A few words about gcov. This command tells us:
e how often each line of code executes
e what lines of code are actually executed

Compile without optimization. It works only with gcc. So it
should work with g95 and gf ortran as well. There may, how-
ever, be problems with different versions of gcc and the gcc-
libraries. See the web-page for the assignment for the latest
details.

To use gcov on the student system (not Intel in this case) one
should be able to type:

g95 -fprofile-arcs -ftest-coverage prog.f90 sub.f9C
./ a.out

gcov prog.f90
gcov sub. f90

creates prog.f90. gcov
creates sub.f90. gcov

| ess prog. f90. gcov etc.
and for C
gcc -fprofile-arcs -ftest-coverage prog.c sub.c

similarly for gf ortranand g++.

133

Example: Arpack, a package for solving large and sparse eigen-
value problems, Az = Az and Az = ABxz. I fetched a com-
pressed tar-file, unpacked, read the README-file, edited the
configuration file, and compiled using make. After having cor-
rected a few Makefiles everything worked. I then recompiled
using the compiler options for gpr of and t cov (on a Sun; I have
not run this one the AMD-system).

I used the f 90-compiler even though Arpack is written in For-
tran77. (There is also Arpack++, a collection of classes that

offers C++ programmers an interface to Arpack.)

First gpr of::

% gprof | less (1662 lines, less is a pager)
or
% gprof | nore (or mwith alias mnore)
(1 have alias mless)
or
% gprof > file_name (emacs file_nane, for exanple)
etc.

The first part of the output is the flat profile, such a profile can
be produced by prof as well. Part of it, in compressed form,
comes on the next page. The flat profile may give a sufficient
amount of information.

134

Each sanple counts as 0.01 seconds.

% cumnul ative sel f sel f tota
time seconds seconds calls s/call s/call nane
79.10 8.10 8. 10 322 0.03 0.03 dgemv_
8. 50 8.97 0.87 60 0.01 0.01 dger_
4.10 9.39 0.42 58 0.01 0.01 dgttrs_
3.22 9.72 0.33 519 0. 00 0.00 dcopy_
2.25 9.95 0.23 215 0. 00 0.00 dnrn2_
0.49 10. 00 0. 05 562 0. 00 0.00 __open
.. lots of lines deleted ...
0. 00 10. 24 0. 00 1 0. 00 10.14 main
.. lots of lines deleted ...
0. 00 10. 24 0. 00 1 0. 00 0.00 strchr
name is the name of the routine (not the source file). The Sun-

compiler converts the routine name to lower case and adds _ .
___openis a system (compiler?) routine.

The columns are:

% t i me the percentage of the total running time of the program
used by this function. Not the one it calls, look at nmai n.

cunul ati ve secondsa running sum of the number of seconds
accounted for by this function and those listed above it.

sel f secondsthe number of seconds accounted for by this func-
tion alone. This is the major sort for this listing.

cal | s the number of times this function was invoked, if this
function is profiled, else blank.

sel f ns/ cal | the average number of milliseconds spent in this
function per call, if this function is profiled, else blank.

total ns/call the average number of milliseconds spent in this
function and its descendents per call, if this function is profiled,
else blank. Note mai n.

135

dgenv is a BLAS routine, double general matrix vector multiply:
dgenv -
y = al pha*A*x + beta*y or y :=

I have compiled the Fortran code instead of using a faster

performance library so we can look at the source code.

performone of the matrix-vector operations
al phas A’ *x + betary

Let us run t cov on dgenv.

Part of the output (conpressed):

DO 60, J =1, N

168 ->

4782 -> I F(X(JX).NE. ZERO) THEN

4740 -> TEMP = ALPHAX(JX)

DO50, | =1, M
77660160 - > Y(1) = Y(1) + TEMPA(I, J)
50 CONTI NUE
END | F
4782 -> JX = JX + I NCX

60 CONTI NUE

Top 10 Bl ocks

Li ne Count
211 77660160
238 50519992
177 871645

Note that this code is very poor. Never use the simple Fortran
BLAS- or Lapack routines supplied with some packages. One
lab deals with this issue.

136

More about gpr of

gpr of produces a call graph as well. It shows, for each function,
which functions called it, which other functions it called, and
how many times. There is also an estimate of how much time
was spent in the subroutines called by each function. This list
is edited.

index %ime self <children called name
rmlines

0.01 10. 13 1/1 mai n [1]

[3] 99.0 0.01 10.13 1 MAI N_ [3]
0. 00 7.19 59/ 59 dsaupd_ [5]
0. 00 2.45 1/1 dseupd_ [8]
0.42 0. 00 58/ 58 dgttrs_ [14]

lines del eted

0.83 0. 00 33/ 322 dsapps_ [11]
1.48 0. 00 59/ 322 dlarf_ [9]
5.79 0. 00 230/ 322 dsaitr_ [7]

[4] 79.1 8.10 0. 00 322 dgemv_ [4]
0.00 0.00 1120/3179 |sane_ [50]

Each routine has an index (see table at the end) and is presented
between - - -lines. 8.10s was spent in dgenv itself, 79.1% of

total (including calls from dgenv). dsapps, dl arf, dsai tr
(parents) called dgenv which in turn called | sane, a child. dsapps
made 33 out of 322 calls and dgenv took 0.83s for the calls.
dgenv called | sanme 1120 of 3179 times, which took no
measurable time (sel f).

children: For dgenv it is the total amount of time spent in
all its children (I same). For a parent it is the amount of that
time that was propagated, from the function’s children (I sanme),
into this parent. For a child it is the amount of time that was
propagated from the child’s children to dgenv.

137

Profiling in Matlab

Matlab has a built-in profiling tool. hel p profi | e for more
details. Start Matlab (must use the GUI).

>> profile on

>> run % The assi gnment

El apsed time is 1.337707 seconds.

El apsed tine is 13.534952 seconds.

>> profile report % in nmozilla or
>> profile off

net scape

You can start the profiler using the GUI as well

(click in “Profiler” using “Desktop” under the main meny). The
output comes in a new window and contains what looks like the
flat profile from gpr of.

One can see the details in individual routines by clicking on
the routine under Functi on Nanme This produces a gcov-type
of listing. It contains the number of times a line was executed
and the time it took.

138

Using Lapack from Fortran and C

Use Lapack to solve a problem like:

1 -1 -2 -3 —4 -9
1 1-1-2-3 —4
2 1 1-1-=-2|z= 1
3 2 1 1-1 6
4 3 2 1 1 11

The solution is the vector of ones. We use the Lapack-routine
dgesv from Lapack. Here is a man-page:

NAME
DGESV - conpute the solution to a real system of
i near equations A* X = B,
SYNOPSI S
SUBROUTI NE DGESV(N, NRHS, A, LDA, IPIV, B, LDB, INFO)
| NTEGER I NFO, LDA, LDB, N, NRHS
| NTEGER IPIV(*)
DOUBLE PRECI SION A(LDA, »), B(LDB, *)
PURPOSE
DGESV conputes the solution to a real systemof |inear

equations A* X = B, where Ais an N-by-N matrix and X
and B are N-by-NRHS matrices.

The LU deconposition with partial pivoting and row
interchanges is used to factor Aas A =P L » U
where P is a pernutation matrix, L is unit |ower
triangular, and U is upper triangular. The factored
formof Ais then used to solve the system of equations
A* X = B.

ARGUMENTS

N (input) | NTEGER
The nunber of linear equations, i.e., the order
of the matrix A. N >= 0.

139

NRHS (i nput) | NTEGER
The nunber of right hand sides, i.e., the nunbe
of colums of the matrix B. NRHS >= 0.

A (i nput/output) DOUBLE PRECI SI ON array, dinmensio
(LDA,N) On entry, the N-by-N coefficient matrix
A. On exit, the factors L and U fromthe
factorization A = RLxU;, the unit diagonal
el ements of L are not stored.

LDA (input) | NTEGER
The | eadi ng di mension of the array A
LDA >= max(1, N).

I PV (out put) | NTEGER array, dinension (N)

The pivot indices that define the pernutation
matrix P; rowi of the matrix was interchanged
with row I PIV(i).

B (i nput/output) DOUBLE PRECI SION array, dinmensio
(LDB, NRHS) On entry, the N-by-NRHS matrix of
right hand side matrix B. On exit, if INFO=0
the N-by-NRHS solution matrix X

LDB (i nput) | NTEGER
The | eadi ng di mension of the array B.

LDB >= max(1, N).

I NFO (out put) | NTEGER
= 0: successful exit
< 0: if INFO=-i, the i-th argunment had an

illegal value
>0: if INFNO=1i, U(i,i) is exactly zero. The

factorizati on has been conpleted, but the
factor Uis exactly singular, so the
solution could not be conputed.

140

In Fortran90, but using the F77 interface, and F77-type
declarations (to get shorter lines) this may look like:

program nei n

i nteger, paraneter n =10, lda =n, &
ldb = n, nrhs =1

i nteger info, row, col, ipiv(n)

doubl e precision A(lda, n), b(ldb)

do col =1, n
dorow=1, n
A(row, col) = row - col

end do

A(col, col) = 1.0d0

b(col) =1+ (n*x (2*col - n-1)) [/ 2
end do

call dgesv (n, nrhs, A lda, ipiv, b, Idb, info)

if (info==0) then

printx, "Maximumerror =", naxval (abs(b - 1.0d0))
el se
printx, "Error in dgesv: info =", info
end if
end program nain
% Conpi |l e and |ink, somehow, to Lapack

% a. out

Maxi mum error = 4.218847493575595E- 15

‘Where can we find dgesv? There are several options. Fetching
the Fortran-code from Netlib, using a compiled (optimized)
library etc. One of the assignments, Lapack (Uniprocessor
optimization), deals with these questions.

141

The following optimized libraries contain Lapack and BLAS (and
perhaps routines for fft, sparse linear algebra, etc. as well).

e AMD: ACML (AMD Core Math Library).
e Intel: MKL (Intel Math Kernel library).
e SGI: complib.sgimath (Scientific and Mathematical Library).
e IBM: ESSL (Engineering and Scientific Subroutine Library).
e Sun: Sunperf (Sun Performance Library).
There may be parallel versions.
Now for C and C++
Fairly portable (do not use local extensions of the compiler).
Think about: In C/C++
e matrices are stored by row (not by column as in Fortran)
e matrices are indexed from zero
e call by reference for arrays, call by value for scalars
o the Fortran compiler MAY add an underline to the name

e you may have to link with Fortran libraries
(mixing C and Fortran I/O may cause problems, for example)

o C++ requires an ext er n-declaration, in C you do not have
to supply it (but do)

e make sure that C and Fortran types are compatible (number
of bytes)

e some systems have C-versions of Lapack

In the example below I have linked with the Fortran-version since
not all systems have C-interfaces. Make sure not to call dgesv
from C on the Sun, if you want the Fortran-version (dgesv gives
you the C-version).

142

#i ncl ude <mat h. h>
#i ncl ude <stdio. h>
#define _N 10

#i fdef __cplusplus
extern "C' void [+ For C++ */
#el se
extern void /* For C */
#endi f
dgesv_(int », int *, double *, int =, int[],
doubl e[], int *x, int *);
| *
* int [] or int . double []J[] is NOT OK but
* double [][10] is, provided we
= call dgesv_ with A and not &A[O0][O].
*/
int main()
{
int n=_N Ida=_N Idb =_N, nrhs =1,
info, row, col, ipiv[_N;
doubl e Al_NI[_N, b[_N], s, max_err;

/* Make sure you have the correct mx of types.*/
printf("sizeof(int) = %\n", sizeof(int));

/* I ndexing fromzero. x/

for (col =0; col < n; col++) {
for (row = 0; row < n; rowt+)
Alcol][row] = row - col; A& Note TRANSPOSE */

b[col] =1+ (n*x (1 + 2= col - n)) / 2;
Alcol][col] = 1;
}

143

/* Note underline and & for the scalar types.
* &A[0][0] not to get a
* conflict with the prototype.
*
/
dgesv_(&n, &nrhs, &A[0][0],
&l db, & nfo);

& da, ipiv, b,

if (info) {
printf("Error in dgesv:
return 1;
} else {
max_err = 0.0;
for (row = 0; row < n; row+) {
s = fabs(b[row] - 1.0);
if (s > max_err)
max_err =s;

info = %\n", info);

}
printf("Mxinmmerror = %\n",
return O;

}

max_err);

}

On a Sun. See the lab for AMD.

% cc -fast extern.c -xlic_lib=sunperf
% a. out

sizeof (int) = 4
Maxi mum error = 4.218847e-15

% CC -fast extern.c -xlic_lib=sunperf
% a. out

sizeof (int) = 4

Maxi mum err or 4.218847e- 15

% a. out If you call

sizeof (int) = 4

** On entry to DGESV ,
illegal value.

dgesv and not dgesv_

parameter nunber 1 has an
Error ip dgesv: info = -1

Java

It is possible to mix Java with other languages using JNI, the
Java Native Interface. Wikipedia is a good starting point (look
for jni).

Here are a few words on Java.

% cat test.java
public class test {
public static void main (String[] args) {
int n=10;
doubl e[] a = new doubl e[n];

for(int j =0; j < n; j++)
a[jl =1j;

Systemout.printin("a[n-1] =" + a[n-1]);
}
}

% javac test.java Produces test.class
% java test

a[n-1] = 9.0

j avac produces the file t est . cl ass containing the bytecode.

j avais the Java interpreter that reads and executes t est . cl ass.
We can study the bytecode (instructions) using j avap, the Java
class file disassembler. The interpreter uses a stack and has local
variables; I have called them var _1 etc. To make the bytecode
easier to read I have used our variable names. Half of the listing
(mostly dealing with the print, has been deleted). I have not
printed all the pops from the stack.

See Wikipedia (java bytecode) for more details.

145

Execute (can optim ze, later...

% j avap -verbose test

public static void main(java.lang.String[]);
Code:

0: bipush 10 10 -> stack

2: istore_1 stack -> var_1

3: iload_1 var _1 -> stack

4: newarray double create double a[10], &a[O0]->stack
6: astore_2 &a[0] -> var_2

7: iconst_0 0 -> stack

8: istore_3 0 -> var_3 (corresponds to j)
9: iload_3 j -> stack

10: iload_1 n -> stack

11: if_icnpge 25 if (j > n) goto line 11+25
14: al oad_2 &a[0] -> stack

15: iload_3 j -> stack

16: iload_3 j -> stack (used as index)
17: i2d doubl e(j) -> stack

18: dastore a[j] = double(j), "index reg"
19: iinc3, 1 j++

22: goto9 goto line 9:

54:return

}

To speed things up the bytecode interpreter (j ava) often uses
a JIT (Just In Time) technique. A JIT compiler converts all of
the bytecode into native machine code just as a Java program
is run. This results in run-time speed improvements over code
that is interpreted by a Java virtual machine.

java -client testor
java -server test (usually much faster; default).

146

One can profile Java programs. from man j ava:

- Xpr of
Profiles the running program and sends profiling
data to standard output. This option is provided
as a utility that is useful in program devel opnent
and is not intended to be be used in production
systens.

- Xrunhprof[: hel p][:suboption=val ue,...]
Enabl es cpu, heap, or nonitor profiling. This
option is typically followed by a list of
comma- separ at ed suboption=val ue pairs. Run the
command java - Xrunhprof: hel p to obtain a
list of suboptions and their default val ues.

147

Interfacing Matlab with C

It is not uncommon that we have a program written in C (or
Fortran) and need to communicate between the program and
Matlab.

The simplest (but not the most efficient) way the fix the commu-
nication is to use ordinary text files. This is portable and cannot
go wrong (in any major way). The drawback is that it may be a
bit slow and that we have to convert between the internal binary
format and text format. We can execute programs by using the
uni x-command (or ! or systen).

One can do more, however:
o Reading and writing binary MAT-files from C

e Calling Matlab as a function (Matlab engine)

e Calling a C- or Fortran-function from Matlab (using MEX-
files, compiled and dynamically linked C- or Fortran-routines)

In the next few pages comes a short example on how to use
MEX-files.

MEX-files

Let us write a C-program that can be called as a Matlab-function.
The MEX-routine will call a band solver, written in Fortran,
from Lapack for solving an Ax=b-problem. The routine uses a
Cholesky decomposition, where A is a banded, symmetric and
positive definite matrix.

b contains the right hand side(s) and x the solution(s).
I fetched the routines from www. netli b. org

Matlab has support for solving unsymmetric banded systems,
but has no special routines for the positive definite case.

148

‘We would call the function by typing:
>> [x, info] = bandsolve(A, b);

where A stores the matrix in compact form. i nf 0 returns some
status information (A not positive definite, for example).

bandsol ve can be an m-file, calling a MEX-file. Another alter-
native is to let bandsol ve be the MEX-file. The first alternative
is suitable when we need to prepare the call to the MEX-file or
clean up after the call.

The first alternative may look like this:

function [x, info] = bandsolve(A, b)
Atmp = A, %copy A

b_tnp = b; %copy b

% Call the MEX-routine

[x, info] = bandsol ve_nex(A tnp, b_tnp);

I have chosen to make copies of A and b. The reason is that
the Lapack-routine replaces A with the Cholesky factorization
and b by the solution. This is not what we expect when we
program in Matlab. If we have really big matrices, and if we do
not need A and b afterwards we can skip the copy (although the
Matlab-documentation says that it “may produce undesired side
effects”).

I will show the code for the second case where we call the MEX-
file directly. Note that we use the file name, bandsol ve, when
invoking the function. There should always be a mexFuncti onin
the file, which is the entry point. This is similar to a C-program,
there is always a mai n-routine.

It is possible to write MEX-files in Fortran, but is more nat-
ural to use C.

149

First some details about how to store the matrix (for the band
solver). Here an example where we store the lower triangle. The
dimension is six and the number of sub- (and super-) diagonals
is two.

all a22 a33 a44 ab5 a66
a2l a32 a43 ab54 a65 ~
a3l a42 ab3 a64 *
Array elements marked* are not used by the routine.
The Fortran-routine, dpbsv, is called the following way:
call dpbsv(uplo, n, kd, nB, A Ida, B, Idb, info)
where

uplo = "U: Upper triangle of Ais stored

"L’: Lower triangle of Ais stored
We will assume that upl 0 = 'L’ from now on

n = the di mension of A
kd = nunber of sub-diagonal s
nB = nunber of right hand sides (in B)
A = packed formof A
I da = l|eading dinmension of A
B = contains the right hand side(s)
Idb = |eading dinmension of B
info = 0, successful exit

<0, if info=-i, the i-th argunent had

an illegal value
>0, if info =i, the leading mnor of order i

of Ais not positive definite, so the
factorization could not be conpleted,
and the solution has not been conputed.

Here comes bandsol ve. ¢ (I am using C++-style comments):

150

#i ncl ude <mat h. h>
/1 For Matlab
#i ncl ude "nex. h"

voi d dpbsv_(char =, int *, int *, int =, double *,
int =, double *, int *, int x);

voi d mexFunction(int nlhs, nxArray*pl hs[],
int nrhs, const nxArray=*prhs[])
{
doubl e *px, *pA, *pb, *pA_tnp;
mKArray *A_tnp;
char uplo = 'L’;
int k, A.rows, A_cols, b_rows, b_cols, kd, info;

/'l Check for proper nunber of argunents
if (nrhs 1= 2) {

mexErr MsgTxt (" Two i nput argunents required.");
} else if (nlhs > 2) {

mexErr MsgTxt (" Too many out put argunments.");

}

A rows = nmxGet M prhs[0]);
kd A rows - 1; /1 # of subdiags
A cols mkGet N(prhs[0]); // =n

b_rows = mxGet M prhs[1]);
b_cols = mxGet N(prhs[1]);

if (b_rows !'= A cols || b_cols <= 0)
mexErr MsgTxt ("I111egal dinension of b.");

151

I/ Create a matrix for the return argunent

/1 and for A. dpbsv destroys A and b).

/1 Shoul d check the return status.

pl hs[0] =nxCr eat eDoubl eMat ri x(b_rows, b_cols, nxREAL);
pl hs[1] =nxCr eat eDoubl eMatri x(1, 1, nxREAL);

A tnp =nxCreateDoubl eMatrix(A_rows, A _cols, nxREAL);

px = mxGet Pr(pl hs[0]); /1 Solution x

pA = nxGet Pr(prhs[0]); Il A

pA tnp = mxGetPr (A tnp); /1 tenp for A

pb = mxGet Pr(prhs[1]); /1 Db

for (k = 0; k <b_rows=* b_cols; k++) // b -> x

(px + k) ==(pb + k),

for (k =0; k < Arows=* Acols; k++) // A->Atnp
(PA_tmp + k) =x(pA + k);

dpbsv_(&upl o, &A cols, &kd, &b_cols, pA_tnp,
&A rows, px, &b_rows, & nfo);

*mxGet Pr(plhs[1]) = info; // () higher prec. thar
if (info)
mexWar nMsgTxt (" Non zero info fromdpbsv.");

/1 Shoul d NOT destroy plhs[0] or plhs[1]
nxDestroyArray(A_tnp);

152

Some comments:

nr hs is the number of input arguments to the MEX-routine.
pr hs is an array of pointers to input arguments. pr hs[0] points
to a so-called, mXArray, a C-struct containing size-information
and pointers to the matrix-elements.

pr hs[0] corresponds to the first input variable, A etc.

Since one should not access the member-variables in the struct
directly, there are routines to extract size and elements.
A rows = nmxGet M prhs[0]);extracts the number of rows and

A_col s = nxGet N(prhs[0]) ; extracts the number of columns.

The lines
pl hs[0] =nxCr eat eDoubl eMatri x(b_rows, b_cols, nxREAL);
pl hs[1] =mxCr eat eDoubl eMatri x(1, 1, nmxREAL);

allocate storage for the results (of type nXREAL, i.e. ordinary
doubl e).

A_tnp = nxCreat eDoubl eMatri x(A_rows, A_cols, nxREAL);
allocates storage for a copy of A, since the Lapack-routine de-
stroys the matrix.

px = mxGet Pr(pl hs[0]); extracts a pointer to the (real-part)
of the matrix elements and stores it in the pointer variable, px.

The first for-loop copies b to x (which will be overwritten by the
solution). The second loop copies the matrix to the temporary
storage, pointed to by A_t mp. This storage is later deallocated
using nxDest r oyArr ay.

Note that neither the input- nor the output-arguments should
be deallocated.

153

It is now time to compile and link. This is done using the
Bourne-shell script mex. We must also make a symbolic link.
Since we would like to change some parameters when compiling,
we will copy and edit an options file, mexopt s. sh

% whi ch mat | ab
/ chal mer s/ sw/ sup/ mat | ab- 2008b/ bi n/ mat | ab
(I's -1d /chal mers/sw sup/ matl ab to see the versions)

Make the link:
% In -s /usr/lib/libstdc++.s0.6.0.3 |ibstdc++.so
Copy nmexopts. sh
% cp /chal mers/sw sup/ mat | ab- 2008b/ bi n/ mexopts. sh .
and edit the file (after gl nx86):

change CC="gcc’ to CC='gcc4’

if you are using the latest Matlab-version. In the CFLAGS line,
change - ansi to - Wl |, to use C++-style comments and to get
more warnings.

Add - L. to CLI BS, and add linker-info. to get Goto-blas:

CLI BS="$RPATH $MLIBS -Im -L. -lstdc++
- L/ chal mers/sw unsup/libgoto/lib
-1 got o_opt 32-r0. 96" NOTE: in one long line
change -Oto -O3 in FOPTI MFLAGS

Make sure your LD LI BRARY_PATHcontains the name of the
directory where Goto-blas resides.
I have fetched the lapack-routines from Netlib:

% | s |apack
dpbsv. f dpbt f 2. f
ieeeck.f ilaenv.f

dpbtrf.f
| sane. f

dpbtrs. f
xer bl a. f

dpot f 2. f

154

Now it is time to compile:
% mex -f ./mexopts.sh bandsol ve.c | apacky. f

which creates bandsol ve. nexgl x

Now we can test a simple example in Matlab:

>> A =[2* ones(1l, 5); ones(1, 5)]
A =

2 2 2 2 2

1 1 1 1 1
>> [x, info] = bandsolve(A, [3 4 4 4 3]")
X =

1. 0000

1. 0000

1. 0000

1. 0000

1. 0000
info =

Here a case when A is not positive definite:

>> A(1, 1) = -2; % Not positive definite
>> [x, info] = bandsolve(A [3 4 4 4 3]")
War ni ng: Non zero info from dpbsv.

X = % Since b is copied to x

info

[T S S M)

155

Note that the first call of bandsol ve may take much more time,
since the mex-file has to be loaded. Here a small test when
n=10000, kd=10:

>> tic; [x, info] = bandsolve(A, b); toc
El apsed time is 0.147128 seconds.
>> tic; [x, info] = bandsolve(A, b); toc
El apsed time is 0.034625 seconds.
>> tic; [x, info] = bandsolve(A, b); toc

El apsed time is 0.034950 seconds.

Now to some larger problems:

With n=100000 and kd=10, dpbsv takes 0.25 s and sparse
backslash 0.41 s on a student AMD-computer.

kd=20 gives the times 0.48 s and 0.77 s respectively.

On an Opteron with more memory:

with n=1000000, kd=10 the times are 2.9 s, 4.7 s.
Increasing kd to 50, the times are 15.4 s and 27.6 s.

156

Libraries, ar, 1d

Numerical (and other software) is often available in libraries. To
use a subroutine from a library one has to use the linker to
include the routine. Advantages:

e Fewer routines to keep track of.

e There is no need to have source code for the library routines
that a program calls.

e Only the needed modules are loaded.

These pages deal with how one can make libraries and use the
linker, link-editor, | d.

% cat subl.f90
subroutine subl

printx, "in subl
end

% cat sub2.f90
subroutine sub2

printx, "in sub2
end

% cat sub3.f90
subroutine sub3

printx, "in sub3
call sub2
end

% cat main.f90
program nai n

call sub3
end

156

% 1s subx.f90
subl.f90 sub2.f90 sub3.f90

% g95 -c sub-.f90
subl.f90
sub2.f90
sub3. f 90:

% 1s subx
subl.f90 subl.o sub2.f90 sub2.0 sub3.f90 sub3.o0

% ar -r libsubs.a sub.o

% ar -t libsubs.a
subl.
sub2.
sub3.

o O O

% g95 main.f90 -L. -Isubs
% a. out

in sub3

in sub2

g95 calls the link-editor, | d, to combine mai n. o and the object
files in the library to produce the executable a. out-file. Note
that the library routines become part of the executable.

If you write - | nanme the link-editor looks for a library file with
name | i bname. a (or | i bnane. so).

On some systems you may have to give the location of the
library using the flag - L (I d does not look everywhere). . means
current working directory, but you could have a longer path, of
course. You can have several - L flags.

157

From man ar:

ar creates an index to the symbols defined in relocatable
object modules in the archive when you specify the modifier s.

An archive with such an index speeds up linking to the library,
and allows routines in the library to call each other without
regard to their placement in the archive.

ar seems to do this even with ar -r ... as well.
If your library does not have this index:

% g95 main.f90 -L. -Isubs

./libsubs.a: could not read synbols

Archive has no index; run ranlib to add one
%ranlib |ibsubs.a

% g95 main.f90 -L. -Isubs

The order of libraries is important:

% g95 -c sub4.f90 sub5.f90
sub4. f 90
sub5. f90

% ar -r |ibsub45.a sub[45].0
%ar -t |ibsub45.a

sub4. o
sub5. o

158

% cat sub4.f90
subroutine sub4

print*, 'in sub4
call sub2
end

% cat main. f90

program mai n ! A NEW nmei n
call sub4
end

% g95 main.f90 -L. -Isubs -1sub45
./1ibsub45. a(sub4.0) (.text+0x6f): In function ‘sub4_’
undefined reference to ‘sub2_

| d does not go back in the list of libraries.

% g95 main.f90 -L. -1sub45 -1 subs
% a. out

in sub4d

in sub2

The compiler uses several system libraries, try g95 -v
One such library is the C math-library, /usr/lib/libm a

%ar -t /usr/lib/libma | grep expnl | head -1
s_expnil. o

% man expnil
NAME expnil, expmlf, expnill - exponential mnus 1

#i ncl ude <mat h. h>
doubl e expnil(doubl e x)

159

% cat main.c
#i ncl ude <math. h>
#i ncl ude <stdio. h>

int main()

{
double x = 1.0e-15
printf("expnl(Xx) = %\ n", expml(x))
printf("exp(x) - 1 = %\n", exp(x) - 1.0);
return O;

}

% gcc main.c

/tmp/ cc40PH1o0. o(. t ext +0x2b): In function ‘nain’
undefined reference to ‘expml

/tmp/ cc40PH1o0. o(. t ext +0x53): In function ‘nmain’

undefined reference to ‘exp

% gcc main.c -Im

% a. out

expmil(x) = 1.000000e- 15
exp(x) - 1 = 1.110223e-15

160

Shared libraries

More about | i bm The following output has been shortened.

%ls -1 /usr/lib/libmx
fusr/lib/libma
fusr/lib/libmso -> ../../lib/libmso.6

%Ils -1 /lib/libm=
/lib/libmso.6 ->libm2.3.4.s0

%ls -1 /lib/libm2.3.4.s0
-rwxr-xr-x 1 root root 176195 Aug 20 03:21
/1ib/llibm2.3.4.s0

What is this last file?

%ar -t /lib/libm2.3.4.s0

ar: /lib/libm2.3.4.s0: File format not recognized
Look for synmbols (names of functions etc.):

% obj dunp -t /lib/libm2.3.4.s0 | grep expnil
00009420 w F 0000005¢

. text expml

S0 means shared object. It is a library where routines are loaded
to memory during runtime. This is done by the dynamic link-
er/loader | d. so. The a. out-file is not complete in this case, so
it will be smaller.

One problem with these libraries is that they are needed at
runtime which may be years after the executable was created.
Libraries may be deleted, moved, renamed etc.

One advantage is shared libraries can be shared by every process
that uses the library (provided the library is constructed in that
way).

161

It is easier to handle new versions, applications do not have to
be relinked.

If you link with - | name, the first choice is | i bnane. soand the
second | i bnane. a
fusr/lib/libmso -> ../../1ib/libm so. s a soft link
(an “alias”).

%In -s full _path alias

The order is not important when using shared libraries (the
linker has access to all the symbols at the same time).

A shared library is created using | d (not ar) or the compiler,
the | d-flags are passed on to the linker.

% 995 -0 |ibsubs.so -shared -fpic sub.f90
% g95 min.f90 -L. -1subs

% ./ a.out

in sub4d

in sub2

From man gcc (edited)

-shared
Produce a shared object which can then be Iinked with
other objects to forman executable. Not all systens
support this option. For predictable results, you nus

al so specify the same set of options that were used
to generate code (-fpic, -fPIC, or nodel suboptions)
when you specify this option.[1]

-fpic
Gener ate position-independent code (PIC) suitable for
use in a shared library, if supported for the target
machi ne. Such code accesses all constant addresses
through a global offset table (GOT). The dynam c
| oader resolves the Gfmﬁﬁntries when the program

starts (the dynam c |oader is not part of GCC, it is
part of the operating system.

Since the subroutines in the library are loaded when we run the
program (they are not available in a. out) the dynamic linker
must know where it can find the library.

% cd .

% Exanpl es/ a. out

Exanpl es/a.out: error while | oading shared libraries
| i bsubs. so: cannot open shared object file: No such
file or directory

% setenv LD_LI BRARY_PATH $LD_LI BRARY_PATH : Exanpl es
% Exanpl es/ a. out

in sub4

in sub2

LD_LI BRARY_PATHcontains a colon separated list of paths where
| d. so will look for libraries. You would probably use a full path
and not Exanpl es.

$LD_LI BRARY_PATHis the old value (you do not want to do
setenv LD LI BRARY_PATH Exanpl esunless LD_LI BRARY_PATH
is empty to begin with.

The backslash is needed in [t] csh (since colon has a special
meaning in the shell). In sh (Bourbe shell) you may do some-
thing like:

$ LD LI BRARY_PATH=$LD LI BRARY_PATH: Exanpl e
$ export LD_LI BRARY_PATH (or on one line)

Some form of LD LI BRARY_PATHis usually available (but the
name may be different). The SGI uses the same name for the
path but the linker is called rl d. Under HPUX 10.20, for
example, the dynamic loader is called dl d. sl and the path
SHLI B_PATH

163

It is possible to store the location of the library when creating
a.out.

% unsetenv LD_LI BRARY_PATH

% 995 -0 |ibsubs.so -shared -fpic sub.f90

% g95 main.f90 -L. -Isubs

% a. out

a.out: error while |loading shared libraries:
I'i bsubs. so: cannot open shared object file:
No such file or directory

Add the directory in to the runtime library search path (stored
in a. out):

-W, neans pass -rpath ‘pwd’ to Id

% g95 -W,-rpath ‘pwd’ main.f90 -L. -1Isubs

% cd .. or cd to any directory
% Exanpl es/ a. out

in sub4d

in sub2

A useful command is | dd (print shared library dependencies):

% 1 dd a.out
l'i bsubs.so => ./libsubs.so (0x00800000)
libmso.6 => /lib/tls/libmso.6 (0x009e2000)
libc.so.6 => /lib/tls/libc.so.6 (0x008b6000)
/1ib/1d-1inux.so.2 (0x00899000)

Used on our a. out-file it will, in the first case, give:

% | dd Exanpl es/ a. out
l'i bsubs. so => not found

In the second case, using r pat h, | dd will print the full path.

164

And now to something related:

Large software packages are often spread over many directories.
When distributing software it is customary to pack all the di-
rectories into one file. This can be done with the t ar-command
(tape archive). Some examples:

%l|s -FR My_package

bi n/ doc/ installx [|ib/ README
configures include/ |NSTALL Makefile src/
My_package/ bi n: bi nari es
My_package/ doc: docunent ati on
user gui de. ps or in pdf, htm etc.
My_package/ i ncl ude: header files
params. h sparse.h
My_package/ | i b: libraries

My_package/ src:
main.f sub.f

source

Other common directories are man (for manual pages), exanpl es,
util (for utilities).

README usually contains general information, | NSTALL contains
details about compiling, installation etc. There may be ani nst al |-
script and there is usually a Makefi | e (probably several).

If the package is using X11 graphics there may be an | makefil e
The tool xnknf (using i make) can generate a Makefile using lo-
cal definitions and the | makefil e

In a Linux environment binary packages (such as the Intel com-
pilers) may come in RPM-format. See http://ww.rpm org/

or type man r pm for details.
165

Let us now create a tar-file for our package.

%tar cvf My_package.tar My_package

My_package/
My_package/ src/

My_package/ src/ nain. f
My_package/ src/ sub. f
My_package/ doc/

My_package/ Makefil e
One would usually compress it:
% gzi p My_package.tar (or using bzip2)

This command produces the file My_package. tar. gz.
.t gz is a common suffix as well (tar. bz2 or .t bz2 for bzi p2).

To unpack such a file we can do (using gnu t ar) (z for gunzi p,
or zcat, x for extract, v for verbose and f for file):
%tar zxvf My_package.tar. gz

My_package
My_package/ src/

Using t ar-commands that do not understand z:

% zcat My_package.tar.gz | tar vxf - or

% gunzip -c My_package.tar.gz | tar vxf - or

% gunzip < M _package.tar.gz | tar vxf - or

% gunzi p My_package. tar. gz fol l owed by
% tar xvf My_package. t ar

I recommend that you first try:
%tar ztf My_package.tar.gz
My_package/

To see that files are placed in a new directory (and that are no
name conflicts).

Under GNOME there is an Archive Manager (File Roller) with
a GUI. Look under Appl i cations/ System Tool s

166

An Overview of Parallel Computing

Flynn’s Taxonomy (1966). Classification of computers according
to number of instruction and data streams.

e SISD: Single Instruction Single Data, the standard
uniprocessor computer (workstation).

o MIMD: Multiple Instruction Multiple Data, collection of
autonomous processors working on their own data; the most
general case.

e SIMD: Single Instruction Multiple Data; several CPUs
performing the same instructions on different data.
The CPUs are synchronized.

Massively parallel computers.

‘Works well on regular problems. PDE-grids,

image processing.

Often special languages and hardware. Not portable.

Typical example, the Connection Machines from Thinking
Machines (bankruptcy 1994).

The CM-2 had up to 65536 (simple processors).

PDC had a 16384 proc. CM200.

Often called “data parallel”.

Two other important terms:

o fine-grain parallelism - small tasks in terms of code size and
execution time

e coarse-grain parallelism - the opposite

‘We talk about granularity.

167

