
Thomas Eri
ssonComputational Mathemati
s, Chalmers/GU2011 1
A short introdu
tion to C, t
sh and bashThomas Eri
ssonComputational Mathemati
sChalmers/GU2011

HPC

2 Thomas Eri
ssonComputational Mathemati
s, Chalmers/GU2011Contents1 A short introdu
tion to C 32 Hello World! 33 Fun
tions, a �rst example 54 Separate
ompilation and ld 85 More on prototypes and type
onversion 86 void fun
tions, passing parameters 107 Arrays 137.1 Two-dimensional arrays . 158 A matter of style 169 If-statements and logi
al expressions 1710 Some useful C-tools 1811 A few words about the C99 standard 1812 More on
pp 2013 Using the man-
ommand 2114 More on matri
es 2214.1 Dynami
 memory allo
ation . 2314.2 This will not work with Fortran . 2514.3 This will work with Fortran . 2614.4 C and large arrays . 2715 Pre
eden
e and asso
iativity of C-operators 3016 A few words about t
sh and bash 3216.1 Now something about bash . 3416.2 A note on the student environment . 34

HPC

Thomas Eri
ssonComputational Mathemati
s, Chalmers/GU2011 31 A short introdu
tion to CC is a widely used programming language, espe
ially in Unix appli
ations. The language was developed in 1972by Dennis Rit
hie at Bell Labs for use with the Unix operating system. I learnt C reading the
lassi
 book �TheC Programming Language� by Brian Kernighan and Dennis Rit
hie. The book was published 1978. C is a fairlysmall language, the book is only 228 pages. I have several C++ books, all
ontaining more than 1000 pagesea
h. Sin
e C was used to develop the Unix system, it has support for low level operations, su
h as �nding outthe address of a variable. It is also a very
on
ise language, having abbreviations for
ommon operations.k = k + 1 and s = s + term
an be written k++ and s += term, for example.This is
onvenient if you are an experien
ed C-programmer, but it may
ause problems for the novi
e.Here is another C-feature. In C an assignment su
h as k = 2 * j - m; has a value, whi
h is the value of k, theleftmost variable. Matlab follows C when it
omes the logi
al values in if-statements, zero is false and non-zerois true. This means that the following C-statement is
orre
tif (k = 2 * j - m) {do something}It
omputes the value of k and
he
ks if it is non-zero. If we had intended to do something when k equals2 * j - m we should have writtenif (k == 2 * j - m) {do something}Another, more severe, problem is that there is no index
ontrol for array indi
es, like there is in Matlab. Onetends to use pointers (addresses) frequently as well and there is little
ontrol of these. So, in short, one shouldbe very
areful when writing C-programs, or there is a large risk that one has to spend long hours debugging.In 1989 C be
ame an ANSI standard, often referred to C89, and the year after
ame the ISO-standard, C90(although C89 and C90 des
ribe the same language). In 1999
ame a new standard, C99.For more history and ba
kground see the Wikipedia arti
le:http://en.wikipedia.org/wiki/C_(programming_language) .There is also a page about the book:http://en.wikipedia.org/wiki/The_C_Programming_Language_(book) .The following introdu
tion is su�
ient for the assignments, but you need more for real programming.I have not tried to show all the di�erent ways a program
an be written. C has several forms ofsome
onstru
ts. Professional
ode has many extra details as well.C
an be very hard to read and there even was the �International Obfus
ated C Code Contest�.See http://en.wikipedia.org/wiki/IOCCC for unreadable and amusing programs.2 Hello World!We start with the
ompulsory Hello World!-program. I wrote the program using an editor and saved it in the�le hello.
. If you do not have a favourite editor like vim, gvim, ema
s et
. I re
ommend using nedit, theNirvana editor. It is quite
apable and easy to use. In the printout below, I listed the program in a terminalwindow using the
at-
ommand (you do not have to do this every time, of
ourse :-)
HPC

4 Thomas Eri
ssonComputational Mathemati
s, Chalmers/GU2011%
at hello.
#in
lude <stdio.h>int main(){ printf("Hello World!\n");return 0;}% g

 hello.
% a.outHello World!% ./a.outHello World!% is the prompt. I
ompiled the program using, g

, the GNU C-
ompiler. The exe
utable (�ma
hine
ode�)was stored in the �le named a.out (you
an store it in another �le if you like). Finally I exe
uted the programby typing the name of the exe
utable. If you do not have . in your Unix-path you would type ./a.out instead.The dot means the
urrent working dire
tory, so ./a.out means the a.out in the dire
tory where I am at themoment.Let us look at the
ode. The �rst line, the one starting with a # is read by the C prepro
essor,
pp. Itwill read the �le, /usr/in
lude/stdio.h, and pla
e it in the program. This �le, a so-
alled in
lude �le orheader �le, typi
ally
ontains named
onstants, ma
ros (somewhat like fun
tions) and fun
tion prototypes.Named
onstants are used so we do not have to write numbers to
hoose a parti
ular option, instead we
anwrite a name.The main program, must be
alled main, is an integer (int) fun
tion. It
an take parameters, but we ig-nore them in this example (the ()) and it returns status information to the Unix-system (to the shell, bash ott
sh), using the return-statement, zero usually means OK. We
an print the status in the shell (e
ho $statusin t
sh, e
ho $? in bash). One
ould also use the status in if-statements in the shell.The input parameters are used to pass arguments from the shell to the program. When giving the ls
ommandwith the long �ag, ls -l, the ls-
ommand (a
ompiled C-program)
an a

ess the �ag -l.printf is a print statement, and \n means newline. Semi
olon, ;, ends a statement, so it is not like in Matlabwhere an end of line su�
es. If we forget the semi
olon after the printf statements, we get a syntax error andthe
ompiler
omplains:% g

 hello.
hello.
: In fun
tion `main':hello.
:5: error: syntax error before "return"The bra
es, { }, are used to delimit the body of the fun
tion.To �nd out more about what �ags (options) g

an take, we type man g

 in a terminal window. Thefollowing
ommand% g

 -o hello -O hello.
optimizes the
ode for speed (overkill for this tiny example) and pla
es the exe
utable in hello instead of ina.out. To exe
ute the program we type hello or ./hello .HPC

Thomas Eri
ssonComputational Mathemati
s, Chalmers/GU2011 53 Fun
tions, a �rst exampleNow to a more
ompli
ated example, where we use a very primitive method (the trapezoidal method) toapproximate
∫

b

a

e−x
2

dx, a < bThe interval, (a, b), is divided into n intervals and on ea
h interval the integral is approximated by the area ofa trapezoid, and the formula is:
∫ b

a

f(x) dx ≈ h

[

f(a)

2
+ f(a + h) + f(a + 2h) + · · ·+ f(b− h) +

b

2

]

, where h =
b− a

nThere are mu
h better methods and one
ould write a
ode that a

epts more general integrands, but this is,after all, not a
ourse in numeri
al analysis.Sin
e the program would be
ome too messy if I added all the
omments to the
ode, I have numbered thelines and added
omments afterwards. Note that the line numbers are not part of the
ode.1 #in
lude <stdio.h>2 #in
lude <math.h>34 double trapeze(double, double, int);56 int main()7 {8 printf("The integral is approximately = %e\n", trapeze(0, 1, 100));910 return 0;11 }1213 double trapeze(double a, double b, int n)14 {15 /* A primitive quadrature method for approximating16 the integral of exp(-x^2) from a to b.17 n is the number of sub intervals.18 */1920 int k;21 double x, h, sum = 0.0;2223 if (n <= 0) {24 printf("*** n must be at least 1.\n");25 return -1;26 }2728 h = (b - a) / n;29 x = a;30 sum = 0.5 * exp(-x * x);31 for (k = 1; k < n; k = k + 1) {32 x = x + h;33 sum = sum + exp(-x * x);34 }35 sum = sum + 0.5 * exp(-b * b);HPC

6 Thomas Eri
ssonComputational Mathemati
s, Chalmers/GU201136 sum = sum * h;3738 return sum;39 }The example
ode
ontains a main-program and a fun
tion. On line 2, we in
lude math.h sin
e the programuses the exponential fun
tion, exp, and we need the prototype for the fun
tion. A prototype gives the name ofthe fun
tion and the types of input and output parameters. Sin
e exp takes a double pre
ision argument andreturns a double pre
ision value the prototype is:double exp(double);double is the name of the double pre
ision (8 bytes) �oating point type. The reason we use prototypes is tosupply the
ompiler with more information, so it
an warn us if we
all a fun
tion with the wrong number ortypes of the parameters. The
ompiler would also use the information to make type
onversions of parameters(more below).Our own fun
tion, trapeze, takes three input arguments, the interval endpoints a and b, and a number,n, of intervals, and returns the approximation of the integral. On line 4 I have supplied a prototype for thefun
tion. One
an, but does not have to, supply the variable names as well.On lines 8, 9 I print some text and
all the fun
tion. printf is a fun
tion that
an take a di�erent num-ber of arguments. In this
ase the �rst is a string, and the se
ond the value returned from trapeze. %e is aformat
ode, whi
h tells printf that the integral value should be written using an engineering format (de
imalsand exponential part). To see the other format
odes, we use the manual
ommand in Unix.Type man -s3 printf in a terminal window (note that man printf gives you another manual page).Lines 13-39 show the trapeze fun
tion. Note that the �rst line looks like the prototype, but now with variablenames. Comments are written between /* */, but many
ompilers allow for C++-
omments as well (linesstarting with //), this
ame with the C99-standard.Lines 20, 21 are type de
larations of so-
alled automati
 variables. These variables are lo
al to the fun
tion.Spa
e is allo
ated when the fun
tion is entered and the memory is deallo
ated when we return from the fun
tion.The sum-variable is initialized as well, this
ould be done in the exe
utable
ode instead (similar to line 29).Lines 23-26 show an if-statement. The rules are roughly as in Matlab, although negation is written using ! andnot ~.The then-part is made up by two statements and they must be grouped together using bra
es. The bra
esare not ne
essary for one statement, but some programmers add them anyhow. The trapeze fun
tion shouldalways return a value, even when n has an illegal value, so the program returns the impossible value, -1 in that
ase. The statement, return value;, is similar to assigning value to the output parameter in Matlab, butreturn also means that we jump ba
k to the main program.In line 30 we
all the exponential fun
tion. Note that x^2 does not work in C (or rather, it means bitwiseex
lusive OR). Lines 31-34 form a loop, the two statements, 32-33, are grouped together using bra
es. If weforget the bra
es, only line 32 will be repeated in the loop, and line 33 will be exe
uted on
e after the loop.The general format of the for-statement is:
HPC

Thomas Eri
ssonComputational Mathemati
s, Chalmers/GU2011 7for(init; test; update)loop bodyWritten with a while loop we understand the meaning:init:while (test) {loop bodyupdate;}So k = 1
orresponds to init, the test is k < n and update is k = k + 1. In words, set k to one, then theloop is entered. Repeat the loop body as long as k < n. At the end of ea
h loop iteration, the loop variable, kis updated by one.C has many abbreviations, k = k+1
an be written k++ and a = a + b
an be abbreviated as a += b. Usingthese shorter forms, the loop
an be written:for (k = 1; k < n; k++) {x += h;sum += exp(-x * x);}Sometimes one
an see strange looking loops (at least to a C-novi
e). The following two loops both
omputean approximation to 1 + 1/2 + 1/3 + · · ·+ 1/1000.sum = 0;k = 1;for(; k <= 1000;) {sum += 1.0 / k;k++;}sum = 0;k = 1;for(;;) {sum += 1.0 / k;if (k == 1000)break; /* Jump out of the loop */k++;}On line 38 the fun
tion returns the value to main.Let us now
ompile and exe
ute the
ode:% g

 trap.
 -lm% a.outThe integral is approximately = 7.468180e-01The exa
t value is approximately 0.74682413. -lm informs the
ompiler that we need to use a library, themathemati
s library, sin
e the
ode
alls the exponential fun
tion. We say that we link with the math library. Aspe
ial program , ld the linker, takes
are about this part (more about ld later on). The math library residesin a �le, /usr/lib/libm.so. The m-part of libm is what is used in -lm. Some
ompilers do not require that wewrite -lm, but they will link with library automati
ally. If we forget it on our system we get a link error:HPC

8 Thomas Eri
ssonComputational Mathemati
s, Chalmers/GU2011% g

 trap.
/tmp/

gqMVKZ.o(.text+0xd2): In fun
tion `trapeze':: undefined referen
e to `exp'et
.4 Separate
ompilation and ldIn the example I have stored both main and trapeze in the same �le trap.
. This would be unrealisti
 in largeappli
ations, however, so its is possible to split the �le into separate �les. So, suppose that we have two �les,trap_main.

ontaining lines 1, 4-11 (i.e. not line 2, sin
e main does not use exp), and trapeze.

ontaininglines 2, 13-39. Here are two ways to
ompile the
ode.% g

 trap_main.
 trapeze.
 -lm% a.outThe integral is approximately = 7.468180e-01If a large part of a program does not
hange, we
an
ompile that part on
e and for all. In the �rst g

-
ommandI
ompile trapeze.
, using the -
 �ag (option). This tells the
ompiler to produ
e an obje
t �le, trapeze.o,but not to try to produ
e an exe
utable. The obje
t �le is later used when
ompiling trap_main.
. We savetime by not having to re
ompile trapeze.
 (think of a �le
ontaining thousands of lines).% g

 -
 trapeze.
 an obje
t file is produ
ed% ls -l trapeze.o-rw------- 1 thomas _math 1232 Nov 18 15:49 trapeze.o% g

 trap_main.
 trapeze.o -lm use it here% a.outThe integral is approximately = 7.468180e-01If we forget trapeze.o we get a link error.% g

 trap_main.
/tmp/

gkJmlR.o(.text+0x3d): In fun
tion `main': undefined referen
e to `trapeze'
olle
t2: ld returned 1 exit statusWe will get the same e�e
t if we make a spelling error when
alling trapeze. Say we type Trapeze instead oftrapeze in the printf statement in main. We get:% g

 trap_main.
 trapeze.o -lm/tmp/

4JCXzK.o(.text+0x29): In fun
tion `main': undefined referen
e to `Trapeze'
olle
t2: ld returned 1 exit statuseven though trapeze.o is in
luded. The reason is that C is
ase sensitive, trapeze and Trapeze refer todi�erent fun
tions. ld, whi
h is mentioned, is the so-
alled linker, whi
h
ombines obje
t �les, libraries (e.g.the math library) to an exe
utable. This is not the whole truth (there is a dynami
 linker as well), but it isa

urate enough for this
ourse. So, the g

-
ommand does not only
ompile, but it runs
pp and ld as well.5 More on prototypes and type
onversionIt is easier to appre
iate the prototypes when we use separate
ompilation (di�erent �les). Suppose we havewritten trapeze(0, 100) in main. The
ompiler
omplains:HPC

Thomas Eri
ssonComputational Mathemati
s, Chalmers/GU2011 9% g

 trap_main.
 trapeze.o -lmtrap_main.
: In fun
tion `main':trap_main.
:8: error: too few arguments to fun
tion `trapeze'If we remove the prototype, the following happens:% g

 trap_main.
 trapeze.o -lm% a.outThe integral is approximately = 7.234109e-320So, no
omplaints and the wrong answer. This is di�erent from Java, whi
h would
omplain. A C-programmermust be more
areful. Be very
areful when you
all a fun
tion. Che
k the number and types of parameters.I have been slightly
areless when
alling trapeze. 0 and 1 are integer
onstants, but sin
e I have provided aprototype, the
ompiler will automati
ally
onvert the numbers to the
orresponding double pre
ision
onstants,0.0 and 1.0. To avoid the type
onversion I
ould have written trapeze(0.0, 1.0, 100). The reverse
anhappen, a double value
an be trun
ated to an integer value (the de
imals will deleted).Study the following example (%d is a format for printing integers):%
at trun
_ex.
#in
lude <stdio.h>int trun
_ex(int, double);int main(){ double result;result = trun
_ex(1.99, 23);printf("trun
_ex = %e\n", result);return 0;}int trun
_ex(int k, double d){ printf("k = %d, d = %e\n", k, d);return 3.1415926535897932;}% g

 trun
_ex.
% a.outk = 1, d = 2.300000e+01trun
_ex = 3.000000e+00If we remove the prototype, the
ompiler will not make the
onversions for us. Instead we end up with garbage:% g

 trun
_ex.
% a.outk = 1030792151, d = 4.933640e-313trun
_ex = 3.000000e+00In main, 1.99 is stored as an 8 byte double pre
ision number and 23 as a four byte integer. When trun
_exis
alled it will pi
k up the �rst four bytes of the stored double, and interpret those bytes as an integer. ToHPC

10 Thomas Eri
ssonComputational Mathemati
s, Chalmers/GU2011a

ess d the fun
tion will take the four bytes from 23 and the next four bytes, whatever they
ontain, and makea double pre
ision number of the eight bytes. Note that no
onversion is made for either number, trun
_exwill just read the bits and make numbers from them. Finally, the reason we get the
orre
t
onversion of3.1415926535897932 is that a fun
tion is of type int, by default.Division with integers behaves in a spe
ial way (but the same rule applies to C++, Fortran, Java et
).Integer division produ
es integer quotients, de
imals are trun
ated. 5 / 2 will be 2, -2 / 5 be
omes 0 et
.5.0 / 2 or 5 / 2.0 or 5.0 / 2.0 will all give you 2.5 sin
e the integer will be
onverted to the �dominatingtype� double before the division. Note that 10.0 * (1 / 10) is 0.0, sin
e 1 / 10 is
omputed �rst, giving 0.The integer zero is then
onverted to 0.0 and the produ
t is 0.0.6 void fun
tions, passing parametersThe fun
tions we have seen so far return values. There are fun
tions that do not return values this way, aso-
alled void fun
tion. A void fun
tion
orresponds to a Matlab fun
tion, looking something likefun
tion fun
tion_name(list of parameters) (so no return variable).The di�eren
e is that one
an write a C-fun
tion so that it
an
hange its input parameters (this is not possiblein Matlab). This makes it ne
essary to dis
uss how parameters (arguments) are passed when a fun
tion is
alled. Let us look at trapeze again.double trapeze(double a, double b, int n){ ... }The fun
tion works with
opies of a, b and n, so if the fun
tion
hanges one of the variables, the originalvariables (or
onstants) in main will not
hange. This way of passing parameters is
alled
all-by-value.In order to be able to
hange a variable, we use
all-by-referen
e, i.e. we will pass the memory-address ofthe variable rather than the variable's value. Sin
e the fun
tion has a

ess to the address, it
an
hange thevalue of the variable. If var is the name of an integer or double variable, &var is its address, and & is
alledthe address operator. We also say that &var is a pointer to var. If adr is an address to a lo
ation in memory,*adr is the
orresponding value of what is stored there. Using * is
alled dereferen
ing or indire
tion, * is theindire
tion or redire
tion operator. An address to a variable is often
alled a referen
e (like in Java programming).Time for an example. This pie
e of
ode
omputes approximations to ∑n

k=1
1/k and

∑n

k=1
1/k2.1 #in
lude <stdio.h>23 void sums(double *, double *, int);45 int main()6 {7 double sum1, sum2;89 sums(&sum1 , &sum2 , 1000);10 printf("The sums are: %e and %e\n", sum1 , sum2);1112 return 0;13 }1415 void sums(double *a_sum1, double *a_sum2, int n)16 {17 int k;18 HPC

Thomas Eri
ssonComputational Mathemati
s, Chalmers/GU2011 1119 *a_sum1 = 0.0;20 *a_sum2 = 0.0;2122 for (k = 1; k <= n; k++) {23 *a_sum1 += 1.0 / k; /* 1.0 to avoid integer divsion */24 *a_sum2 += 1.0 / (k * k);25 }26 }% g

 sums.
% a.outThe sums are: 7.485471e+00 and 1.643935e+00Let us start with the sums fun
tion, lines 15-26. We have a void fun
tion whi
h takes three parameters, thethird is the number of terms. double *a_sum1 should be read in the following way. *a_sum1 is a double, and* is the indire
tion operator, so a_sum1 must be an address to a double. I have tried to indi
ate this fa
tby naming the variable a_sum1, a for address. This is for pedagogi
al reasons, one would usually name thevariable sum1 and write double *sum1. We
an now understand the prototype on line 3. The �rst (and se
ond)argument is of type double *, a pointer to double.On lines 19, 20 I set the values to zero. We should not try to set the addresses to zero. Note that weuse the same syntax on lines 23 and 24. Note that we use 1.0 / k rather than 1 / k (in whi
h
ase the sumwould be one, sin
e 1 / k = 0 when k > 1).Let us now look at the main program. On line 7 we de�ne sum1 and sum2 as ordinary double variables.On line 9 we
all the fun
tion. Note that sin
e we have a void fun
tion, it is illegal to try and write somethinglike variable = sums(...), sin
e sums does not return a value in its name. Note that we pass the addressesof sum1 and sum2, it would be wrong to write sums(sum1, sum2, 1000);.If you think these things are hard to follow, you should know that you are not alone, most beginners to C�nd this a bit hard.Let us de
lare two pointer variables by adding the following line to the
ode (after line 7):double *p1, *p2;So, p1
an point at a double variable, it
an
ontain the address of a double pre
ision variable. We
an set p1to point at sum1 and p2 to point at sum2, like in the pie
e of
ode:p1 = &sum1;p2 = &sum2;sums(p1, p2, 1000);printf("The sums are: %e and %e\n", *p1, *p2);but evenprintf("The sums are: %e and %e\n", sum1, sum2);How, you may ask,
an we print sum1 and sum2, even though these variables have not been passed as argumentsto sums? The explanation, is that we passed the pointers, and sums
an a

ess the memory where sum1 andsum2 are stored, through the pointers.Note that the following programming will end in tears (the remaining
ode remains un
hanged):HPC

12 Thomas Eri
ssonComputational Mathemati
s, Chalmers/GU2011int main(){ double *p1, *p2;sums(p1, p2, 1000);printf("The sums are: %e and %e\n", *p1, *p2);return 0;}When we try to run it we get the feared error message:% g

 sums3.
% a.outSegmentation faultA Segmentation fault (or abbreviated segfault)
an be a nasty error, at least if we have a large
ompli
atedprogram, sin
e the bug
an be very hard to �nd. It is
aused by the program trying to a

ess a memory lo
ationwhi
h it is not allowed to a

ess, ot it may try to write to a read-only part of the memory. Another message ofthe same type is Bus error, where the program may try to a

ess a non-existent address, for example. In thesums-example it is very easy to �nd the bug. We have allo
ated memory for the pointer variables, but have notallo
ated memory for the summation variables. So p1 and p2 do not point to any variables, the pointers havenot been assigned any values, they point to random addresses in memory. The program
rashes in sums when*a_sum1 = 0.0; is exe
uted.Here
omes another example where we must use addresses. We must use
all-by-referen
e when readingdata, here are a few lines of
ode:1 #in
lude <stdio.h>23 int main()4 {5 int i;6 double d;78 printf("type a value for i: ");9 s
anf("%d", &i);1011 printf("type a value for d: ");12 s
anf("%le", &d);1314 printf("i = %d, d = %e\n", i, d);1516 return 0;17 }% a.outtype a value for i: -123type a value for d: -1.23e-45i = -123, d = -1.230000e-45On order for s
anf to be able to return a value we must supply a pointer to the variable. On lines 8 and 11 wedo not supply a newline, that is why we
an type the input on the same line as the prompt text. Note on line12 that is says le (the letter ℓ) for long. If we omit the letter, s
anf will try to read a single pre
ision numberinstead of a double. This will lead to a
onversion error:HPC

Thomas Eri
ssonComputational Mathemati
s, Chalmers/GU2011 13type a value for i: 12type a value for d: -1.23e3i = 12, d = 3.713054e-307Suppose we have a non-void fun
tion. In that
ase it is bad programming pra
ti
e to return values in the inputparameters as well (even though it is possible). We say that the fun
tion has side-e�e
ts.7 ArraysIn this program we
reate a one-dimensional array (ve
tor)
ontaining ten elements. We
all the fun
tion init toinitialize the elements to 1, 2, . . . , 10. Finally we
ompute the sum of the element using the fun
tion array_sum.1 #in
lude <stdio.h>23 void init(double [℄, int);4 double array_sum(double [℄, int);56 int main()7 {8 double ve
[10℄;910 init(ve
 , 10);11 printf("The sum is: %e\n", array_sum(ve
 , 10));1213 return 0;14 }1516 void init(double v[10℄, int n)17 {18 int k;1920 for(k = 0; k < 10; k++)21 v[k℄ = k + 1;22 }2324 double array_sum(double v[10℄, int n)25 {26 int k;27 double sum;2829 sum = 0.0;30 for(k = 0; k < 10; k++)31 sum += v[k℄;3233 return sum;34 }% a.outThe sum is: 5.500000e+01On line 8 we reserve storage for an array having ten double elements. Indi
es start at zero and end at nine,unlike Matlab. Note that we use [℄ for the index. So, the loop variables in the loops, e.g. on line 20, go fromHPC

14 Thomas Eri
ssonComputational Mathemati
s, Chalmers/GU2011zero to nine. It would be ine�
ient to
opy the array when the fun
tions are
alled. Instead
all-by-referen
e isused. So, if the fun
tion
hanges an element in the array, it
hanges the original. We do this in the init-routine.Note that we should not use the address or indire
tion operators for the array.Compare the prototypes, lines 3, 4, with the fun
tion de
larations, lines 16, 24. It is allowed to leave out thedimension of the array. So line 16
an be writtendouble init(double v[℄, int n)and analogously for line 24. The reason is that the
ompiler does not need to know the number of elements inthe array, the �nd the address of a spe
i�
 element. Note also that an array in C is not some kind of obje
t,like in Java. A fun
tion does not know the number of elements in the array unless we pass that information inan extra argument (the variable n in the example). In fa
t, when we
all the fun
tion, only the address of v[0℄is sent to the fun
tion. We
ould a
tually
all init this way:init(&ve
[0℄, 10);There is a
lose relationship between pointers and arrays but I leave that out in this introdu
tion.One should know that there is no index
ontrol in C. Changing the loop in init tofor(k = -3; k < 11; k++)v[k℄ = k + 1;
auses no
omplaints, but nasty things may happen as in the following example.1 void fun
(double a[℄);23 #in
lude <stdio.h>4 main()5 {6 double b, a[10℄;78 b = 1;9 fun
(a);1011 printf("%f\n", b);1213 return 0;14 }1516 void fun
(double a[℄)17 {18 a[11℄ = 12345.0;19 }% g

 nasty.
% a.out12345.000000On line 8 we set b to one, and then, on line 9, we
all fun
 with the array, a. When we print b on line 10,the value has
hanged, even though b is not an argument to the fun
tion. This is very nasty, and
an bevery hard to �nd in a large program. What is going on? The elements of a one-dimensional array is stored
onse
utively, with no gaps, in memory. One
an �nd out the addresses of the elements in the array and ofthe variable b, and it tunes out that b is stored in a position that would
orrespond to a[11℄, provided a hadtwelve elements. Changing a[11℄ to a[1000000℄, for example, gives Segmentation fault.HPC

Thomas Eri
ssonComputational Mathemati
s, Chalmers/GU2011 157.1 Two-dimensional arraysYou
an �nd more about arrays at the end of this tutorial. Here is one small example where we multiply two
4× 4-matri
es together.1 #in
lude <stdio.h>23 void mat_mul(double [4℄[4℄ , double [4℄[4℄ , double [4℄[4℄);4 void mat_print(double [4℄[4℄);56 main()7 {8 int row ,
ol;9 double A[4℄[4℄ , B[4℄[4℄ , C[4℄[4℄;1011 for (row = 0; row < 4; row++)12 for (
ol = 0;
ol < 4;
ol++) {13 A[row℄[
ol℄ = row +
ol;14 B[row℄[
ol℄ = row -
ol;15 }1617 mat_mul(A, B, C);18 mat_print(C);1920 return 0;21 }2223 void mat_mul(double A[4℄[4℄ , double B[4℄[4℄ , double C[4℄[4℄)24 {25 int row ,
ol , k;26 double sum;2728 for (row = 0; row < 4; row++)29 for (
ol = 0;
ol < 4;
ol++) {30 sum = 0.0;31 for (k = 0; k < 4; k++)32 sum += A[row℄[k℄ * B[k℄[
ol℄;33 C[row℄[
ol℄ = sum;34 }35 }3637 void mat_print(double C[4℄[4℄)38 {39 int row ,
ol;4041 for (row = 0; row < 4; row++) {42 for (
ol = 0;
ol < 4;
ol++)43 printf("%8.2f ", C[row℄[
ol℄);44 printf("\n");45 }46 }One
ould write a more general
ode, but this is all we need. Line 37
an be written:HPC

16 Thomas Eri
ssonComputational Mathemati
s, Chalmers/GU2011void mat_print(double C[℄[4℄)but notvoid mat_print(double C[℄[℄)for example. The reason is that C stores matri
es row after row, in memory. So the memory layout, of thematrix C, for example, would be:addressbase C[0℄[0℄base + 1 C[0℄[1℄base + 2 C[0℄[2℄base + 3 C[0℄[3℄base + 4 C[1℄[0℄base + 5 C[1℄[1℄base + 6 C[1℄[2℄base + 7 C[1℄[3℄base + 8 C[2℄[0℄et
.The
ompiler knows the baseaddress, base = &C[0℄[0℄, and to
ompute &C[row℄[
ol℄ it needs the know thenumber of elements in a row, row_len, say (four in the example).&C[row℄[
ol℄ = base + row_len * row +
olIf one should be pi
ky, the memory on one of our ma
hines is byte addressable, and sin
e a double pre
isionvariable is stored using eight bytes, the
orre
t formula is:&C[row℄[
ol℄ = base + 8 * (row_len * row +
ol)So this is the reason why void mat_print(double C[℄[4℄) is su�
ient, but void mat_print(double C[4℄[℄)or void mat_print(double C[℄[℄) are not.8 A matter of styleThe pla
ement of bra
es on other details of programming style, has been the fo
us of many heated and lengthydebates. In all my examples I have pla
ed the bra
es using a spe
ial style, e.g:for (k = 1; k < n; k++) {x += dx;sum += exp(-x * x);}This style is known as the �Kernighan & Rit
hie
oding style� and
omes from the
lassi
 book I mentioned onpage one. One
an write this pie
e of
ode in other ways, e.g.for (k = 1; k < n; k++){ x += dx;sum += exp (-x * x);}whi
h is the GNU-style, used to write GNU software. I will not start a debate about it in this introdu
tion;�nd your own style and sti
k to it. One style I do not re
ommend is:for(k=1;k<n;k=k++){x+=+dx;sum+=exp(-x*x);}HPC

Thomas Eri
ssonComputational Mathemati
s, Chalmers/GU2011 17indent is a very useful
ommand for pretty printing, formatting, C-programs. There are many options, I usethe following:indent -kr -i2 -nut my_program.
-kr is the Kernighan & Rit
hie style, -i2 means two spa
es for indentation in loops and if-statements et
, -nutmeans that spa
es and not tabs are used for indentation.indent -gnu -i2 -nut my_program.
gives you the GNU style instead.The
hoi
e of style a�e
ts other parts of the program as well, e.g. the position of bra
es in if-statements,and the layout of
omments and de
larations.To read about the di�erent styles, type man indent, and read under COMMON STYLES. If you use indent on aprogram with syntax errors, indent may produ
e an in
orre
tly indented program (if a bra
e is missing, forexample). For that reason, indent, makes a
opy of your original �le. In my example the
opy is stored inmy_program.
~.9 If-statements and logi
al expressionsHere are a few examples. Note single & and | are bitwise operations.double a, b,
, d, q;if (a < b &&
 == d || !q) {... zero or more statements} else {... zero or more statements}The relational operators, <, <=, ==, >=,> are written the same way as in Matlab, with the ex
eption of �notequal� whi
h is written !=.Note: if (! q == 1.25) ⇔ if ((!q) == 1.25), not if(! (q == 1.25)).Now a word about the so-
alled dangling else. When we have nested if-statements, the else belongs to theinnermost if-statements, so with
orre
t indentation this is how it works:if (
ondition)if (other
ondition) {statements} else {statements}If you want the else to belong the outer if, use bra
es:if (
ondition) {if (other
ondition) {statements}} else {statements} HPC

18 Thomas Eri
ssonComputational Mathemati
s, Chalmers/GU201110 Some useful C-toolsConsider the following lines (part of warn.
):if (variable = 24)printf("var equals 24\n");This is probably not what we meant (an assignment), we probably meant �if (variable == 24)�. The
ompiler warns us, provided we swit
h on the -Wall �ag, thus:% g

 warn.
 No warning% g

 -Wall warn.
warn.
: In fun
tion 'main':warn.
:8: warning: suggest parentheses around assignment used as truth valueg

 a
tually warns us against something slightly di�erent. Assignments in if-statements are typi
ally used inthe following situationif ((variable = fun
()) == test_value)where the parentheses are ne
essary, sin
e == has higher priority than =.Another useful tool is splint, �se
ure programming lint� whi
h
he
ks C-programs for se
urity vulnerabili-ties and
oding mistakes. splint analyzes the
ode without exe
uting it, so runtime errors are not
aught.splint on the example above gives:% splint -weak warn.
Splint 3.1.1 --- 19 Jul 2006warn.
: (in fun
tion main)warn.
:8:8: Test expression for if is assignment expression: var = 24The
ondition test is an assignment expression. Probably, you mean to use ==instead of =. If an assignment is intended, add an extra parentheses nesting(e.g., if ((a = b)) ...) to suppress this message. (Use -predassign toinhibit warning)Finished
he
king --- 1
ode warningsplint without -weak gives an additional warning:warn.
:8:8: Test expression for if not boolean, type int: var = 24Test expression type is not boolean or int. (Use -predboolint to inhibitwarning)If you want a very stri
t
he
k try splint -stri
t.11 A few words about the C99 standardNote that it is not supported by all
ompilers.C99 extends the previous C-version, C89, and adds support for (among other things):
• a boolean data type,
omplex numbers
• intermingled de
larations and
ode HPC

Thomas Eri
ssonComputational Mathemati
s, Chalmers/GU2011 19
• //-
omments
• inline fun
tions
• variable-length arrays
• restri
t quali�er to allow more aggressive
ode optimization (more later on)Here a few lines showing how to use the boolean data type:#in
lude <stdbool.h>...bool b;b = a > b;b = true;b = false;...Here
omplex numbers:#in
lude <
omplex.h>...double
omplex z, w, wz;z = 1 + 2 * I;w = 3 + 4 * I;wz = 3 * w * z;printf("%e %e\n",
real(wz),
imag(wz));...Intermingled de
larations and
ode:#in
lude <stdio.h>int main(){ int k = 22;for(int k = 0; k <= 2; k++) // C++ de
laration styleprintf("%d\n", k);printf("%d\n", k);return 0;}% g

 -std=
99
99_mixed.
 NOTE% a.out01222Inline fun
tions. From the C-standard: HPC

20 Thomas Eri
ssonComputational Mathemati
s, Chalmers/GU2011inline double fun
(double x)...Making a fun
tion an inline fun
tion suggests that
alls to the fun
tion be as fast as possible. Theextent to whi
h su
h suggestions are e�e
tive is implementation-de�ned.Variable-length arrays:...double f(int, double [℄);double g(double [℄, int);int main(){ int n = 100;double ve
[n℄;...}double f(int n, double ve
[n℄){ double tmp[n℄;...}double g(double ve
[n℄, int n) // does not work{ // n is undefined...}12 More on
ppThe

-
ommand �rst runs the C prepro
essor,
pp.
pp looks for lines starting with # followed by a dire
tive(there are several). From the man-page for
pp:#in
lude "filename"#in
lude <filename>Read in the
ontents of �lename at this lo
ation. This data is pro
essed by
pp as if it were part of the
urrent�le. When the <filename> notation is used, �lename is only sear
hed for in the standard �in
lude� dire
tories.Can tell
pp where to look for �les by using the -I-option.A typi
al header �le
ontains named
onstants, ma
ros (somewhat like fun
tions) and fun
tion prototypes,e.g:#define M_PI 3.14159265358979323846 /* pi */#define __ARGS(a) aextern int MPI_Send __ARGS((void *, int, MPI_Datatype, int, int, MPI_Comm));It is
ommon to store several versions of a program in one �le and to use
pp to extra
t a spe
ial version forone system.In _omp
_init from Omni, a Japanese implementation of OpenMP:HPC

Thomas Eri
ssonComputational Mathemati
s, Chalmers/GU2011 21...#ifdef OMNI_OS_SOLARISlnp = sys
onf(_SC_NPROCESSORS_ONLN);#else#ifdef OMNI_OS_IRIXlnp = sys
onf(_SC_NPROC_ONLN);#else#ifdef OMNI_OS_LINUX... deleted
odeUnder Linux we would
ompile by:

 -DOMNI_OS_LINUX ...13 Using the man-
ommandOne way of �nding out what header-�les are ne
essary, is to use the manual-
ommand, e.g:% man sinSIN(3) Linux Programmer's Manual SIN(3)NAMEsin, sinf, sinl - sine fun
tionSYNOPSIS#in
lude <math.h>double sin(double x);float sinf(float x);long double sinl(long double x);DESCRIPTIONThe sin() fun
tion returns the sine of x,where x is given in radians.RETURN VALUEThe sin() fun
tion returns a value between -1 and 1.CONFORMING TOSVID 3, POSIX, BSD 4.3, ISO 9899. The float andthe long double variants are C99 requirements.SEE ALSOa
os(3), asin(3), atan(3), atan2(3),
os(3), tan(3)You will not �nd man-pages for everything. Can try to make a keyword sear
h: man -k keyword.
HPC

22 Thomas Eri
ssonComputational Mathemati
s, Chalmers/GU201114 More on matri
esIn Fortran (dense) matri
es are stored in the same way in (almost) all programs. This is be
ause the matrix isa builtin type in Fortran and the language has a lot of support for matrix
omputations. This is not the
asein C, and so the are several possible data stru
tures for storing matri
es. It is important to pi
k the properdata stru
ture if the matrix should be passed as an argument to a Fortran routine or used together with aperforman
e library. Another issue is how we would like to a

ess the elements in the matrix. Is it importantto be able to write A[row℄[
ol℄ or will *(A + row * n +
ol) do?Here
omes a short des
ription of some alternative data stru
tures. Suppose we would like to store the matrix:
A =

[

1 2 3
4 5 6

]The most obvious way is illustrated by the following short program.#in
lude <stdio.h>int main(){ double A[2℄[3℄, elem = 0;int row,
ol;for(row = 0; row < 2; row++)for(
ol = 0;
ol < 3;
ol++)A[row℄[
ol℄ = ++elem;return 0;}This way to
reate matri
es is rather limited. We would at like to have a more dynami

hoi
e of dimensions.The �rst step would be something like:#in
lude <stdio.h>int main(){
onst int m = 2, n = 3;double A[m℄[n℄;...Some
ompilers a

ept su
h
onstru
tions, but not all. The following is allowed, but a bit
lumsy:#in
lude <stdio.h>#define _M 2#define _N 3int main(){
onst int m = _M, n = _N;double A[_M℄[_N℄;...Su
h a matrix
an be passed as a parameter to a Fortran program.
HPC

Thomas Eri
ssonComputational Mathemati
s, Chalmers/GU2011 2314.1 Dynami
 memory allo
ationSome assignments in the
ourse require that tests should be performed for a sequen
e of matri
es of in
reasingsizes. It is in
onvenient having to edit the program,
hanging the dimensions, re
ompiling et
. This leads us todynami
 memory allo
ation. So �rst a few words about that.The C-library routines mallo
 and free are used to allo
ate memory and to return it. stdlib.h
ontainsthe prototypes. In C++ we have new and delete. Java has garbage
olle
tion, so only new is ne
essary.Fortran90 has allo
ate and deallo
ate.We will
on
entrate on C from now on. ptr = mallo
(size) returns a pointer, ptr, to a blo
k of data at leastsize bytes suitably aligned for any use. If there is not enough available memory ptr will be a null pointer.free(ptr) will return the memory to the appli
ation, though not to the system. Memory is returned to thesystem only upon termination of the appli
ation. If ptr is a null pointer, no a
tion o

urs. It is illegal to free thesame memory more than on
e, to try to use freed memory and to free using a pointer not obtained from mallo
.Here is a typi
al pie
e of
ode where we allo
ate 100 double pre
ision numbers. Note the use of sizeofand the
he
k on the pointer value. We then store some values in the memory. The �rst loops uses pointerarithmeti
 and the se
ond uses ve
tor notation. Note that ve
 is a pointer and not a ve
tor but it is allowed tomix the notation.There are di�eren
es between ve
tors and pointers though. If we have the de
laration:double *ve
, ve
tor[100℄;ve

an point to something else but ve
tor
annot. We need spa
e for the pointer variable, ve
, but ve
toritself takes no spa
e,#in
lude <stdio.h>#in
lude <stdlib.h>int main(){ double *ve
; /* ve
 is a pointer to double */int n = 100, k;if((ve
 = mallo
(n * sizeof(double))) == NULL) {printf("mallo
 of ve
 failed.\n");exit(1);}for(k = 0; k < n; k++)*(ve
 + k) = k; /* pointer notation */for(k = 0; k < n; k++)ve
[k℄ = k; /* ve
tor notation */free(ve
); /* release the memory */return 0;}What I would like to do is to allo
ate memory for an m × n-matrix A, using mallo
, and then pass A as anargument to a fun
tion, re
eiving A as an m× n-matrix so that I
an use matrix-indexing A[row℄[
ol℄ insidethe fun
tion. This
an be done with some tri
kery (and with some
ompilers), but I do not know how to do itin a
ompletely legal way (following the C-standard) so I will not pursue this topi
 further.HPC

24 Thomas Eri
ssonComputational Mathemati
s, Chalmers/GU2011Here is another alternative. We know that a matrix is stored by rows in C. So if A is the address of the[0℄[0℄-element, A[row℄[
ol℄ has address A + n * row +
ol where n is the number of elements in a row.We
an use ve
tor indexing instead of using pointer arithmeti
. Here is an example (to make the
ode shorter Iwill not
he
k that mallo
 su

eeded, a bad programming pra
ti
e). I have added a fun
tion to show how theparameter
ould be passed.#in
lude <stdio.h>#in
lude <stdlib.h>double sum_elements(double *A, int m, int n);int main(){ double *A;int m = 2, n = 3, k;A = mallo
(m * n * sizeof(double)); /* Allo
ate memory for the m x n-matrix*/for(k = 0; k < m * n; k++)A[k℄ = k + 1; /* This is ONE way to a

ess the elements*/printf("result = %e\n", sum_elements(A, m, n));free(A);return 0;}double sum_elements(double *A, int m, int n){ double sum = 0;int row,
ol;for(row = 0; row < m; row++)for(
ol = 0;
ol < n;
ol++)sum += A[n * row +
ol℄; /* This simulates A[row℄[
ol℄-a

ess.We
ould use pointer notation.*/return sum;}One advantage of this approa
h is that it easy to pass the array as an argument to a Fortran routine (and it iseasy to store the matrix by
olumns instead).

HPC

Thomas Eri
ssonComputational Mathemati
s, Chalmers/GU2011 2514.2 This will not work with FortranTwo fairly
ommon ways to store a matrix will be des
ribed below. The �rst method does not work togetherwith Fortran though, but the other does. Both methods support A[row℄[
ol℄-indexing.Here
omes the �rst example:#in
lude <stdio.h>#in
lude <stdlib.h>double sum_elements(double **A, int m, int n);int main(){ double **A, elem = 0; /* Note ** */int m = 2, n = 3, row,
ol;A = mallo
(m * sizeof(double *)); /* Allo
ate spa
e for row pointers.Note double * .*/for(row = 0; row < m; row++)A[row℄ = mallo
(n * sizeof(double)); /* Allo
ate spa
e for elements in a row.Note double.*/for(row = 0; row < m; row++)for(
ol = 0;
ol < n;
ol++)A[row℄[
ol℄ = ++elem; /* Note A[row℄[
ol℄ */printf("result = %e\n", sum_elements(A, m, n));for(row = 0; row < m; row++) /* free */free(A[row℄);free(A); /* free again,Note the order of the
alls to free.*/return 0;}double sum_elements(double **A, int m, int n){ double sum = 0;int row,
ol;for(row = 0; row < m; row++)for(
ol = 0;
ol < n;
ol++)sum += A[row℄[
ol℄;return sum;}
HPC

26 Thomas Eri
ssonComputational Mathemati
s, Chalmers/GU2011The memory layout may look something like this after we have initialised the matrix. The arrows show howthe addresses point.variable
ontent address+----> A[0℄ 135200 134168 --+| A[1℄ 135232 134172 --|--+| | || A[0℄[0℄ 1 135200 <--+ | start of first row| A[0℄[1℄ 2 135208 || A[0℄[2℄ 3 135216 || 135224 | Note, a gap| A[1℄[0℄ 4 135232 <-----+ start of se
ond row| A[1℄[1℄ 5 135240| A[1℄[2℄ 6 135248|+---- A 134168 429080A points to A[0℄ whi
h in turn points to A[0℄[0℄, the �rst element in the �rst row. A[1℄ points to the beginningof the se
ond row, i.e. A[1℄[0℄. The �rst mallo
 allo
ates spa
e for A[0℄ and A[1℄ (m row pointers). Then
omes a loop with m
alls to mallo
 where ea
h one allo
ates memory for storing the n elements in row.We note that sizeof(double *) is four sin
e A[0℄ and A[1℄ are four bytes apart (134172-134168=4). Thedouble pre
ision numbers are eight bytes apart, ex
ept between A[0℄[2℄ and A[1℄[0℄ where the gap is 16bytes. This is the reason this data stru
ture
annot be used when
alling Fortran routines, the elements arenot
ontiguous in memory.One advantage with this data stru
ture is that all the rows need not have the same length.Note also that this storage requires more memory than the usual matrix data stru
ture (we need extra spa
efor the row pointers). That is true with the next method as well, but it has the advantage of giving
ontiguouselements, making it possible to pass the array to a Fortran routine.14.3 This will work with Fortran...double **A;A = mallo
(m * sizeof(double *)); /* Allo
ate spa
e for row pointers.Note double * .*/A[0℄ = mallo
(m * n * sizeof(double)); /* Allo
ate spa
e for the elements in the matrix.Note that we get
ontiguous elements.*/for(row = 1; row < m; row++)A[row℄ = A[0℄ + row * n; /* Give the row pointers their values, i.e.find out where ea
h row starts.There are n elements in ea
h row.*/for(row = 0; row < m; row++)for(
ol = 0;
ol < n;
ol++)A[row℄[
ol℄ = ++elem;... HPC

Thomas Eri
ssonComputational Mathemati
s, Chalmers/GU2011 27The memory layout may look something like this after we have initialised the matrix. The arrows show howthe addresses point.variable
ontent address+----> A[0℄ 135768 134744 --+| A[1℄ 135792 134748 --|--+| | || A[0℄[0℄ 1 135768 <--+ | start of first row| A[0℄[1℄ 2 135776 || A[0℄[2℄ 3 135784 || A[1℄[0℄ 4 135792 <-----+ start of se
ond row| A[1℄[1℄ 5 135800| A[1℄[2℄ 6 135808|+---- A 134744 429080To pass the array to Fortran we use the parameter &A[0℄[0℄, A[0℄ or *A.For more details about this and other topi
s, see the C-FAQ:http://www.faqs.org/faqs/by-newsgroup/
omp/
omp.lang.
.html14.4 C and large arraysSome of the assignments require that you use large arrays. This may be a problem in C. Consider the followingprogram:#in
lude <stdio.h>#define _N 2000000main(){ int k;double large_array[_N℄;for(k = 0; k < _N; k++)large_array[k℄ = 1;printf("Last %f\n", large_array[_N - 1℄);return 0;}When we try to run it we get:% g

 sta
k_problems_1.
% a.outSegmentation faultThe reason is that large_array is allo
ated on the sta
k, whi
h has a limited size. We
an �nd out the size byusing the
ommand limit. Thus: HPC

28 Thomas Eri
ssonComputational Mathemati
s, Chalmers/GU2011% limit (works provided you use t
sh, type ulimit -a if you are using bash)
putime unlimitedfilesize unlimiteddatasize unlimitedsta
ksize 10240 kbytes
oredumpsize 0 kbytesmemoryuse unlimitedvmemoryuse unlimiteddes
riptors 1024memorylo
ked 32 kbytesmaxpro
 500So, the sta
k is limited to 10240 kbyte, but we need 2000000 * 8 / 1024 kbyte, i.e. 15625 kbyte (the sta
k isused for some other purposes as well so it must be a bit larger). So, let us in
rease the sta
k size and try again:% limit sta
ksize 15700 (in bash ulimit -s 15700)% a.outLast 1.000000Another way is to store the array in a segment in a.out. If we make large_array stati
, i.e. we have the typede
laration: stati
 double large_array[_N℄; our program will work with the default sta
k size. The arrayis now stored in the bss-segment.% g

 sta
k_problems_2.
% limit sta
ksizesta
ksize 8192 kbytes% a.outLast 1.000000% size a.outtext data bss de
 hex filename925 252 16000032 16001209 f428b9 a.outOne drawba
k with stati
 variables is that they exist for the lifetime of the program (even if we do not use thearray). So, yet another way (
ommon) is the use dynami
 memory allo
ation (i.e. we use mallo
/free) pla
ingthe array on the heap:#in
lude <stdio.h>#in
lude <stdlib.h>#define _N 2000000int main(){ int k;double *large_array;if ((large_array = mallo
(_N * sizeof(double))) == NULL) {printf("Could not mallo
 large_array.\n");exit(1);}for(k = 0; k < _N; k++) HPC

Thomas Eri
ssonComputational Mathemati
s, Chalmers/GU2011 29large_array[k℄ = 1;printf("Last %f\n", large_array[_N - 1℄);free(large_array);return 0;}

HPC

30 Thomas Eri
ssonComputational Mathemati
s, Chalmers/GU201115 Pre
eden
e and asso
iativity of C-operatorsOperators have been grouped in order of de
reasing pre
eden
e, whereoperators between horizontal lines have the same pre
eden
e.Operator Meaning Asso
iativity() fun
tion
all →[℄ ve
tor index-> stru
ture pointer. stru
ture member++ post�x in
rement� post�x de
rement! logi
al negation ←~ bitwise negation++ pre�x in
rement-- pre�x de
rement+ unary addition- unary subtra
tion* indire
tion& address(type) type
astsizeof number of bytes* multipli
ation →/ division% modulus+ binary addition →- binary subtra
tion� left shift →� right shift< less than →<= less or equal> greater than>= greater or equal== equality →!= inequality& bitwise and →^ bitwise xor →| bitwise or →&& logi
al and →|| logi
al or →?:
onditional expression ←= assignment ←+=
ombined assignment and addition-=
ombined assignment and subtra
tion*=
ombined assignment and multipli
ation/=
ombined assignment and division%=
ombined assignment and modulus&=
ombined assignment and bitwise and^=
ombined assignment and bitwise xor|=
ombined assignment and bitwise or�=
ombined assignment and left shift�=
ombined assignment and right shift,
omma →HPC

Thomas Eri
ssonComputational Mathemati
s, Chalmers/GU2011 31Here are a few
omments, see a textbook or my links for a
omplete des
ription.
• Left to right asso
iativity (→) means that a-b-
 is evaluated as (a-b)-
 and not a-(b-
). a = b =
, on the other hand, is evaluated as a = (b =
). Note that the assignment b =
 returns the value of
.if (a < b <
) ...; means if ((a < b) <
) ...; where a < b is 1 (true) if a < b and 0 (false)otherwise. This number is then
ompared to
. The statement does not determine �if b is between a and
�.
• a++; is short for a = a + 1;, so is ++a;. Both a++ and ++a
an be used in expressions, e.g. b = a++;,
 = ++a;. The value of a++; is a's value before it has been in
remented and the value of ++a; is the newvalue.
• a += 3; is short for a = a + 3;.
• As in many languages, integer division is exa
t (through trun
ation), so 4 / 3 be
omes 1.Similarly, i = 1.25;, will drop the de
imals if i is an integer variable.
• expr1 ? expr2 : expr3 equals expr2 if expr1 is true, and equals expr3, otherwise.
• (type) is used for type
onversions, e.g. (double) 3be
omes 3.0 and (int) 3.25 is trun
ated to 3.
• sizeof(type_name) or sizeof expression gives the size in bytes ne
essary to store the quantity. So,sizeof(double) is 8 on our system and sizeof (1 + 2) is 4 (four bytes for an integer).
• When two or more expressions are separated by the
omma operator, they evaluate from left to right.The result has the type and value of the rightmost expression. In the following example, the value 1 isassigned to a, and the value 2 is assigned to b. a = b = 1, b += 2, b -= 1;
• Do not write too tri
ky expressions. It is easy to make mistakes, it is hard to read and one may endup with unde�ned statements. a[i++℄ = i; and i = ++i + 1; are both unde�ned. See the standard,se
tion 6.5, if you are interested in why.

HPC

32 Thomas Eri
ssonComputational Mathemati
s, Chalmers/GU201116 A few words about t
sh and bashThe lo
ation of a �le or a dire
tory is given by its path. An absolute path starts at the root in the �le tree. Theroot is denoted / (slash). The path to my HPC-dire
tory is /
halmers/users/thomas/HPC . The �le ex.f90, inthis dire
tory, has the path /
halmers/users/thomas/HPC/ex.f90. There are also relative paths.Suppose the
urrent dire
tory is /
halmers/users/thomas . A path to the ex.f90 is then HPC/ex.f90 .Suppose your
urrent dire
tory is something else, then ~thomas/HPC/ex.f90 is a path to the �le. ~, by it-self, denotes your home dire
tory, ~user, is the path to the home dire
tory of user. So I
ould have written,~/HPC/ex.f90 . .. is the level above, and . is the
urrent dire
tory. That is why we sometimes write ./a.out,se below.The shell (
sh, t
sh, sh, ksh, bash, ...) keeps several variables. One important su
h variable is the path.I will
on
entrate on [t℄
sh, a few words about bash
ome at the end of this se
tion. The path
ontains ablank-separated list of dire
tories. When you type a
ommand (whi
h is not built-in, su
h as
d) the shell willsear
h for a dire
tory
ontaining the
ommand (an exe
utable �le with the given name). If the shell �nds the
ommand it will exe
ute it, if not, it will
omplain:% set path = () no dire
tories%
d HPC
d is built-in% lsls: Command not found.% /bin/ls worksA.mat ... et
% set path = (/bin)% ls now t
sh finds lsA.mat ... et
The set is lo
al to the parti
ular shell and lasts only the present login session.Sometimes there are several di�erent versions of a
ommand. The shell will exe
ute the
ommand it �nds�rst (from left to right).% whi
h ls/bin/ls% whi
h gfortran/usr/bin/gfortran
omes with the system% whi
h gfortran used in the
ourse 2006/
halmers/users/thomas/HPC/gfortran/bin/gfortranIn the �rst whi
h, /usr/bin
omes before the HPC-dire
tory, and in the se
ond /usr/bin
omes after.If you do not have . in your path, the shell will not look for exe
utables in the
urrent dire
tory.% pwd print
urrent dire
tory/
halmers/users/thomas/HPC/Test% a.outa.out: Command not found. no . in the path% ./a.out works% set path = ($path .) add . to the path% a.out works HPC

Thomas Eri
ssonComputational Mathemati
s, Chalmers/GU2011 33$path is the value of path. Suppose the path
ontains ~ .%
p a.out ~/a.out1% whi
h a.out1a.out1: Command not found.% rehash rebuild the internal hash table% whi
h a.out1/
halmers/users/thomas/a.out1A
ommand does not have to be a
ompiled program.% ls -l /bin/ls-rwxr-xr-x 1 root root 82796 Jun 20 13:52 /bin/ls% file /bin/ls/bin/ls: ELF 32-bit LSB exe
utable, Intel 80386,version 1 (SYSV), for GNU/Linux 2.6.9,dynami
ally linked (uses shared libs), for GNU/Linux 2.6.9, stripped% whi
h
d
d: shell built-in
ommand.% whi
h apropos/usr/bin/apropos% file /usr/bin/apropos/usr/bin/apropos: Bourne shell s
ript text exe
utable% head -3 /usr/bin/apropos#!/bin/sh## apropos -- sear
h the whatis database for keywords.A user would usually (perhaps not if one is a student; see below for more details) set the path-variable in thestartup �le .t
shr
 whi
h usually resides in the login dire
tory. The period in the name makes the �le invisible.Type ls -a to see the names of all the dot-�les.To see your path, type e
ho $path, or give the
ommand set, whi
h prints all the shell variables. Shell-variables are not exported to sub-pro
esses so the shell
reates an environment variable, PATH, as well. PATH isexported to sub-pro
esses and it
ontains a :-separated list of dire
tories).% set var = hello% e
ho $var like printhello% t
sh start a sub-shell% e
ho $varvar: Undefined variable.% exit% setenv var hello an environment variable, no =% t
sh sub-shell% e
ho $varhelloTo see all your environment variables, type setenv. Another useful environment variable is the manual sear
hpath, MANPATH and the LD_LIBRARY_PATH (mu
h more details later on).HPC

34 Thomas Eri
ssonComputational Mathemati
s, Chalmers/GU201116.1 Now something about bashMost of the above details about t
sh work in bash as well. Here are some di�eren
es. The shell startup �leis
alled .bashr
. The path-variable is named PATH. You
an set (a short path) the following way (you do notuse set as in t
sh):% PATH=/bin:/usr/binTo export a variable to a sub-pro
ess, use the export-
ommand, like in this example:bash-3.2$ A_VARIABLE=123bash-3.2$ e
ho $A_VARIABLE123bash-3.2$ bash start a sub-shellbash-3.2$ e
ho $A_VARIABLE not definedbash-3.2$ export A_VARIABLE=123 use exportbash-3.2$ bash start a sub-shellbash-3.2$ e
ho $A_VARIABLE123 definedset prints all the variables, but there is no setenv-
ommand, use export instead.For mu
h more on t
sh and bash tryman t
shman bashorinfo t
shinfo bashfor a more stru
tured layout.16.2 A note on the student environmentTo make it easier for beginners (both tea
hers and students) Chalmers/GU has a standard environment whereyou do not have to
reate your own startup �les. One does not have to use it (I do not). The following pagedes
ribes how to modify the standard environment:http://www.
halmers.se/its/EN/
omputer-workpla
e/linux/various-linux-questions

HPC

