i} \underbrace{\left(\iint_{\Omega} \lambda \nabla \phi_{i} \cdot\right.}_{=a_{j i}} \nabla \phi_{j} \mathrm{~d} A+\int_{\Gamma} \kappa \phi_{i} \phi_{j} \mathrm{~d} s) \\
&=\iint_{=b_{j}(t)}^{\iint_{\Omega} f \phi_{j} \mathrm{~d} A+\int_{\Gamma}\left(g+\kappa u_{A}\right) \phi_{j} \mathrm{~d} s, \quad j=1, \ldots, N}
\end{aligned}
$$

This is of the form

$$
\sum_{i=1}^{N} m_{j i} \dot{U}_{i}(t)+\sum_{i=1}^{N} a_{j i} U_{i}(t)=b_{j}(t), \quad j=1, \ldots, N
$$

that is, a linear system of differential equations for U_{i}. We rewrite this in the matrix form as

$$
\begin{equation*}
\mathcal{M} \dot{\mathcal{U}}(t)+\mathcal{A} \mathcal{U}(t)=b(t), \quad t>0 \tag{25}
\end{equation*}
$$

with

$$
\mathcal{U}(t)=\left[\begin{array}{c}
U_{1}(t) \\
\vdots \\
U_{N}(t)
\end{array}\right], \quad \dot{\dot{\mathcal{}}}(t)=\left[\begin{array}{c}
\dot{U}_{1}(t) \\
\vdots \\
\dot{U}_{N}(t)
\end{array}\right]
$$

stiffness matrix

$$
\mathcal{A}=\left[\begin{array}{ccc}
a_{11} & \ldots & a_{1 N} \\
\vdots & \ddots & \vdots \\
a_{N 1} & \ldots & a_{N N}
\end{array}\right], \quad a_{i j}=a_{j i}=\iint_{\Omega} \lambda \nabla \phi_{i} \cdot \nabla \phi_{j} \mathrm{~d} A+\int_{\Gamma} \kappa \phi_{i} \phi_{j} \mathrm{~d} s
$$

mass matrix

$$
\mathcal{M}=\left[\begin{array}{ccc}
m_{11} & \ldots & m_{1 N} \\
\vdots & \ddots & \vdots \\
m_{N 1} & \ldots & m_{N N}
\end{array}\right], \quad m_{i j}=m_{j i}=\iint_{\Omega} \phi_{i} \phi_{j} \mathrm{~d} A
$$

and load vector

$$
b(t)=\left[\begin{array}{c}
b_{1}(t) \\
\vdots \\
b_{N}(t)
\end{array}\right], \quad b_{j}(t)=\iint_{\Omega} f(x, y, t) \phi_{j}(x, y) \mathrm{d} A+\int_{\Gamma}\left(g(x, y, t)+\kappa(x, y) u_{A}(t)\right) \phi_{j}(x, y) \mathrm{d} s
$$

In order to determine $U_{1}(t), \ldots, U_{N}(t)$ one needs to solve 25 which is a linear, first order differential equation system that could be solved approximately by a time-stepping method, such as, the Backward Euler method. It requires an initial vector

$$
\mathcal{U}(0)=\left[\begin{array}{c}
U_{1}(0) \\
\vdots \\
U_{N}(0)
\end{array}\right], \text { with } U_{j}(0)=\iint_{\Omega} w \phi_{j} \mathrm{~d} A, \quad j=1, \ldots, N
$$

where w is the initial condition from 23 .

1.5 The wave equation in 2D

Here we consider the wave equation that can be used, for example, to describe the displacement u of a vibrating plate of the shape of Ω. Let Ω be a bounded planar domain and Γ be its piecewise smooth boundary with positive (counterclockwise) orientation. Then the initial-boundary value problem we consider reads as follows:
Find $u=u(x, y, t)$ such that

$$
\begin{cases}\partial_{t}^{2} u(x, y, t)-(a(x, y))^{2} \Delta u(x, y, t)=f(x, y, t) & (x, y) \in \Omega, \quad t>0 \tag{26}\\ \tau(x, y) \mathrm{D}_{N} u(x, y, t)+k(x, y) u(x, y, t)=g(x, y, t) & (x, y) \in \Gamma, \quad t>0 \\ u(x, y, 0)=w_{1}(x, y) & (x, y) \in \Omega \\ \partial_{t} u(x, y, 0)=w_{2}(x, y) & (x, y) \in \Omega\end{cases}
$$

Here $\Delta u=\nabla \cdot(\nabla u)=\frac{\partial^{2} u}{\partial x^{2}}+\frac{\partial^{2} u}{\partial y^{2}}$. As the the equation contains two time derivatives of u one needs two initial conditions, one for u and one for $\partial_{t} u$.

1.5.1 Weak formulation

For simplicity we take $a(x, y)=\tau(x, y)=1$ to be constant. Then the initial-boundary value problem (26) simplifies to

$$
\begin{cases}\partial_{t}^{2} u(x, y, t)-\Delta u(x, y, t)=f(x, y, t) & (x, y) \in \Omega, \quad t>0 \tag{27}\\ \mathrm{D}_{N} u(x, y, t)+k(x, y) u(x, y, t)=g(x, y, t) & (x, y) \in \Gamma, \quad t>0 \\ u(x, y, 0)=w_{1}(x, y) & (x, y) \in \Omega \\ \partial_{t} u(x, y, 0)=w_{2}(x, y) & (x, y) \in \Omega\end{cases}
$$

To derive the weak formulation of (27) we multiply the wave equation, the first equation in (27), by a test function $v=v(x, y)$, integrate over the domain Ω and use the integration by parts formula 17 with $\mathbf{F}=\nabla u$ and $\phi=v$:

$$
\begin{align*}
\iint_{\Omega} f v \mathrm{~d} A=\iint_{\Omega} \partial_{t}^{2} u v \mathrm{~d} A-\iint_{\Omega} \Delta u v \mathrm{~d} A & =\iint_{\Omega} \partial_{t}^{2} u v \mathrm{~d} A-\iint_{\Omega} v \nabla \cdot(\nabla u) \mathrm{d} A \tag{28}\\
= & \iint_{\Omega} \partial_{t}^{2} u v \mathrm{~d} A-\int_{\Gamma} v \nabla u \cdot \mathbf{n} \mathrm{~d} s+\iint_{\Omega} \nabla u \cdot \nabla v \mathrm{~d} A
\end{align*}
$$

We use the boundary condition, the second equation in (27), to write

$$
\nabla u \cdot \mathbf{n}=D_{N} u=g-k u
$$

Inserting this into we obtain

$$
\iint_{\Omega} f v \mathrm{~d} A=\iint_{\Omega} \partial_{t}^{2} u v \mathrm{~d} A+\int_{\Gamma} k u v \mathrm{~d} s-\int_{\Gamma} g v \mathrm{~d} s+\iint_{\Omega} \nabla u \cdot \nabla v \mathrm{~d} A .
$$

Therefore the weak formulation of (27) reads as:
Find $u=u(x, y, t)$ such that $u(x, y, 0)=w_{1}(x, y), \partial_{t} u(x, y, 0)=w_{2}(x, y)$, and for $t>0$,

$$
\begin{equation*}
\iint_{\Omega} \partial_{t}^{2} u v \mathrm{~d} A+\iint_{\Omega} \nabla u \cdot \nabla v \mathrm{~d} A+\int_{\Gamma} k u v \mathrm{~d} s=\iint_{\Omega} f v \mathrm{~d} A+\int_{\Gamma} g v \mathrm{~d} s \tag{29}
\end{equation*}
$$

for every test function v.

1.5.2 FEM

As before, for simplicity, let Ω be a polygonal domain, and consider a triangulation of Ω with nodes $P_{i}, i=1, \ldots, N$. We look for an approximation of u in the form $U(x, y, t)=\sum_{i=1}^{N} U_{i}(t) \phi_{i}(x, y)$, where ϕ_{i} is the finite element basis function corresponding to P_{i}. We need to determine the nodal values $U_{i}(t)$ of U. As before, we replace u by U in the weak formulation 29 and use the test functions $v=\phi_{j}, j=1, \ldots, N$, to get

$$
\begin{aligned}
\sum_{i=1}^{N} \ddot{U}_{i}(t) \iint_{\Omega} \phi_{i} \phi_{j} \mathrm{~d} A+\sum_{i=1}^{N} U_{i} \iint_{\Omega} \nabla \phi_{i} \cdot \nabla \phi_{j} \mathrm{~d} A+ & \sum_{i=1}^{N} U_{i} \int_{\Gamma} k \phi_{i} \phi_{j} \mathrm{~d} s \\
& =\iint_{\Omega} f \phi_{j} \mathrm{~d} A+\int_{\Gamma} g \phi_{j} \mathrm{~d} s, \quad j=1, \ldots, N
\end{aligned}
$$

or, after collecting terms,

$$
\begin{aligned}
& \sum_{i=1}^{N} \ddot{U}_{i}(t) \underbrace{\iint_{\Omega} \phi_{i} \phi_{j} \mathrm{~d} A}_{=m_{j} i}+\sum_{i=1}^{N} U_{i} \underbrace{\left(\iint_{\Omega} \nabla \phi_{i} \cdot \nabla \phi_{j} \mathrm{~d} A+\int_{\Gamma} k \phi_{i} \phi_{j} \mathrm{~d} s\right)}_{=a_{j i}} \\
&=\underbrace{\iint_{\Omega} f \phi_{j} \mathrm{~d} A+\int_{\Gamma} g \phi_{j} \mathrm{~d} s}_{=b_{j}(t)}, \quad j=1, \ldots, N
\end{aligned}
$$

This is of the form

$$
\sum_{i=1}^{N} m_{j i} \ddot{U}_{i}(t)+\sum_{i=1}^{N} a_{j i} U_{i}(t)=b_{j}(t), \quad j=1, \ldots, N
$$

that is, a linear system of differential equations for U_{i}. We rewrite this in the matrix form as

$$
\begin{equation*}
\mathcal{M} \ddot{\mathcal{U}}(t)+\mathcal{A} \mathcal{U}(t)=b(t), \quad t>0 \tag{30}
\end{equation*}
$$

with

$$
\mathcal{U}(t)=\left[\begin{array}{c}
U_{1}(t) \\
\vdots \\
U_{N}(t)
\end{array}\right], \quad \ddot{\ddot{\mathcal{U}}}(t)=\left[\begin{array}{c}
\ddot{U}_{1}(t) \\
\vdots \\
\ddot{U}_{N}(t)
\end{array}\right]
$$

stiffness matrix

$$
\mathcal{A}=\left[\begin{array}{ccc}
a_{11} & \ldots & a_{1 N} \\
\vdots & \ddots & \vdots \\
a_{N 1} & \ldots & a_{N N}
\end{array}\right], \quad a_{i j}=a_{j i}=\iint_{\Omega} \nabla \phi_{i} \cdot \nabla \phi_{j} \mathrm{~d} A+\int_{\Gamma} k \phi_{i} \phi_{j} \mathrm{~d} s
$$

mass matrix

$$
\mathcal{M}=\left[\begin{array}{ccc}
m_{11} & \ldots & m_{1 N} \\
\vdots & \ddots & \vdots \\
m_{N 1} & \ldots & m_{N N}
\end{array}\right], \quad m_{i j}=m_{j i}=\iint_{\Omega} \phi_{i} \phi_{j} \mathrm{~d} A
$$

and load vector

$$
b(t)=\left[\begin{array}{c}
b_{1}(t) \\
\vdots \\
b_{N}(t)
\end{array}\right], \quad b_{j}(t)=\iint_{\Omega} f(x, y, t) \phi_{j}(x, y) \mathrm{d} A+\int_{\Gamma} g(x, y, t) \phi_{j}(x, y) \mathrm{d} s
$$

In order to determine $U_{1}(t), \ldots, U_{N}(t)$ one needs to solve 30 which is a linear, second order differential equation system that could be solved approximately by a time-stepping method, such as, the Backward Euler method, after rewriting it as a first order system. It requires two initial vectors

$$
\mathcal{U}(0)=\left[\begin{array}{c}
U_{1}(0) \\
\vdots \\
U_{N}(0)
\end{array}\right], \text { with } U_{j}(0)=\iint_{\Omega} w_{1} \phi_{j} \mathrm{~d} A, \quad j=1, \ldots, N
$$

where w_{1} is the first initial condition from (27) and

$$
\dot{\mathcal{U}}(0)=\left[\begin{array}{c}
\dot{U}_{1}(0) \\
\vdots \\
\dot{U}_{N}(0)
\end{array}\right], \text { with } \dot{U}_{j}(0)=\iint_{\Omega} w_{2} \phi_{j} \mathrm{~d} A, \quad j=1, \ldots, N
$$

where w_{2} is the second initial condition from (27).

[^0]: ${ }^{1}$ November 1, 2017, Mihály Kovács, Matematical Sciences, Chalmers tekniska högskola

