
1. Orthogonal projections

A subset S of a vector space V is convex if for every v, w ∈ S and every t ∈ [0, 1],
the vector tv + (1− t)w also belongs to S.

Since tv + (1− t)w = w + t(v − w), {tv + (1− t)w : t ∈ [0, 1]} is the line segment
joining the points v and w, a set S is convex when the straight line between any two
points in S lies entirely in S. For example, balls in R2 (or indeed in any normed space)
are convex, and every subspace is convex; on the other hand, an annulus (a disc with
a hole in it) is not. Our next theorem shows that interesting things happen when we
combine the geometric notion of convexity with the analytic notion of closedness.

Theorem 1.1. Suppose S is a nonempty closed convex subset of a Hilbert space H.
Then for every h ∈ H there is a unique vector k ∈ S such that

‖h− k‖ = d(h, S) := inf{‖h− l‖ : l ∈ S};
in other words, there is exactly one point k in S which is closest to h.

This says that if S is closed and convex, the optimisation problem

• minimise ‖h− l‖ subject to the constraint l ∈ S

has a unique solution. The convexity hypothesis controls the geometry of the set S,
and is a desirable feature of optimisation problems. The closedness hypothesis allows
us to use the basic method of analysis: construct a sequence of approximate solutions
and show that this sequence converges to a solution.

It is crucial in this result that the norm comes from an inner product: the result
is not true for arbitrary norms. For example, consider the closed unit ball in R2

for the supremum norm ‖(x, y)‖∞ := max{|x|, |y|} and h = (2, 0). In the proof
of Theorem 1.1, the inner product does not appear explicitly, but enters via the
parallelogram law.

Proof of Theorem 1.1. We construct a sequence {kn} of approximate solutions, prove
that it is a Cauchy sequence, and argue that the limit k is a solution. Because
d = d(h, S) is by definition a greatest lower bound, each d + 1

n
is not a lower bound,

and there is a sequence {kn} ⊂ S such that d ≤ ‖h − kn‖ ≤ d + 1
n
. Notice that

‖h− kn‖ → d by the squeeze principle. To get an expression for ‖km− kn‖, we apply
the parallelogram law to h− kn and h− km:

‖(h− kn) + (h− km)‖2 + ‖km − kn‖2 = 2(‖h− kn‖2 + ‖h− km‖2).
Since (h− kn) + (h− km) = 2(h− 1

2
(km + kn)) and S is convex, we deduce that

‖km − kn‖2 = 2(‖h− kn‖2 + ‖h− km‖2)− 4‖h− 1
2
(km + kn)‖2(1.1)

≤ 2(‖h− kn‖2 + ‖h− km‖2)− 4d2,
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which converges to 2(d2 + d2) − 4d2 = 0 as m,n → ∞. Thus {kn} is a Cauchy
sequence1.

Thus {kn} converges to a vector k ∈ H, which belongs to S because S is closed.
Because subtraction and the norm are continuous (why?), ‖h−kn‖ → ‖h−k‖, which
together with ‖h− kn‖ → d gives us ‖h− k‖ = d.

For the uniqueness, suppose there is another point l such that ‖h − l‖ = d. Then
(k + l)/2 also belongs to the convex set S, and ‖h− 1

2
(k + l)‖ ≥ d by definition of d.

Another application of the parallelogram law gives

2(d2 + d2) = 2(‖h− k‖2 + ‖h− l‖2)
= ‖(h− k) + (h− l)‖2 + ‖k − l‖2

= ‖2(h− 1
2
(k + l))‖2 + ‖k − l‖2

≥ 4d2 + ‖k − l‖2,

which implies that ‖k − l‖2 = 0 and k = l. �

Remark 1.2. Notice that in the above proof we only used that if h, k ∈ S, then
1
2
h + 1

2
k ∈ S; that is, the definition of convexity with t = 1

2
. Indeed, it can be shown

that S is closed and convex if and only if S is closed and h, k ∈ S =⇒ 1
2
h + 1

2
k ∈ S

for all h, k ∈ S.

Theorem 1.1 applies in particular to every closed subspace M of a Hilbert space H.
Drawing a few pictures in R2, where closed subspaces are lines through the origin,
should convince you that the closest point in M to h can be obtained by dropping
a perpendicular from h to M . The next theorem says that these pictures give good
intuition about what happens in general Hilbert spaces. To see why this might be
powerful, note that part (a) relates the geometric notion of orthogonality to the metric
notion of distance.

Theorem 1.3. Suppose M is a closed subspace of a Hilbert space H.

(a) If h ∈ H and k ∈ M , then ‖h − k‖ = d(h,M) if and only if h − k ⊥ M . (So
that k is the closest point of M to h if and only if h− k is orthogonal to M .)

(b) For each h ∈ H, let Ph denote the closest point in M to h. Then Ph is
uniquely characterised by the properties that Ph ∈M and h−Ph ⊥M . The function
P : H →M has the following properties:

(i) P : H →M is linear;

(ii) ‖Ph‖ ≤ ‖h‖ for all h;

(iii) P ◦ P = P ;

1In case this business about m,n→∞ makes you nervous, we include the details. Suppose ε > 0
is given. Since ‖h − kn‖ → d, we have ‖h − kn‖2 → d2 by the algebra of limits, and there exists
N ∈ N such that

n ≥ N =⇒ ‖h− kn‖2 ≤ d2 + ε2/4.

Then from (1.1) we have

m,n ≥ N =⇒ ‖km − kn‖2 ≤ 2(d2 + ε2/4 + d2 + ε2/4)− 4d2 = ε2,

and {kn} is Cauchy.



THE PROJECTION THEOREM 3

(iv) kerP = M⊥ := {h ∈ H : h ⊥M}; and

(v) rangeP = M .

The map P is called the orthogonal projection of H onto M . P is a bounded linear
operator on H, ‖P‖ = 0 (iff M = {0}) or ‖P‖ = 1, and

‖h‖2 = ‖Ph‖2 + ‖h− Ph‖2 for all h ∈ H.

Proof. (a) Suppose first that h−k ⊥M and z ∈M . Then k−z ∈M , so Pythagoras’s
Theorem gives

‖h− z‖2 = ‖(h− k) + (k − z)‖2 = ‖h− k‖2 + ‖k − z‖2 ≥ ‖h− k‖2,

so ‖h− k‖ = d(h,M), and k is the closest point of M to h.
Next suppose that k is the closest point in M to h, and z ∈ M . We want to show

that (h− k | z) = 0. If t ∈ R, then k + tz ∈M as M is a subspace and

d2 ≤ ‖h− (k + tz)‖2 = ‖(h− k)− tz‖2 = d2 + t2‖z‖2 − 2t(h− k | z).

Therefore,

(1.2) t2‖z‖2 − 2t(h− k | z) ≥ 0, for all t ∈ R.

If t > 0, then (1.2) implies that t‖z‖ ≥ 2(h − k | z) for all t > 0 and hence, letting
t → 0+, it follows that 0 ≥ (h − k | z). Similarly, if t < 0, then (1.2) implies
that t‖z‖ ≤ 2(h − k | z) for all t < 0 and hence, letting t → 0−, it follows that
0 ≤ (h− k | z). Thus (h− k | z) = 0.

(b) The characterisation of Ph is a restatement of (a). For (i), suppose h, k ∈ H
and c, d ∈ F. Then c(Ph) + d(Pk) ∈M and

h− Ph and k − Pk ⊥M =⇒ c(h− Ph) and d(k − Pk) ⊥M

=⇒ (ch + dk)− (c(Ph) + d(Pk)) ⊥M.

Thus c(Ph) + d(Pk) has the properties which uniquely characterise P (ch + dk), and
we have P (ch + dk) = c(Ph) + d(Pk), and P is linear.

For (ii), we note that h−Ph ∈M⊥ and Ph ∈M , so Pythagoras’s Theorem implies

(1.3) ‖h‖2 = ‖(h− Ph) + Ph‖2 = ‖h− Ph‖2 + ‖Ph‖2 ≥ ‖Ph‖2.

For (iii) note that for all h ∈ H we have that Ph ∈ M and thus the closest point
of M to Ph is Ph itself. Therefore, P (Ph) = Ph for all h ∈ H and thus P = P ◦ P .

For (iv) suppose h ∈ H. Then Ph = 0 iff h− 0 ⊥M iff h ∈M⊥.
For (v) we note that rangeP ⊂ M by definition. If h ∈ M then the closest point

of M to h is h itself; that is, h = Ph. Thus M ⊂ rangeP .
Equation (ii) imply that P is bounded with ‖P‖ ≤ 1; if M = {0}, then Ph = 0 for

every h, and ‖P‖ = ‖0‖op = 0; if M 6= {0}, there is a unit vector h ∈ M , and then
the equation Ph = h implies ‖P‖ = 1. The last equality follows from Pythagoras’s
theorem. �

Corollary 1.4. Suppose that M is a closed subspace of a Hilbert space H and let
h ∈ H. Then h can uniquely be written as h = k + l, where k ∈M and l ∈M⊥.
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Proof. If h ∈ H, then h = Ph + h− Ph. Thus we can take k = Ph and l = h− Ph
where Ph ∈ M and h − Ph ∈ M⊥ by Theorem 1.3 (b). Suppose that h = k1 + l1
with k1 ∈M and l1 ∈M⊥. Then 0 = k − k1 + l − l1 and thus

0 = ‖k − k1‖2 + (k − k1 | l− l1) = ‖k − k1‖2 + (k − k1 | l)− (k − k1 | l1) = ‖k − k1‖2.
Therefore, k = k1 and l = l1. �

We now discuss two important applications of Theorem 1.3. The first concerns the
orthogonal complement

M⊥ := {h ∈ H : (h | k) = 0 for all k ∈M}
appearing in the Theorem. The linearity of the inner product implies that M⊥ is
a linear subspace of H, and the continuity of the inner product that it is closed: if
hn ∈M⊥ and hn → h in H, then (hn | k)→ (h | k) implies (h | k) = 0 for all k ∈M . So
Theorem 1.3 says that there is an orthogonal projection onto M⊥. To appreciate that
the next Corollary might be saying something interesting, notice that the statement
(M⊥)⊥ = M makes no explicit mention of closest points.

Corollary 1.5. If M is a closed subspace of H and P is the orthogonal projection of
H on M , then I − P is the orthogonal projection of H onto M⊥, and (M⊥)⊥ = M .

Proof. For the first part, suppose h ∈ H. Then, for z ∈M⊥,

(h− (I − P )h | z) = (h− h + Ph | z) = (Ph | z) = 0,

so I − P has the property characterising the projection on M⊥. Part (iv) of the
Theorem now implies (M⊥)⊥ = ker(I − P ). But

k ∈ ker(I − P )⇐⇒ (I − P )k = 0⇐⇒ Pk = k ⇐⇒ k ∈M,

so ker(I − P ) = M , and we are done. �

Remark. We stress that the (orthogonal) complement M⊥ is not the same as the
set-theoretic complement H \M = {h ∈ H : h /∈ M}. For example, the orthogonal
complement of the x-axis in the inner-product space R2 is the y-axis.


