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1 General description

1.1 Goals

The goal of the project is to give a first experience in the implementation of the Finite
Element Method (FEM). The students will see how physical problems can be described
by boundary value problems consisting in a system of partial differential equations
satisfied on a domain Ω and equipped with boundary conditions. They will learn
how to set up the weak formulation of a boundary value problem, how to correctly
handle boundary conditions, and how to discretize a domain. Eventually the discretized
problem will be solved and the students shall experience how different parameter choices
in the boundary value problem reflect different situations in the underlying physical
problem.

Moreover, besides the mathematical skills, it should be trained how to work on a
project more or less autonomously and how to properly present the results in a report.
It is important to give a correct and complete description of the mathematical and
numerical tools that are used in the project. Finally, the results have to be documented
in detail and presented in a way such that they can be reproduced by the reader.

1.2 General guidelines

The following guidelines have to be respected when carrying out the projects:

• The projects should be carried out in groups of two. The students form the groups
autonomously. If there are problems, e.g. someone does not find a partner, a
solution will be found together with the supervisor. Groups of one or three are
okay as exceptions.

• Each team chooses one of the projects described in Section 2 and works on it
according to the exercises stated. The project is mandatory and the students can
receive up to five bonus points for the exam.

• The teams have the possibility to propose an own project to the supervisor that
can be carried out instead of the projects described in this text.
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• The result of the project will be a report containing

1. a description of the physical problem and how it is modeled by a boundary
value problem,

2. the weak formulation of the boundary value problem,

3. the process of discretization of the problem,

4. an explanation of the numerical methods and the code,

5. a section where the code is tested and the boundary value problem is solved
containing some graphs,

6. and finally the Matlab - source code (equipped with comments).

• Deadline for handing in the report is Friday, December 22nd, 23:59. The
reports should be sent to the supervisor via e-mail.

• The reports can be written in Swedish, English, French or German.

• The students get help with their projects in meetings with the supervisor. They
are very much encouraged to book at least one meeting with the supervisor.

• For the first meeting the students should have formed a team, selected a project
and written down the weak formulation.

• The evaluation criteria are:

– Report containing the points (1) - (6) from above with no severe mistakes:
passed, 0 bonus points

– Entirely correct and complete presentation of the theoretical part: 1 bonus
point.

– Professional presentation of the result with proper images and discussion of
errors: 1 bonus point.

– One obtains further bonus points by completing the according tasks in the
project descriptions in Section 2.

– From the 3rd meeting with the supervisor onwards: -1 bonus point per
meeting.
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2 Projects

2.1 Heat conduction in a water hose

In this project we wish to simulate heat conduction in a non insulated water hose filled
with water that is assumed to be at rest. The surrounding of the hose has a temperature
of 300K. We assume that the water in the hose is hit by microwaves that cause the water
to heat up. The microwaves act as heat sources because their energy turns into heat
when the waves are absorbed by the water. This heat source is described by a function
f . To model the situation we consider a cross section of the water hose and consider
the stationary heat equation. Let the hose’s cross section be described by the domain
Ω ∈ R2 and let u : Ω → R be the temperature distribution. Then the temperature
distribution u satisfies the boundary value problem{

−∇ · (a∇u) = f on Ω ⊂ R2,
a~n · ∇u = c(u0 − u) on ∂Ω.

(2.1)

Here a is the thermal conductivity coefficient of water, ~n is the outward pointing unit
normal vector to the boundary ∂Ω of the domain Ω, c is the heat conductivity coefficient
of the hose’s walls, and u0 is the temperature outside the hose. Typical values are
awater = 0.6 W

mK
and c = 100 W

mK
.

Basic exercises (0 bonus points):

1. Find the weak formulation of the boundary value problem.

2. Assume that Ω is a circle of 1dm and write a Matlab program that solves the
boundary value problem using the Finite Element Method. Take for now f as an
(arbitrary) constant.

3. To obtain an a bit more interesting simulation we set the outside temperature
to 250K. Ice has a different thermal conductivity coefficient than water, namely
aice = 2.2 W

mK
. So the constant a will be depending on the temperature u now:

a(x) =

{
2.2 if u(x) ≤ 273
0.6 if u(x) > 273

. (2.2)

This gives a non-linear partial differential equation that we can solve e.g. with
fixed point iteration. The fixed point iteration is the following procedure: As-
sume first a = 0.6 everywhere, then solve the boundary value problem. Change
afterwards a to 2.2 at all node points where u > 273. Solve the boundary value
problem again and adjust a according to the values of u. Repeat this procedure
as long as a has to be adjusted, i.e. as long as there are triangles where a still has
the “wrong” value.

What constant value of the heat source function f describing the radiation is
needed such that in the equilibrium state we have 50% ice and 50% water?
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Extra exercises (1 bonus point each)

1. Implement source functions f that are not constant on Ω.

2. Describe a realistic physical model for absorption and scattering of microwaves in
water that motivate a certain source function f . Give the function f and solve
basic exercise 2 with this function.

3. Assume now again that the exterior temperature is 250K and that we have mi-
crowave radiation coming from above with some intensity I. Use now your physi-
cal model to describe how the water is heated by the microwaves. What intensity
has to be chosen such that again in the equilibrium state we have 50% water and
50% ice in the hose?
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2.2 Eigenvalue problem

Let A be an elliptic differential operator acting on functions defined on some domain
Ω ∈ R2. Then the eigenfunctions and eigenvalues of this operator give much insight to
the properties of the operator in question. Moreover the solutions of the corresponding
parabolic (u̇+Au = f) and hyperbolic (ü+Au = f) problems can be constructed from
it.

It is well known that eigenvalues play an important role in classical and modern
Physics. In this project we explore how the eigenvalue of a relatively general elliptic
differential operator can be calculated numerically and how they change when the op-
erator itself or the domain Ω is altered. The results shall be compared to results from
Fourier Analysis.

Define the operator A by

Au := −∇ · (α(x)∇u) + ~β(x) · ∇u+ γ(x)u, u ∈ C2(Ω). (2.3)

Consider the parabolic problem
∂u
∂t

+ Au = f on Ω× [0, T ]
u = 0 on ∂Ω× [0, T ]
u = u0 on Ω× {0}

(2.4)

To find a solution to this problem, one can consider the corresponding eigenvalue prob-
lem {

Aen = λnen on Ω
en = 0 on ∂Ω

, n = 1, . . . ,∞. (2.5)

The spectral theorem implies that (2.5) has countably many solutions and that the
eigenfunctions {en} form an L2-basis of H2(Ω). Then a solution to the parabolic prob-
lem can be obtained by the ansatz

u(t, x, y) =
∞∑
n=1

ϕn(t)en(x, y). (2.6)

As an example one can consider the Laplace operator ∆ := ∇ · ∇ on a rectangular
domain Ω = [0, L]× [0,M ]. The eigenvalue problem with boundary condition u = 0 on
∂Ω, ∆uij = λijuij is solved by

λij = π

(
i2

L2
+

j2

M2

)
, uij(x, y) = sin

(
iπx

M

)
sin

(
jπy

L

)
, i, j = 1, . . . ,∞. (2.7)

These solutions of the eigenvalue problem give then rise to solutions of the heat equation,
u̇ = ∆u, or the wave equation ü = ∆u.
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Basic exercises (0 bonus points):

1. Write down the weak form of the eigenvalue problem (2.5) for an elliptic operator
of the general form (2.3).

2. Write a Matlab program that solves this eigenvalue problem using the Finite
Element Method. Assume a = 1, ~β = 0, and γ(x) ≥ 0 is an arbitrary function,
e.g. γ(x) = x

5
.

3. Use this Matlab program to calculate the eigenvalues of the Laplace operator on
the domains

Ω1 = [−1, 1]× [−1, 1],

Ω2 = [−3, 3]× [−3, 3],

Ω3 = [−2,−1]× [−2, 2] ∪ [−2, 2]× [1, 2],

Ω4 = arbitrary set fulfilling Ω1  Ω4  Ω2,

with the boundary conditions u = 0 on ∆Ω. Compare the eigenvalues of the
different domains. Can you observe any laws how the eigenvalues change if one
changes or decomposes the domain?

4. Use a function γ(x) instead of γ ≡ 0 and compare the eigenvalues on Ω1.

2.2.1 Extra exercises (1 bonus point each):

1. Explain why all solutions of the eigenvalue problem (2.5) give a solution of the
parabolic problem (2.4) and write down a formula for the solution u(t, x, y) of (2.4)
in terms of the initial data u0, the eigenvalues λn of A, and the eigenfunctions en,
n ∈ N. (Hint: Insert the ansatz (2.6) into the equation (2.4) to obtian an ODE
for the coefficient functions ϕn. Use then the method of variation of constants to
solve the inhomogeneous ODE.)

2. Solve the eigenvalue problem for A with α = 1, γ = 0, but ~β 6= 0 on a circular
domain Ω with the boundary conditions u = 0 on ∂Ω. Calculate the eigenvalues
for ~β1 = ε(x,−y) and ~β2 = ε(x, y) for some ε ∈ R\{0}. Note that β1 is divergence
free whereas β2 is not. Compare the eigenvalues and consider the determinant
and eigenvalues of the stiffness matrix.

3. Solve the parabolic problem (2.4) with your Matlab code on Ω1. Take e.g. α ≡ 1,
β ≡ 0, γ ≡ 0, f(t, x, y) = 10e−100(x

2+y2), and u0 ≡ 0. Of course you can implement
different parameters, too. (Hint: Make sure that you normalize the obtained en
such that ‖en‖2 = 1.)

4. Discuss how the numerically calculated eigenvalues of A converge as the mesh
parameter h→ 0.
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2.3 Waves in a bath tub

Let Ω ∈ R2 describe the area of a bath tub. The surface of the water (its amplitude
u(t, x, y) to be precise) in the tub can be modeled by the following boundary value
problem: 

ü−∆u = f on Ω× [0, T ],
~n · ∇u = 0 on ∂Ω× [0, T ],
u = u0, on Ω× {0},
u̇ = v0 on Ω× {0}

. (2.8)

Here ~n is the outward pointing unit normal to the boundary ∂Ω of the domain Ω. A dot
denotes the derivative with respect to t This problem will be considered as evolution
problem.

The time evolution will be treated by a linearization whereas at each time step
u(t, ~x) will be calculated using the Finite Element Method.

2.3.1 Basic exercises (0 bonus points):

1. Write down the weak formulation of the boundary value problem (2.8). (Integrate
over Ω, not over time.)

2. Discretize the weak form. First subdivide Ω into triangular cells and express the
numerical approximation uk of u as linear combination of hat functions ϕj with
time dependent coefficients,

uk(t, x, y) =
N∑
j=1

ξj(t)ϕj(x, y).

Linearize then ξ̈j(t) by

ξ̈j(t) ≈
ξj(t+ ∆t)− 2ξj(t) + ξ(t−∆t)

∆t2
.

Choose ∆t < h where h is the mesh parameter.

3. Implement a domain Ω in Matlab that resembles a bath tub and write a Matlab
program that solves the wave equation on Ω. Take f = 0, v0, and for u0 the waves
that a large drop would make when falling into the bathtub, for example

u0(~x) =
cos(5π|~x|)
1 + 10|~x|2

. (2.9)

It is important that the initial data u0 and v0 is correctly taken into account for the
time discretization. This is done by first calculating the initial acceleration a0. Let M
be the mass matrix and S the stiffness matrix. Then Ma0 = f0 − Su0. Then we can
replace

u−1(~x) := u(−∆t, ~x) = u0(~x)−∆tv0(~x) +
∆t2

2
a0(~x).
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2.3.2 Extra exercises (1 bonus point each):

1. Implement source functions f that depend on x, y, and t. What could they
describe in the real world? Solve the boundary problem in this situation. (You
can now take u0 ≡ 0).

2. Take a non-trivial initial velocity distribution v0 and solve the boundary value
problem. What real-world situations could be described by the v0 you consider?

3. Solve the boundary value problem for Dirichlet boundary conditions u(t, ~x) = 0
for all ~x ∈ ∂Ω and discuss the differences to the Neumann case. Take as source
function

f(t, x, y) =

{
1, if t ∈ [0.5, 1] and |(x, y)| ≤ 0.2
0, else

(2.10)

simulating a large droplet, and a continuous water jet

f(t, x, y) =

{
1, if |(x, y)| ≤ 0.2
0, else

. (2.11)

(Adjust the dimensions of f , if necessary.)
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3 Practical hints
The following hints might be helpful.

• In order to calculate the mass matrix, the stiffness matrix and the load vector
integrals of ϕj, ∇ϕj, and f have to be calculate. In S. Larsson and V. Thomé,
Partial Differential Equations with Numerical Methods, Section 5.6 one finds use-
ful formulas for this.

• On the course homepage the Matlab skeleton MyPoissonSolver is provided. It
gives an idea of how an implementation of the Finite Element Method could be
structured in Matlab.

• In particular MyPoissonSolver deals with general, mixed boundary conditions of
the form

~n · ∇u(~x) = k(g(~x)− u(~x)), (3.1)

where k is a constant and g a function defined on the boundary. Neumann bound-
ary conditions are obtained for g = −u and Dirichlet boundary conditions for
k →∞, thus by choosing a very large value for k.

• The domain and its subdivision into triangles can be nicely done using the PDE-
App in Matlab. You start it by clicking right on top on the flag “Apps” and then
select “PDE”.
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